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提　要：本文构建了一种基于序列融合编码器的深度学习模型，用于冬季降水相态预报。该模型整合卷积神经网络、卷积门

控循环单元和Ｔｒａｎｓｆｏｒｍｅｒ的优势，可自动学习和提取气象数据中的复杂特征，处理非线性关系及大规模数据集。采用

２０１０—２０２４年武汉站逐小时降水观测和ＥＲＡ５再分析数据，选取９层（１０００～５００ｈＰａ）气温、位势高度等６０个通道格点数据

作为预报因子，通过分钟数据增强（雨３０ｍｉｎ、雨夹雪１ｍｉｎ、雪５ｍｉｎ间隔重采样）解决样本不平衡问题，最终获得１９９３２个样本。

试验结果显示，模型对固态降水（雪、雨夹雪）预报性能优异，训练集Ｆ１分数达０．９２～０．９３，验证集为０．６７～０．６８，但在降水相

态快速转换时的识别能力有待增强。通过２０２４年２月两次复杂天气过程检验，模型可作为数值预报补充，为冬季降水相态智

能预报提供高效方案，提升台站预报能力。
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引　言

降水相态的准确预报对于防灾减灾、农业生产

规划、水资源管理及城市基础设施建设等具有至关

重要的意义。特别是在冬季，降水相态的突然转变

往往会给社会经济带来不可预见的影响，如２０２４年

春节前后在湖北省发生的两次雨雪冰冻天气，其间

频繁出现雨、雪、冻雨、冰粒等形式的降水相态转换

（俞小鼎等，２０２４），低温雨雪冰冻天气导致道路结冰

从而出现大范围交通瘫痪。因此，发展高效、精准的

冬季降水相态预测技术，已成为气象科学和应用领

域亟待解决的关键课题之一（赵俊虎等，２０２５）。

降水相态预报的传统方法主要依赖数值天气预

报和统计学方法，根据实况和预报产品中地面至中、

高层的气温、气压等要素的垂直分布判别降水相态

的变化（仇会民等，２０２３）。Ａｈｒｅｎｓ（２００３）提出了

“ＴｏｐＤｏｗｎＡｐｐｒｏａｃｈ”降水相态分析法，其基本思

路为：当大气环境已经具备了产生降水的基本条件

时，通过从大气顶部开始，逐步追踪水汽凝结物的运

动轨迹直至地面，可以有效地解析降水相态的演变

过程。褚芸欣等（２０２３）进一步研究认为，气温低于

－１０℃的湿层、高于０℃的暖层及近地面冷层等关

键层的高度和厚度是降水相态的决定因素。这些方

法在实际应用中取得了一定的效果，但在面对复杂

多变的天气系统时，其预报精度和时效性往往难以

满足实际需求（徐红等，２０２３；孙卉等，２０２４）。

近年来，随着人工智能技术的快速发展，机器学

习在气象业务领域的应用日益广泛，如卷积神经网

络（ＣＮＮ）常用于处理卫星与雷达图像，以实现短期

降水量及降水类型的预报（Ｓｈｉｅｔａｌ，２０１５）；循环神

经网络（ＲＮＮ）因具备内部记忆功能，能精准捕捉输

入数据中的时间依赖关系，多用于时间序列等序列

数据处理（ＬｅＣｕｎｅｔａｌ，２０１５）；Ｔｒａｎｓｆｏｒｍｅｒ模型也

常用于时间序列数据处理，可有效提升长期天气预

报的准确性（黄天文等，２０２４；Ｖａｓｗａｎｉｅｔａｌ，２０１７）。

单一模型在处理高维度时空数据时存在效率偏

低的缺点。因此，构建能充分发挥各类模型的特点，

精确提取多种气象要素时空特征的深度学习组合模

型方法，已成为当前的研究热点之一（杨子幸，

２０２３）。为有效捕捉降水相态数据中的时间依赖性

与空间相关性，本文融合ＣＮＮ、ＲＮＮ及注意力机制

等多种深度学习方法（ＴａｌａｔａｈａｒｉａｎｄＡｚｉｚｉ，２０２１；

Ｒａｖｕｒｉｅｔａｌ，２０２１），尝试对降水相态数据进行更全

面、深入的特征提取，以期探索一种更为精细的降水

相态预报方法。

１　模型设计

本文基于深度学习技术，针对区域范围内长时

段的气象观测数据，采用深度学习模型组合解析降

水相态与气温、湿度、气压等气象要素之间复杂的非

线性映射关系，从海量气象数据中学习并提取复杂

特征，构建一种冬季降水相态预报模型（以下简称模

型）。

１．１　结构设计

采用ＣＮＮ提取输入数据目标格点及邻域的特

征信息，以分析雨、雪、雨夹雪等不同降水相态下各

气象要素在空间分布上可能存在的差异。通过卷积

操作，ＣＮＮ可以在一定程度上平滑各输入数据可能

存在的噪声，减少异常值对分析结果的影响，从而更

好地提取出有效特征。

在ＣＮＮ 的基础上，采用卷积门控循环单元

（ＣｏｎｖＧＲＵ）增加时间序列分析能力（图１）。ＧＲＵ

是ＲＮＮ的变体，ＣｏｎｖＧＲＵ是将卷积操作与ＧＲＵ
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图１　卷积门控循环单元架构示意

