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Abstract: This paper describes a quality control (QC) algorithm for reflectivity factor data of dual-channel
millimeter-wave cloud radar (MMCR) in different regions. The data used for test sample are from the 15
MMCR stations which are the first batch of MMCR approved for operational use in China. The algorithm
provides a method of automatically identifying the QC threshold parameters of reflectivity factor (Z) and
linear depolarization ratio (LDR), combined with filtering check and continuity check, etc. , and can effec-
tively eliminate non-meteorological echoes. The method is based on the distribution characteristics between
the cloud or rain echoes and suspended matter clutter in the MMCR data. It classifies and labels the cloud
or rain echoes and suspended matter clutter samples from the 15 stations in 2023. Based on the intersection
points of the frequency curves of the two types of echoes, the QC threshold parameters for Z and LDR at
each station can be got rapidly. In addition, this paper compares the correlation coefficient, average devia-

tion and root mean square error of cloud heights calculated from the MMCR data before and after QC
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and radiosonde data at different stations and during different observation periods, and discusses the effec-

tiveness of the QC method. The results show that non-meteorological echoes in the data can be effectively

removed after QC, especially the low-level suspended matter clutter. Its correlation coefficient increases

from 0. 47 to 0. 91 with radiosonde-identified cloud base height, and increases from 0. 80 to 0. 87 with cloud

top height. The calculated cloud heights after QC are more reasonable. So, the data after QC can enhance

the consistency of the cloud height data between MMCR and radiosonde.

Key words: millimeter-wave cloud radar (MMCR) , quality control (QC), non-meteorological echo, quality

evaluation
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Fig. 1 Distribution of 15 cloud radar stations
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Fig. 2 Flowchart of the quality control method

for reflectivity factor of cloud radar
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radiosonde (a, c¢) before and (b, d) after quality control of cloud radar reflectivity factor
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Table 2 Comparison results of cloud base helghts between reflectivity factor Of cloud radar before

and after quality control relative to the radiosonde calculated data
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Table 3 Comparison results of cloud top heights between reflectivity factor of cloud radar before

and after quality control relative to the radiosonde calculated data
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