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Abstract: During the 2025 flood season, the National Climate Centre accurately predicted that the

principal rain belt in central and eastern China would be situated over the northern regions during

THEK RIS S RIS S (U2442207, U2342211). HhES SR TN LT. 754 ERIET 5t i
RIBCE TN (U5 (202403011232004) . H1[H G AT & S A% BIA (CMA2023ZD03) Fifl
BREL I (CXFZ20250025). H K HARFHAEETIH (42075017, 41875093) H:[q| %t H)
2025 £ 12 A 8 HUkkr; 2026 4 1 A 16 Hi &
FAEE: BRE, EEMNEEISEDNBST. Email: zhaojh@cma.gov.cn
BIES: & M, FEMNFRIESE TGN ST, Email: gaoh@cma.gov.cn

1



mailto:zhaojh@cma.gov.cn
mailto:wang@cma.gov.cn

the summer months (June to August), with below-normal precipitation in the south. The
predictions regarding monsoon behavior and the progression of the rainy season aligned closely
with actual observations. Notably, the prediction correctly indicated an earlier onset, extended
duration, and exceptionally heavy rainfall during the rainy season in North China, as well as
severe flooding in the Haihe River Basin and the middle-lower reaches of the Yellow River.
However, certain limitations were observed in the summer precipitation prediction. Firstly, the
extremity of precipitation in northern North China was underestimated. Secondly, the forecast for
the Huaihe River Basin deviated from observations. In the updated midsummer (July toAugust)
forecast issued in June, precipitation in central and eastern China was projected to follow a “above
normal over both North and South China, below normal over the Yangtze River basin” pattern.
This prediction anticipated a westward expansion and northward contraction of the primary
northern rain belt, along with a northward and westward extension of the secondary rain belt in
South China. It also highlighted reduced precipitation in the Jianghuai River Basin and
emphasized the likelihood of anomalous conditions, which proved more consistent with actual
observations. In March 2025, the flood season prediction was developed based on objective
methods including dynamical models and multi-model ensembles, etc. The application of these
methods was guided by evaluating their predictive skill over the past decade. The prediction
comprehensively considered the combined influences of multiple precursor signals across
interdecadal and interannual scales on the East Asian summer monsoon and summer precipitation
in China. This approach successfully predicted an intensified East Asian summer monsoon and a
primary rainfall belt located over northern China in 2025. For the midsummer precipitation
forecast, the influence of spring Eurasian snow cover was additionally incorporated. Finally, key
scientific and technical challenges in flood season prediction were discussed, along with potential
directions for future efforts.
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Fig.1 (a) Distribution of precipitation anomaly percentage in China in summer and (b)

corresponding prediction issued at the end of March in 2025
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Fig.2 (a) Distribution of precipitation anomaly percentage in China in mid-summer and (b)

corresponding prediction isssued at the end of June in 2025
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Table 1 Comparison of predicted and observed rain season process

in eastern China in the flood season of 2025
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Table 2 Prediction and observation of tropical cyclone over the Northwest Pacific and the South

China Sea in the flood season of 2025
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Fig.4 500 hPa geopotential height (contour, unit:gpm) and its anomaly (colored), and 850 hPa
wind anomalies (arrow vector) in summer of 2025
(a) Observation, (b) CMA-CPSv3, (c) ECMWEF-S5, and (d) NCEP-CFSv2
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Fig.5 Predicted summer precipitation anomaly percentage for 2025 by six objective methods
initialized March 2025
(a) CMA-CPSv3, (b) ECMWF-S5, (c) NCEP-CFSv2, (d) NCC-CMME, (e) NCC-FODAS , (f)