Ｆｉｇ．１　Ｓｃｈｅｍａｔｉｃｄｉａｇｒａｍｏｆｃｏｎｖｏｌｕｔｉｏｎａｌｇａｔｅｄｒｅｃｕｒｒｅｎｔｕｎｉｔ（ＣｏｎｖＧＲＵ）ａｒｃｈｉｔｅｃｔｕｒｅ

机制相结合，通过更新门和重置门控制信息流动，在

每个时间步上更新隐藏状态，提取输入数据在时间

维度上的变化规律，如目标强度的连续变化、区域的

移动等（林靖皓等，２０２０），为降水相态分析提供时间

维度的信息支持。与传统ＲＮＮ相比，ＣｏｎｖＧＲＵ在

处理长期依赖关系时表现更优，可有效避免梯度消

失或梯度爆炸问题。

　　在上述基础上，模型还引入了Ｔｒａｎｓｆｏｒｍｅｒ模

块（图２）。Ｔｒａｎｓｆｏｒｍｅｒ中的多头注意力机制允许

模型从不同的角度关注输入序列，计算每个位置与

其他位置之间的关联程度，如影响系统的整体结构、

降水空间分布等全局特征，对全局信息进行建模从

而捕捉到局部降水的全局特征依赖关系（贺琳等，

２０２１），为降水相态的分析提供更全面的视角。且

Ｔｒａｎｓｆｏｒｍｅｒ具有良好的并行计算能力，可以在较

短的时间内处理大量的数据，提高分析效率。

　　以ＣＮＮ、ＣｏｎｖＧＲＵ和Ｔｒａｎｓｆｏｒｍｅｒ三种模型

的组合构成的序列融合编码器（ＳＦＥ），通过与ＣＮＮ

提取的局部特征、ＣｏｎｖＧＲＵ学习的时间序列信息

以及Ｔｒａｎｓｆｏｒｍｅｒ捕捉的全局信息相互融合，从气

象要素的空间分布、随时间变化及相互作用等不同

角度对数据进行处理分析，为降水相态分析提供更

丰富、更全面的特征表示（申晋祥和鲍美英，２０２１）。

１．２　流程设计

模型结构及数据流向设计如图３所示。

（１）输入数据准备

输入数据预期形状为（ｂａｔｃｈ＿ｓｉｚｅ，ｓｅｑ＿ｌｅｎｇｔｈ，

Ｉｎｐｕｔ＿Ｃｈａｎｎｅｌ，Ｄａｔａ＿Ｈｅｉｇｈｔ，Ｄａｔａ＿Ｗｉｄｔｈ）。

（２）ＣＮＮ处理

ＣＮＮ通过二维卷积层、批量归一化层和最大池

化层提取各输入二维气象要素场数据空间的深层特

征：深度可分离卷积模块用以减少计算量和模型参

数、降低计算复杂度，每个模块包含１个深度卷积和

１个逐点卷积；多级卷积和池化层（ｋｅｒｎｅｌ＿ｓｉｚｅ＝３，

ｐａｄｄｉｎｇ＝１，ｓｔｒｉｄｅ＝２＜ＭａｘＰｏｏｌ＞）逐步升维提取

特征；１×１卷积调整最终输出通道数以适配后续的

ＣｏｎｖＧＲＵ输入要求。根据输入数据和硬件情况，

设置ｂａｔｃｈ＿ｓｉｚｅ＝２４，ｓｅｑ＿ｌｅｎｇｔｈ＝１。

（３）ＣｏｎｖＧＲＵ处理

利用序列数据的时间维度组件对ＣＮＮ提取的

特征进行序列建模。ＣｏｎｖＧＲＵ 堆叠多个 Ｃｏｎｖ

ＧＲＵＣｅｌｌ构成循环单元，每个ＣｏｎｖＧＲＵＣｅｌｌ包含

门控机制（更新门、重置门）来控制信息流，使用卷积

操作代替全连接。主要参数设计为：隐藏状态维度

与输入维度相同；小卷积核（ｋｅｒｎｅｌ＿ｓｉｚｅ＝３）以避免

显著增加计算负担；２层堆叠（ｎｕｍ＿ｌａｙｅｒｓ＝２）避免

导致梯度消失；采用Ｓｉｇｍｏｉｄ激活函数将值压缩到

图２　Ｔｒａｎｓｆｏｒｍｅｒ编码器架构示意

Ｆｉｇ．２　ＳｃｈｅｍａｔｉｃｄｉａｇｒａｍｏｆｔｈｅＴｒａｎｓｆｏｒｍｅｒｅｎｃｏｄｅｒａｒｃｈｉｔｅｃｔｕｒｅ
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图３　模型结构及数据流向设计

