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Abstract. Significant tornadoes associated with supercells can cause severe disasters, but issuing tornado
warnings is challenging. Therefore, it is essential to study the detailed echo structure of supercells. Based
on the observations of S-band Doppler polarimetric radar, 9 significant tornadic supercells are compared
with 9 non-tornaic supercells. The results demonstrate the significant differences between them. The de-
tailed results are as follows. In significant tornadic supercells, the differential reflectivity Zz arc extends
toward the hook echo, and the area of hail in the mid-to-low levels is smaller than in non-tornadic super-
cells. The average separation distance between the specific differential phase Kpp foot centroid and Zpi arc
centroid in low level is much larger in tornadic supercells than in non-tornadic supercells. In significant tor-
nadic supercells, the low-level mesocyclone intensifies markedly. Additionally, 24 min and 6 min before

the tornado occurs, the mid-level mesocyclone core remains at relatively low heights, averaged at the
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height of 4.2 km and 3.1 km, respectively. The aforementioned differences require further confirmation of

more cases so as to provide additional evidence for in-depth research on the relationship between the echo

structure characteristics of supercells and the mechanisms of tornado formation.
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Fig. 1 Schematic diagram of the angle between
the centroids separation vector of the Kpp foot
and Zpr arc in low level and storm movement

direction (cited from Loeffler and Kumjian, 2018)
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MR A 5855 20 Zor PRF- 2 TR/ km? AR T S fif
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20240427 (EF2) 3 272.58 N
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Fig. 2 Evolution of Zpg arc and Zpr column of the significant tornadic

supercell at 1 km AGL in Suzhou on 14 May 2021
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Fig. 3 Temporal evolution of average area of
the hail zone in non-tornadic supercells

and tornadic supercells
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