THU-SEDES
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Fig.6 Anomaly sign consistency rate of summer precipitation of six objective-method
predictions (initialized in March) during 2015-2024
(a) CMA-CPSv3, (b) ECMWF-S5, (c) NCEP-CFSv2, (d) NCC-CMME,
(e) NCC-FODAS, (f) THU-SEDES
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Fig.7 Interdecadal composites of summer precipitation anomaly percentage in China
(a) 1960-1969, (b) 1970-1979, (c) 1980-1989, (d) 1990-1999, (€) 20002009 and (f) 2016—
2024
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FHIEE, 20200 o AMOZZ UK TR URAAL R SCBE XN 8%, FLIR IR 7 0 1 55 1 F0
B FRAR IS AT AT R A 7 X, 3 T X2 -1 R B RO 3 B AT A e T R P
Tt 20 B0 A AT X B AU AR U (Sunetal, 2017) o PDO A
HAATAMOREAL AR 3[R 9 51 52 2= Rl v i AL, 2R I8 52 2= XU fi o2 o [ B 3599 5 (Yang et al, 2017) .
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it i 0.8°C LA, T 2R B AP WA LR PG Ve A DR i v, 0~40 NIV BBl i v
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Fig.8 (a) January 2017 to March 2025 sea surface temperature anomaly, (b) Standardized index
of interdecadal components of summer precipitation in North China, annual average PDO and

AMO, and (c) summer composite of 500 hPa geopotential height anomaly during 2017-2024
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3.3 FhRELKES

= RPEME IR RR AR S S 2 vh R S0 T 1) 2 B4R (5 5, 2024 42 8 H, il
H R RSP A IR, &R TRIR G T K, W HLak 31-1.0°C, A0y B FEVE 2 764 R B,
LRGP IR MR (B 9a) . 2024 4 12 A1 2025 4F 1 H Nifp3.4 54155 5 N-0.66°C
M-0.76°C, IEF| T LaNifa iRZ, 2 AEAPIERE (8 9b). 2025 4 3 H, EWAEh A
1B N L 2% ENSO [ TIIIAE7E 5K 7 B, FGOALS-f2 Hil FIOCPSv2 Titill El Nifp K i,
ifi CAMS HI CMA-CPSv3 fiitilll La Nifa & f&, ECMWF-S5. NCEP-CFSv2 #l CMME Tl 4k
R R (B 9b), ENSO Ll M4 it e EEGER RS,

2024/2025 4F A Z B KA ZREINAL B AR X B /KR La Nire IR ES (R0 24
B3 R B E SRR RO U IR IR S v e K S > GRS AT 45, 2025)
55 2025 4F ENSO J# A AR A ¥ 5 BB /K S FE-F 1 40 5 A B 18] 10a s, wf LA 6y
Bk, O T B X E AR, KTk R D, S EEr a2
N7 s W25 & PDO WA RLAH X4 B 5 AR E T, 45 5L s R A 1w AL 7 X
HoO A T HEAbFE A, PE R IX AR R A R 2> (] 10b) o RISl iR, ENSO
LSRRI TR T 2025 4E4F . H Z ENSO 4EFErh HiRAs, HFEm 7i55h. Walker A
6-7 H XA R MR PU AL KPP AU MR 3 5 A I 10T La NP TR (103 J i 1 o

2024 FEHTAE 11 H, B EDEERIIR 7 e, X —BUHRAA (J0BM) FE-T4E
BoEEre 0.7°CLALE, 12 AZ G SR, 12 A% 2025 4 2 A4ERE 0.2~0.4°C (& 90),
Y BN BRI N X IR La Nife RS R I — @R RIS . k4, CMME il 2025 £45
H RPN EEFERRRBE, 10BM FE-TR54ERF7E 0.3~0.5°C ([ 90). BRI, FFRR
JE b, BN R IR AR KSR B W S R, AR T 7—10 A &lm b
RV H ZE R w5 (Zhao etal, 2019), Bl 2025 4EEN ¥R B MR EAE A7) FHEIbf
RACEH R K W