Ｆｉｇ．３　Ｄｅｓｉｇｎｏｆｍｏｄｅｌａｒｃｈｉｔｅｃｔｕｒｅ

ａｎｄｄａｔａｆｌｏｗｄｉｒｅｃｔｉｏｎ

［０，１］，控制前一时刻的状态对当前时刻状态的影响

程度，以捕捉时间依赖关系。

　　（４）Ｔｒａｎｓｆｏｒｍｅｒ编码器

　　ＣｏｎｖＧＲＵ输出经过重塑和转置形状为（ｂａｔｃｈ＿

ｓｉｚｅ，ＨｅｉｇｈｔＷｉｄｔｈ，ｄ＿ｍｏｄｅｌ＝５１２），以输入Ｔｒａｎｓ

ｆｏｒｍｅｒ编码器。Ｔｒａｎｓｆｏｒｍｅｒ编码器层的作用是进

一步处理序列数据，将输入数据沿空间维度展平，通

过适配层调整至ｄ＿ｍｏｄｅｌ的大小，捕捉各输入因子

之间的全局依赖关系。数据由６层堆叠的 Ｔｒａｎｓ

ｆｏｒｍｅｒ＿Ｌａｙｅｒｓ变换器编码层处理，每层包含多头注

意力机制和前馈网络，其中前馈神经网络采用Ｒｅ

ＬＵ激活函数以增强模型的表达能力。每个Ｔｒａｎｓ

ｆｏｒｍｅｒ编码器层在其多头注意力机制中使用Ｎｕｍ＿

Ｈｅａｄｓ（８）个头，并且具有ＦｅｅｄＦｏｒｗａｒｄ＿Ｄｉｍ 的前

馈维度。Ｔｒａｎｓｆｏｒｍｅｒ编码器层使模型能够关注并

理解序列中各预报因子之间的复杂关系。

（５）重新塑造用于反卷积并输出

Ｔｒａｎｓｆｏｒｍｅｒ编码器之后，输出数据被重新塑

形回２Ｄ张量，转置卷积（反卷积）层采用ＲｅＬＵ函

数在特征图上采样回原始或期望的分辨率。最终输

出具有Ｏｕｔｐｕｔ＿Ｃｈａｎｎｅｌｓ个通道的图形或单点的分

类计算结果。

　　模型使用多分类交叉熵损失函数。多分类交叉

熵是深度学习中最常用的损失函数之一，尤其适用

于处理具有多个类别的分类任务（Ｌｉｕｅｔａｌ，２０２０）。

根据数据和计算结果对上述过程中的各参数动态调

整，并以Ｄｒｏｐｏｕｔ＿Ｒａｔｅ的概率随机进行正则化以防

止训练过程中的过拟合，同时利用反向传播算法，自

动调整其参数以最小化预报误差，从而在预报冬季

降水相态时展现出更高的精度和鲁棒性（戈苗苗等，

２０２１）。

２　数据处理

２．１　数据来源

武汉国家基本气象观测站（以下简称武汉站）为

武汉市代表站，２０１０年在武汉市东西湖区新址正式

启用。根据观测统计，武汉站降雪历年初日平均为

１２月２０日，终日为２月２１日，年均降雪日数为

９ｄ。本文选择２０１０—２０２３年１月、２月、１２月及

２０２４年１月、２月武汉站的逐月报表记录文件（以下

简称Ａ文件）和中国气象局地面气象站逐小时观测

数据进行统计分析，两种数据互为补充订正，确保数

据的准确和完整。

选择ＥＲＡ５数据集提供的高分辨率气温、湿

度、风速等气象要素，地理网格分辨率为０．２５°×

０．２５°；地面结合使用ＥＲＡ５Ｌａｎｄ数据。ＥＲＡ５Ｌａｎｄ

是ＥＣＭＷＦ将模型数据与观测结果组合形成的全球

陆地数据集，完整性和一致性更好，空间分辨率更高

（０．１°×０．１°）。各数据的时间分辨率均为１ｈ；通过双

线性插值方法对高分辨率数据进行下采样（Ｃｈｏｅｔａｌ，

２０１４），实现空间分辨率适配（０．２５°×０．２５°）。

２．２　数据预处理

对各数据进行标准化处理，使之适用于深度学

习模型的输入要求。预处理主要包括三个步骤：（１）
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归一化，采用 ＭｉｎＭａｘ归一化方法，将各气象要素

