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Abstract: This paper constructs a deep learning model based on the sequential fusion encoder (SFE) for
forecasting winter precipitation phase. The model integrates the advantages of convolutional neural net-
work (CNN), convolutional gated recurrent unit (ConvGRU), and Transformer. It can conduct automatic
learning and extraction of complex features from meteorological data, handle non-linear relationships, and
process large-scale datasets. We utilize hourly precipitation observation data from Wuhan Station in 2010 —
2024 and ERAS5 reanalysis data, select 60-channel grid data (including temperature and geopotential
height) from 9 atmospheric layers (1000—500 hPa) as predictors. To address sample imbalance, minute-

level data augmentation is employed, involving resampling at intervals of 30 min for rain, 1 min for sleet,
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and 5 min for snow. Finally, a sample size of 19932 is obtained. Test results show that this model per-

forms excellently in forecasting solid precipitation (snow and sleet), with Fl-scores of 0. 92—0. 93 in the

training set and 0. 67 —0. 68 in the validation set. However, its ability to identify rapid transitions between

precipitation phases needs to be improved. Verified by two complex weather processes in February 2024,

the model is found to be able to serve as a supplement to numerical prediction and provide an efficient solu-

tion for intelligent forecasting of winter precipitation phase, aiding in enhancing the forecasting capabilities

of meteorological stations.

Key words: sequential fusion encoder, winter precipitation phase prediction, deep learning, data augmenta-

tion
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Schematic diagram of convolutional gated recurrent unit (ConvGRU) architecture
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Table 4 Statistical characteristics of meteorological elements at each level for winter precipitation phase

at Wuhan Station during 2010—2023

i/ Co MIXTREE/ Y MR /gpm K/ C O MIXHREE/ % MHGEE/gpm KR/ C MR/ AL/ gpm
500 hPa  —14.3 39. 4 5705 —16.4 47.8 5657 —17.4 41.9 5630
700 hPa —0.2 72.7 3078 —4.0 74.3 3056 —6.6 58.8 3044
850 hPa 4.4 76.9 1506 —4.3 78.0 1522 —7.4 67.5 1529
925 hPa 6.2 77.6 814 —3.1 79.7 854 —5.2 68.5 867
1000 hPa 8.5 80.5 173 —0.2 78. 4 234 —1.8 68.0 251
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Fig. 4 Distribution of sample percentages

before and after data augmentation
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Table 5 Model training and validation results

] A P R Fi
AES . — - — . — - e
UllES EfanR Il IS E Il 25 Wk Il Wk
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Fig. 5

(a, ¢) Geopotential height at 850 hPa (contour, unit: gpm), wind field at 800 hPa (barb)

and specific humidity at 850 hPa (colored) and (b, d) sea-level pressure (contour, unit: hPa),

10 m wind field (barb) and 2 m temperature (colored) at
(a, b) 00:00 UTC 3 and (¢, d) 00:00 UTC 21 February 2024
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