. BEHAFICRTEFEER (TNA) S8 T LUB IR K Kelvin JEBEACFRE, B8R
FE R R TEREAN AT b 25 T R 41 Wallker 3137, P EU AL AT RERI FAHE 54 /<
eI R (Lu and Dong, 2005; Zuo et al, 2019); FHAREWIAL K= 7 (NAT) @il ¥k
FR R A WO RE A DG, 52 2 2R AR A6 i A H [E (4% (Zuo et al, 2013; Fang et al, 2018) . AL TNA
T NAT FUEIFITRIE , 2024 4E% 2025 4E 2 H, TNA FFIEEEREAE 0.6°CLL L, NAT
FEHAEFFE-1.0°CLL ;. CMME Filll 2025 435 B 2P AL R VI VR IR PRIER ST, TNA
PEFAREYERFAE 0.3°CRL T, NAT FE-FHE84ERFE-0.3~-0.1°C (JEII%), R IL R EHE
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Fig.9 (a) Sea surface temperature anomaly in pre-winter of 2025, (b,c) monthly observed and
CMME prediction (initialized in March 2025) (b) Nifp3.4 index and (c) IOBM index from April

2024 to February 2025
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Fig.10 Composite of summer precipitation anomaly percentage for (a) all analogous years and
(b) analogous years under the negative phase of the PDO with ENSO evolution analogous to that
of 2025

RIS, 2 BT e SRR IO 50 o DR 25 e o o VR0 e /K 32 2 g Bt T e R A3
5, B AR DR BRI AN A CGRIDURI A Fr 5, 2001; SREAE
AT, 2007). 2025 4FRT 475 el JFA T AT 08-0.04 (1 fbriEZN 0.24),
B, (G585, R EFRRRE MR AR, Zhang etal (2021; 2025) #7L
FEH WO K A 2R AR 25 78 5 38 1 S 6 00 SE 52 28 XU K PRS2 e BE i, 20 28 90 4EARBASK,
PERRE KRl AR S 5 B 2R 5 7 S Rl o A AF A S DRI : ART R 2, 2R 5 230
“Ubdim 57 BBEK A, RZ IR (Zhang etal, 2021) o A, 7E5 HJRAESNTIAT 6
BTN, B b A= =M R A EACRR . P55 4h, TR0 %8 T HEFIRI R R
DXARE B 5 S5 : 2025 4F 2= 00 BRIE KRR S5 5 22, o B 2= b R 2R ke L “ I
B o MXFETE. CMME S5 007 il o [E R A B b sk B M, KL
TR X A . RACRIEEIT AR R Ak, IREETTRLECHI 7 H MJO e AR AL A,
FEWFPEIE RBREER, A H T 6 RIGsh FE] S bBk . 2T L EE R, e b AR 850K 24/
bz a7 opAn, 677 W R PEY R mAbRE, R RE A E L. PR, TIHER
SRR /L, RIS TG 1 R i, TS S AR — B

gi BRIk, 18 3 HRME AU I b, 7E3h /= ppial. 2R RN TR sE TN
T3 HI RN AL b, H ORI AR MR BR SIS 5 BURFIEMISZ R, — 35 13 HF 2025
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FEZRE B R w5 £ R A AL T A B 677, 3X 02 2025 AU 7K S T R D i 3 AR .
3.4 EZEREKHWA KRR 735

2025 £ 2 Z=[EK I A R A4S —REedb R PR B, ESR AT 3~4
Hl g U, SRR SRS WHR EHER RS Hm M5 2, H. 2025 fE4ERRME
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BEIF RS AL AR . B R B R B 2R T — e B, {H3RAT 3~4 M A
PIFGE A PR . 3 /BN CMME Tl 6 A A 7 J RlE R Zng ki, 8 Hi R mdt (3
T2 A (B 1la), SSEARRESR, il 6 HURMmit (k2.4 N4, 7 H
Rt (Wb 7.2 AN4E, 1961 F LIk 7 H Rl G, 8 Hgfwdt (&l 11d). Bifs
&5 HA6 Ik fmiias R, Joiba2 it & CMME, $oRBETIN 6-7 F &l i 7 i
fidt (&l 11b, 11c). Bbhbh, ANFREMIMT5vES, BT CMA-CPSv3 1 CMME 4, HAt:
VUAH VA PR A P K 22 (B 6D T 7S A 7 VARV JAE Ak 7K A Tl 4 775 B S Al
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Fig.11 CMME-based 6-month prediction of the subtropical high ridge line anomaly initialized in
(a) March, (b) May, and (c) June 2025, and (d) observed monthly subtropical high ridge line

anomaly from May to September
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