映射至［０，１］区间，消除不同量纲和数量级的影响，

确保模型训练的稳定性和预报的准确性；（２）重编

码，天气现象的编码需要转换为适合深度学习的格

式，根据不同的降水相态，参考ＥＣＭＷＦ（以下简称

ＥＣ）相态实况制定相应的天气现象编码分类（表１），

以便模型能够正确识别和处理；（３）插值，为了填补

数据缺失和实现空间数据的一致性，采用Ｃｕｂｉｃ插

值方法。这是一种三次样条插值，能够提供平滑且

自然的曲线（赵鹤宇等，２０２２），特别适用于时间序列

数据和需要保持数据连续性的情况（Ｐａｔｈａｋｅｔａｌ，

２０１８）。插值后的数据均转换为２９．５°～３１．５°Ｎ、

１１３．５°～１１５．５°Ｅ范围内经、纬度均为０．０１°间隔的

格点数据，以匹配模型的输入要求。

表１　不同降水相态对应的天气现象编码分类

犜犪犫犾犲１　犠犲犪狋犺犲狉犮狅犱犲狊犮狅狉狉犲狊狆狅狀犱犻狀犵狋狅狆狉犲犮犻狆犻狋犪狋犻狅狀狆犺犪狊犲

分类代码 降水相态 天气现象编码 ＥＣ相态编码

３ 雪 ２２，２６，７０～７９，８５～８８，９３～９４ ３，４，５，６，７，１２

２ 雨夹雪 ２３，６８～６９，８３～８４，８９～９０，９５，９７ ２，１１

１ 雨 ２０～２１，２４～２５，５０～６７，８０～８２，９１～９２ １，１０

０ 无 除以上外其他编码 ０，８，９

２．３　检验方法

（１）模型评价

采用准确率、召回率以及Ｆ１分数等评估指标

来衡量模型性能。以模型预报结果与实际标签的比

较，引入评估分类模型性能的基础概念：根据真正例

（ＴＰ）、真负例（ＴＮ）、假正例（ＦＰ）、假负例（ＦＮ）计算

得到模型评价指标（袁凯等，２０２２）（表２）。

　　 （２）预报检验

因本文主要研究目的是提高固态降水相态变化

预报识别能力，以更好地适应气象服务的实际工作

需求，同时考虑到预报为小范围、逐小时／分钟预报

的时空分辨率，表２中模型评价指标并不能完全满足

预报检验的需要，因此参考中国气象局短期天气预报

评定标准，制定了模型相态预报评分标准（表３）。

　　按照表３计算得到的得分之和除以预报样本

表２　模型评价指标

犜犪犫犾犲２　犕狅犱犲犾犲狏犪犾狌犪狋犻狅狀犿犲狋狉犻犮狊

指标 计算公式 说明

准确率（犃） （ＴＰ＋ＴＮ）／（ＴＰ＋ＦＰ＋ＦＮ＋ＴＮ） 所有预报正确的样本数占总样本数的比例

精确率（犘） ＴＰ／（ＴＰ＋ＦＰ） 模型预测为正例的样本中，实际确实是正例（真正例）的比例

召回率（犚） ＴＰ／（ＴＰ＋ＦＮ） 所有正例中被模型正确识别为正例的比例

Ｆ１分数（犉１） ２（犘×犚）／（犘＋犚） 精确率和召回率的调和平均数

　　 　　注：表中指标的取值范围均为［０，１］，越接近１表示模型在相应方面的性能越好。

表３　预报准确率评分标准

犜犪犫犾犲３　犉狅狉犲犮犪狊狋狏犲狉犻犳犻犮犪狋犻狅狀狊犮狅狉犻狀犵犮狉犻狋犲狉犻犪

犮狅犿狆犪狉犲犱狋狅狅犫狊犲狉狏犪狋犻狅狀狊

实况
预报

０ １ ２ ３

０ １ ０ ０ ０

１ ０ １ ０ ０

２ ０ ０ １ １

３ ０ ０ １ １

数，即为预报得分，取值范围为［０，１］。可分别计算

分类、总体的预报得分，得分越接近１，说明预报准

确率越高。与表１相比，此评分标准中略降低了对

类别２、３的判别要求，即预报为雨夹雪／雪，实况出

现雪或雨夹雪，均判定为正确（得１分），这主要是由

原始数据质量（Ａ文件天气现象中部分时段有重叠）

和气象服务实际工作需求所致。

３　预报因子选择

统计武汉市２０１０—２０２３年１月、２月、１２月及

２０２４年１月、２月的地面观测记录，按照武汉站冬季

降雨、雨夹雪、雪三种类型进行统计分析。

３．１　气象要素特征分析

采用２０１０—２０２３年武汉站高空、地面观测资

料，参考以往研究结果（陈双等，２０１９；王珊珊等，

２０２３），对各类降水相态在发生前、后及过程中的

００：００、１２：００（世界时，下同）地面到高空各层气温、
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湿度等观测数据进行统计分析，计算得到的武汉站 冬季不同降水相态类型气象要素平均值见表４。

表４　２０１０—２０２３年武汉站冬季不同降水相态气象要素各层特征值

犜犪犫犾犲４　犛狋犪狋犻狊狋犻犮犪犾犮犺犪狉犪犮狋犲狉犻狊狋犻犮狊狅犳犿犲狋犲狅狉狅犾狅犵犻犮犪犾犲犾犲犿犲狀狋狊犪狋犲犪犮犺犾犲狏犲犾犳狅狉狑犻狀狋犲狉狆狉犲犮犻狆犻狋犪狋犻狅狀狆犺犪狊犲

犪狋犠狌犺犪狀犛狋犪狋犻狅狀犱狌狉犻狀犵２０１０－２０２３

固定层
雨

气温／℃ 相对湿度／％ 位势高度／ｇｐｍ

雨夹雪

气温／℃ 相对湿度／％ 位势高度／ｇｐｍ

雪

气温／℃ 相对湿度／％ 位势高度／ｇｐｍ

５００ｈＰａ －１４．３ ３９．４ ５７０５ －１６．４ ４７．８ ５６５７ －１７．４ ４１．９ ５６３０

７００ｈＰａ －０．２ ７２．７ ３０７８ －４．０ ７４．３ ３０５６ －６．６ ５８．８ ３０４４

８５０ｈＰａ ４．４ ７６．９ １５０６ －４．３ ７８．０ １５２２ －７．４ ６７．５ １５２９

９２５ｈＰａ ６．２ ７７．６ ８１４ －３．１ ７９．７ ８５４ －５．２ ６８．５ ８６７

１０００ｈＰａ ８．５ ８０．５ １７３ －０．２ ７８．４ ２３４ －１．８ ６８．０ ２５１

２ｍ ９．０ ８５．５ １０１８．８ｈＰａ（气压） １．３ ８４．５ １０２７．１ｈＰａ（气压） －０．４ ８０．２ １０２９．４ｈＰａ（气压）

　　由表４可知，雨日大气各层气温相对较高，雪日

各层气温均为最低，除雨日外，其余相态中低层

（８５０～７００ｈＰａ）均出现不同程度的逆温。雨夹雪和

雪日５００ｈＰａ气温≤－１６℃；雨日最高，为－１４．３℃。

雨日和雨夹雪日大气中低层相对湿度多在７０％以

上；但湿层（相对湿度≥８０％）高度较低，且不深厚，

伸展高度大多在３０００ｍ左右；雪日大气相对湿度

最小，除地面外，整层相对湿度均在７０％以下，可能

跟固态云水粒子表面饱和水汽压有关。

近地层到低层（８５０ｈＰａ以下）位势高度明显不

同于中高层分布，雨日的位势高度相对较低，雨夹雪

和雪日则较高。地面２ｍ 的气压也有上述特征。

本站气压与地面天气系统密切相关，一般来说，武汉

地区固态降水发生时，常与地面冷空气活动有关，因

此地面和大气低层气温较低，气压较高。

３．２　预报因子确定

对于冬季降水相态的预报研究，漆梁波和张瑛

（２０１２）总结了一套适合中国东部的冬季降水相态识

别判据，主要以１０００～７００ｈＰａ各固定层位势高度

和气温之间的差别作为判断条件，设定雨雪区分阈

值。王珊珊等（２０２２）使用地面以上至４００ｈＰａ附近

各层的位势高度、气温、湿度等数据，利用机器学习

算法对长江中游冬季降水相态预报方法进行研究，

也取得了较好的效果。而陈媛等（２０２４）通过对西南

地区一次典型雨雪冰冻复合极端灾害天气事件的环

流特征及降水相态差异分析发现，雨雪区和冰冻区

的温度层结和垂直速度存在差异，降雪区以弱的向

上正浮力为主要特征，降雨（冻雨）区上空的浮力在

向下的扰动气压梯度力和向上浮力相互平衡作用

下，大气中低层垂直运动变化较小。

本文选取ＥＲＡ５数据集中的６０个通道格点数

据作为预报因子输入，包括１０００、９５０、９２５、９００、

８５０、８００、７００、６００、５００ｈＰａ９个层次的气温、位势高

度、比湿、风向、风速、垂直速度等高空气象因子，及

海平面气压，２ｍ气温、相对湿度、露点温度、风向和

风速等地面因子（杨旗等，２０２４）。这些预报因子覆

盖了大气垂直剖面的多个层次，能体现降水相态分

析预报方法所涉及的关键气象条件特征。

４　模型建立

４．１　样本选取和数据增强

选取２０１０—２０２３年每年的１月、２月、１２月和

２０２４年１月、２月武汉站逐小时降水天气现象观测

资料，在共３１７６７个样本中，雨、雨夹雪、雪样本数

分别为２４３４、８２、３４６个，各样本数量显示数据集存

在着明显的数据失衡。

定义武汉站月报表 Ａ文件中 Ｗ０段天气现象

记录时间段为一个降水阶段，统计武汉站此期间雨、

雨夹雪、雪的出现次数分别为１３１０、１２０、１４３次，各降

水阶段平均持续时长分别为７８．３、２７．９、１３７．１ｍｉｎ，

采用以下方法实现数据增强。

（１）根据２４ｈ雨量犚２４＞０．０ｍｍ或Ａ文件中有

降水时间段记录，选择３９４个降水日００：００—２３：００

的逐小时数据（简称小时数据）形成初始样本序列。

（２）按Ａ文件中天气现象记录起止时间，以雨

３０ｍｉｎ、雨夹雪１ｍｉｎ、雪５ｍｉｎ（简称分钟数据）的

时间间隔进行重新采样（重点对雨夹雪、雪两种相态

进行数据增强）。记录时段小于时间间隔的，将该降

水记到最近的一个采样时间点，补充到降水相态时
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间序列。如分钟数据与小时数据有冲突，以分钟数

据为准；天气现象时段有重叠的，取表１中较高类别

记录。

（３）采用三次样条方法对ＥＲＡ５再分析资料各

要素进行插值，得到上述样本对应时次地面、高空要

素预报因子的格点场。

需要说明的是，由于观测规范调整，２０１２年２

月以后Ａ文件 Ｗ０段中无当日１２：００至次日００：００

天气现象记录，因此２０１２年以后的样本没有得到相

应时段的数据增强。

经以上步骤最终得到样本数为１９９３２个，其中

无雨、雨、雨夹雪、雪的样本数分别为６１２３、６４２１、

３１８３、４２０５个，占比分别为３０．７％、３２．２％、１６．０％、

２１．１％。各样本数比例分布如图４所示。由图４可

见，数据增强处理明显增加了雨、雨夹雪和雪类别的

样本数，各类别样本数占比趋于平衡，且数据重复率

在０．５％以下。

４．２　训练与验证

以武汉站地理坐标为中心，在犡、犢 轴方向选取

图４　数据增强前后样本数量比例分布

Ｆｉｇ．４　Ｄｉｓｔｒｉｂｕｔｉｏｎｏｆｓａｍｐｌｅｐｅｒｃｅｎｔａｇｅｓ

ｂｅｆｏｒｅａｎｄａｆｔｅｒｄａｔａａｕｇｍｅｎｔａｔｉｏｎ

±３２个格点组成６４个×６４个空间格点数据。考虑

到输入数据时间分辨率为１ｍｉｎ～１ｈ，此空间范围

应能足够表现天气影响时间范围内目标点周边地面

和高空气象要素空间分布特征。

因１９９３２个样本的时间不完全连续，故设时间

步长Ｔｉｍｅ＿Ｓｔｅｐ＝１，以８０％２０％比例生成训练

集和验证集，输入模型进行训练和验证得到的准确

率为０．８６，其他指标情况列于表５。

　　由表５可知，模型平均准确率达到了０．８５，表

明模型在预报降水形态时具有较好的可靠性。细化

到具体相态，对于类别２（雨夹雪）和类别３（雪），模

型的准确率与召回率均达到０．９０以上，对应的犉１

表５　模型训练和验证结果

犜犪犫犾犲５　犕狅犱犲犾狋狉犪犻狀犻狀犵犪狀犱狏犪犾犻犱犪狋犻狅狀狉犲狊狌犾狋狊

分类
犃

训练 验证

犘

训练 验证

犚

训练 验证

犉１

训练 验证

０ ０．７８ ０．６３ ０．７３ ０．５８ ０．７５ ０．５２ ０．７３ ０．５１

１ ０．７９ ０．６７ ０．７９ ０．６１ ０．７９ ０．５５ ０．８１ ０．６４

２ ０．９０ ０．８１ ０．９２ ０．７４ ０．９２ ０．６７ ０．９３ ０．７３

３ ０．９１ ０．８２ ０．９２ ０．７５ ０．９３ ０．６８ ０．９２ ０．７２

平均 ０．８５ ０．７３ ０．８４ ０．６７ ０．８５ ０．６１ ０．８５ ０．６５

位于０．９２～０．９３。这一结果显示模型在识别这两

种类型时的预报准确性高而且几乎无遗漏的特点。

表５显示模型在验证集上各指标均明显低于训练集

１０％～２０％，表明模型的泛化能力还需提高。

使用主成分分析（ＰＣＡ）等方法对二维要素场进

行降维处理后，采用随机森林（ＲＦ）等机器学习模型

进行分析和预测也是常用的单点要素预报方法

（ＰＣＡＲＦ方法）（何恩业等，２０２３）。结果显示（表

略），ＰＣＡＲＦ方法在训练集上各指标较模型得分略

高４％～７％，但在验证集上不仅显著低于训练集，

而且明显低于模型的验证集得分。

　　相对于以小时数据为基础，采用ＳＭＯＴＥ（ｓｙｎ

ｔｈｅｔｉｃｍｉｎｏｒｉｔｙｏｖｅｒｓａｍｐｌｉｎｇｔｅｃｈｎｉｑｕｅ）等解决数

据不平衡问题（ＲａｊａｋｕｍａｒａｎｄＤｅｖｉ，２０２４）的方法，

模型对相同时段逐小时数据训练及验证的结果显

示，无雨准确率为０．９１，有雨准确率略有上升为

０．８０，但雨夹雪、雪的准确率分别显著下降到０．５３、

０．４７。这说明本文采用的以分钟数据进行数据增强

的方法，时间间隔短，过采样得到的样本具有更好的

真实性，有效增强了模型对少数类别样本的识别能

力；采用本文方法生成的格点时间序列数据，避免了

简单插值形成大量重复数据的情况，提高了模型的

整体泛化能力并降低过拟合的风险，能够更好地满

足降水相态预报分析的需要。

　　同时也可看到，对于标记为类别０（无雨），模型

的准确率和召回率分别为０．７８与０．７５，类别１（雨）

的准确率和召回率均为０．７９。这表明在处理这两

类相态时，模型虽能做出相对正确的判定，但存在一

定程度的不确定性。考虑到表１中降雨类别中包含

了天气观测记录中的毛毛雨、冻雨等多种天气现象，
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相较于ＥＣ降水实况分类多达１２类，本文所使用的

样本质量和数量尚不足以支撑更为精细的降雨分类

标准，从而导致模型难以更进一步深入分析数据内

在复杂性。

５　典型个例检验及分析

５．１　天气形势

２０２４年２月１—６日，受高空低槽、中低层切变

线和地面冷空气南下影响，武汉市出现了明显降雪、

降温天气过程；３日００：００，８５０ｈＰａ以下北风逐渐

减弱，８５０ｈＰａ以上的湿层逐渐变得深厚。至３日

１２：００，武汉市上空８５０～７００ｈＰａ附近存在明显的

逆温层，整层气温均在０℃以下。８５０～７００ｈＰａ西

南急流发展（图５ａ）建立了水汽通道，８００ｈＰａ急流

中心风速达２０ｍ·ｓ－１；武汉市处于急流出口的左

侧；冷空气继续南下，地面偏北风（图５ｂ）使低层冷

垫逐渐增厚，导致出现大范围降雪。

　　２０２４年２月１９日００：００至２５日００：００，受地

面强冷空气、高空波动、中低层切变线和西南急流影

响，武汉市又出现了一次强寒潮大风、强对流和持续

注：红圈为武汉站。

图５　２０２４年２月（ａ，ｂ）３日００：００和（ｃ，ｄ）２１日００：００（ａ，ｃ）８５０ｈＰａ位势高度（等值线，单位：ｇｐｍ）、

８００ｈＰａ风场（风羽）、８５０ｈＰａ比湿（填色）及（ｂ，ｄ）海平面气压

（等值线，单位：ｈＰａ）、１０ｍ风场（风羽）、２ｍ气温（填色）

Ｆｉｇ．５　（ａ，ｃ）Ｇｅｏｐｏｔｅｎｔｉａｌｈｅｉｇｈｔａｔ８５０ｈＰａ（ｃｏｎｔｏｕｒ，ｕｎｉｔ：ｇｐｍ），ｗｉｎｄｆｉｅｌｄａｔ８００ｈＰａ（ｂａｒｂ）

ａｎｄｓｐｅｃｉｆｉｃｈｕｍｉｄｉｔｙａｔ８５０ｈＰａ（ｃｏｌｏｒｅｄ）ａｎｄ（ｂ，ｄ）ｓｅａｌｅｖｅｌｐｒｅｓｓｕｒｅ（ｃｏｎｔｏｕｒ，ｕｎｉｔ：ｈＰａ），

１０ｍｗｉｎｄｆｉｅｌｄ（ｂａｒｂ）ａｎｄ２ｍｔｅｍｐｅｒａｔｕｒｅ（ｃｏｌｏｒｅｄ）ａｔ

（ａ，ｂ）００：００ＵＴＣ３ａｎｄ（ｃ，ｄ）００：００ＵＴＣ２１Ｆｅｂｒｕａｒｙ２０２４

２５６１　　　　　　　　　　　　　　　　　　　 　气　　象　　　　　　　　　　　　　　　 　　 　　　第５１卷　



性低温雨雪冰冻天气过程。２１ 日００：００，随着

８５０ｈＰａ上０℃线南压至江汉平原—鄂东一带，

９２５ｈＰａ气温降至－６℃，但７００ｈＰａ一直在３℃左

右，融化层始终存在，随着０℃线继续向南推进，融

化层厚度出现变化，期间也出现了含冰粒的雨夹雪。

２１日开始中低层急流南压（图５ｃ），武汉市位于急流

左侧和８５０ｈＰａ切变线附近。由于北方不断有冷空

气补充南下（图５ｄ），武汉市一直处于冷舌范围，２１

日晚冷空气强度相对较强，２１—２２日也是此轮大到

暴雪过程的最强时段。强冷空气南下和发展旺盛的

中低层暖湿气流共同导致两次过程中均出现雨雪相

态频繁转换情况，其中以３日和２１日两天降水相态

最为复杂。

５．２　预报检验

采用中国气象局下发的逐日地面、高空实况数

据，结合ＥＣ每日１２：００细网格产品中未来２４ｈ逐

小时的气象要素场数据，用前述插值方法生成输入

数据，对２０２４年２月３日、２１日００：００—１２：００降

水资料分别进行检验，以武汉站对应的观测数据作

为对比。

天气现象观测记录显示，３日００：００—１２：００，在

００：００—０２：１９期间出现持续降雪，后续在０２：００、

０３：００、０４：００、０５：００、０７：００、０８：００、１１：００分别出现

了７段降雪过程，但持续时间均较短，仅为１～

９ｍｉｎ；雨夹雪分别在０１：００、０４：００、０８：００出现了３

段，持续时间为３～９ｍｉｎ；其间夹杂出现５段降雨

过程，每段时长为１～４１ｍｉｎ。２１日０９：５１—１０：１１

出现持续降雪，另外在００：００、０２：００、０３：００、０６：００

出现短时降雪，持续时间１～６ｍｉｎ；雨夹雪在００：００、

０３：００、０９：００—１０：００出现了３段，其中０９：００—

１０：００的记录与降雪事件记录部分重叠；００：００—

０１：００、１０：００出现间断降雨，０２：２２—０３：００出现毛

毛雨。两日降水相态实况与预报对比见图６。

　　模型在两个预报时段的精确率分别为０．７３、

０．７６，预报评分为０．７５、０．７７。与此相对应，３日

ＥＣ预报结论为武汉站的降水相态均为雪，未能准

确反映出复杂相态转换过程；且预报降水中心强度

和落区均出现了偏差。２１日ＥＣ较为准确预报了

００：００适宜降雨（冻雨）的温度廓线以及转雨的时间，

但对后续的雨夹雪、雪的预报有错误。在两个检验时

段中本模型对连续降水的相态预报结论与实况基本

匹配，表明模型在预报降雪时具有较好的准确性。

图６　武汉站２０２４年２月（ａ）３日、（ｂ）２１日

００：００—１２：００降水相态实况与预报对比

Ｆｉｇ．６　Ｃｏｍｐａｒｉｓｏｎｏｆｏｂｓｅｒｖｅｄａｎｄｆｏｒｅｃａｓｔ

ｐｒｅｃｉｐｉｔａｔｉｏｎｐｈａｓｅｆｒｏｍ００：００ＵＴＣｔｏ

１２：００ＵＴＣｏｎ（ａ）３ａｎｄ

（ｂ）２１Ｆｅｂｒｕａｒｙ２０２４ａｔＷｕｈａｎＳｔａｔｉｏｎ

　　对于较长时间的稳定性降雪过程来说，如武汉

站４日００：００—１２：００均以降雪为主，其间仅有

０９：４８—１０：０３、０９：５２—０９：５９短暂出现雨夹雪、雨，

本模型和２０２４年２月４日００：００起报的ＥＣ逐３ｈ

降水相态预报产品的结论均为降雪，未能准确区分

其中短时相态的变化。

检验阶段模型总体得分不高，相较训练验证得

分有明显下降。主要是模型高度依赖数值产品对天

气形势和气象要素场预报，数值模式对天气系统描

述的精准程度直接影响模型预报准确率。对比实况

来看，ＥＣ对３日７００ｈＰａ、５００ｈＰａ的高空低槽、中

低层切变线等影响系统预报的定位往西、北方向偏

差（图略），导致强降水中心落区预报较实况偏西北。

对于２０—２１日的降水（图略），ＥＣ预报５００ｈＰａ高

度场低槽偏强；预报７００ｈＰａ急流中心风速达２０ｍ·

ｓ－１，实际风速为１６ｍ·ｓ－１；预报武汉站附近８５０ｈＰａ

气温较实况偏低。

此外，模型对短时的相态快速转变时段识别能

力不足。从天气现象记录中可以看到，３日、２１日均

有多次持续时长不到１０ｍｉｎ的短时降雪、雨夹雪阶

段，这些记录在小时数据中无法体现，样本时间精度

不足可能是以往以小时数据为对象的研究难以有效

提高准确率的主要原因。比较而言，本模型对短时

降水过程有一定的识别能力，只是在起止时间上有

一定的偏差，说明模型对短时降雪和相态转换时间

点的预报存在局限性，泛化能力有待进一步提高。

综上所述，本模型方法适用于采用分钟观测数据，对
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数值产品降水相态预报进行补充和订正。

６　结论及讨论

本文构建了一种基于ＳＦＥ的深度学习模型，其

利用ＣＮＮ空间感知能力、ＣｏｎｖＧＲＵ时间序列处理

能力、Ｔｒａｎｓｆｏｒｍｅｒ注意力机制和并行计算优势，能

够从气象要素的空间分布、随时间变化及要素间的

相互作用等不同角度进行分析。同时由于模型使用

二维卷积层，有效提取气象要素的空间分布、时间变

化及全局关联特征，显著提升了对雪和雨夹雪等固

态降水的预报精度。验证集中Ｆ１分数分别达０．６８

和０．６７，优于传统单一模型及ＰＣＡＲＦ方法。

降雪对于武汉地区来说为小概率事件。针对样

本偏少、数据不平衡的情况，在２０１０—２０２４年冬季

武汉市逐小时降水天气现象观测资料和ＥＲＡ５的

基础上，采用武汉站人工观测的天气现象记录，分别

以３０、１、５ｍｉｎ的时间间隔对雨、雨夹雪、雪的降水

资料进行过采样。经过模型训练和验证结果表明，

这种数据增强处理有效克服了数据不平衡问题，明

显提升了模型预报性能。对于冬季降水相态预报，

使用分钟数据虽然提高了计算量和预报难度，对观

测数据也提出了更高的要求，但分钟数据时间间隔

短，气象要素时空分布特征影响更为显著，用于武汉

站降水相态的数值预报和机器学习中较小时数据应

更为有效。

通过对２０２４年２月３日、２１日００：００—１２：００

武汉两次天气过程的检验分析，模型也表现出了一

定的局限性：模型对降水相态快速转换（如持续时长

＜１０ｍｉｎ的短时相态转换）的识别能力不足，起止

时间预报存在偏差；且高度依赖数值模式的气象要

素场输入，数值模式的偏差会直接影响预报准确性。

本文通过整合多源数据与深度学习技术构建深

度学习组合模型，可作为数值预报的补充，提升定点

短时预报精度，为各级气象台站开展冬季雨雪相态

变化预报提供了一种切实可行的思路和方法。未来

需结合更高分辨率的分钟观测（如激光云雷达等新

型观测资料）和相应高时空分辨率的数值预报产品，

优化三维卷积架构，进一步提高模型泛化能力和对

快速相态转换的捕捉能力。
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