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Abstract: The disastrous nature of severe convective weather and the need for its accurate monitoring and
forecasting have garnered widespread attention. This paper summarizes the main characteristics, environ-
ments, formation mechanisms, and dual-polarization Doppler weather radar observation features of various

typical types of convective storms and severe convective weather. It presents fundamental concepts and
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understanding, briefly outlines forecasting approaches and monitoring techniques for severe convective
weather, and provides prospects for future work. In recent years, main advances are as follows. Gravity
waves are an important type of trigger mechanisms of nocturnal convective storms. The key formation
mechanisms of severe convective weather in low convective available potential energy environments with
strong vertical wind shear are on meso-y scale vortices, which have been significantly understood. The sor-
ting effect of supercell updrafts on precipitation particles results in highly distinctive dual-polarization radar
signatures, and the signatuers such as Zpz column, Zpg arc, Kpp foot have revealed more charatericstics of
microphysical processes and dynamical structure of supercells. Most bow echoes in South China are formed
through the merger of quasi-linear convective systems with pre-existing convective cells ahead of them.
Mesovortices develop through multiple complex mechanisms. The intensification of updrafts by meso-y
scale vortices such as mesocylones and mesovortices is an important aspect of heavy rainfall formation
mechanism. The meso-7y scale vortices, combined with rear-inflow jets of bow echoes, play a crucial role in
extreme severe thunderstorm gale. A great many convective storms producing short-duration heavy rainfall
often exhibit hybrid characteristics between continental and tropical maritime types, and it has been found
that the heavier the instaneous extreme rainfall intensity in South China, the more the liquid and ice water
content in convective storms. Hailstones with diameters —=5. 0 cm are primarily generated by supercells,
and their growth rarely follows spiral trajectories or cyclic growth paths. Tornadogenesis hinges on the
formation, concentration, and intensification of near-surface vertical vorticity. High-resolution numerical
forecasting and deep learning techniques have significantly improved the accuracy of severe convective
weather monitoring, forecasting, and warning systems. Future efforts should focus on the “about-100-m”
fine-scale mechanisms and super-high-resolution numerical models, and deep learning models with fully in-
tegrating physical laws for comprehensive severe convective weather forecasting.

Key words: severe convective weather, convective storm, supercell, quasi-linear convective system (QLCS),

tornado, mechanism, deep learning
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ARG AT . B — BN A R A BLAE 55 IR 2 TR
KB AE | % i A 8L BE (CAPE) 3R 35 v, i Jik o XL
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14 5 VT I R R 25 R 55 5 3 AR A 22 R A K R
PR A, 38 [ 3O I R A0 R AR B o 38 3 o T
hE, EEE AR MARIEERZENE LKA E
2 R A KR 55 KA AR AR T R BUX 2R
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BRdm . 2022) e H XUCP) AR 7 A 1 T IR SC- 22 0 2%
B (K-H ¥ @ T8I, HoAF e e K-H
AR G TR 2. MR 2 E ) A
O 50 AR R i P AT R 277 A K-H A
R Iy, I A K-H 0 P A B AR 2
fih %2 357 14 %58 % R (Bluestein, 2008) , 2009 4F VT i
— YR I 2R B IR R B ) DA R B TR
50525 A SO BAE T fik & TR X XU (Su
and Zhai,2017),

TiARlL 55 B A T B B2 A &R A/
AHAE /HH FAE RS [) i1 R A =0 Can v 4 s 3
R T S0 80 H o i3 56 G o A
TXF A AR il K. AT BR AE (2019) KB K Ot AF
(2020) g #5455 (2025) & L A5 Hi T 8 & e B T 46
Jon s - [ At o 9 XU 2R 1) L I AL R4 A ik
SNSRI KU . Bai et al(2019) & B 2009 4E 6 H

3 H HI T R AR Y TR B M R TR Y B A
il 2 F A AR o AR I A T — R M e A R I R
TE JSC R b T v RURE V& it [ A ) 3 5 1) 0 R AR
A AR L AT R fk % 9 18] X 9 XU %2 (Luo and Chen,
2015) . A 2 il K X XL R 1 G B g E A A [)
J5 ] U A KT 8 B S A A G, B TR 5l A 4
B XHETHRR AR S MR, &% 5 A
2 by IR e o B — B (Wilson et al, 1992), 7K F
XoF 3L A T A ol AR R % 2R — R DL BRI R R
X A RN R 5 oAt 3 2 5 A e AH AR T U
A B il & 6 I KU L W 2025 4E 8 H 6 H AL 5t AR B
4 6T R

2 LRI X AR T AL ) 0235 44 R Ak

2.1 BHHEEK

G AR — PP MERR AR B A A S B R I XL
2 A B A TR AE . R A Y A R
T A T 23 B GRS B 46 T v B2 3138 KU TOUAR P i 1
[8] . BiiE#8 5 10~20 min( American Meteorological
Society»2025) il H #id 1 h. e KAl id 8 h, 7EdL
EBROE G A MRS, PR ER N 2~
10 km, TEEHBE L 102 s "E 2., Yu et al(2012)
Gt v [ B A o SRR R R e B AR e 1 R
e S O 15~25 m o+ s TR LR
Bl R (1~2)X10 % s ' HARJLE N 4~7 km,

AR FUA 2y 26 00 1) SR = 24E Jg 45 (Trapp
et al,2005a) . {H K Z % i) R 0K & L I H 48 # i
5 cm VKA .80% LA L EF2 9% X D I S5 90 1)
W% 8 9 B R 7= 4= (Markowski and Richardson,
2009 ;Blair et al,2017; Allen et al,2020), {HfF
R R AR I 2 R A e A R TR
P & 2k B (Dowell and Bluestein, 2002), [t 40
2024 4 27 B — N EHRARAE) M B & XA
B IX G &7 — A PRI X A T H
3k 10 em DL ERYE KUKE ;2024 427 H 5 H—4>
2 BT 1L AR ST S S AR R T A e s (B 4
85,2025) , WGAIRE S B BOR T R KK CEFH Y
S5 2023) FIAR 3 55 A K KL L AN 2019 48 3 A 21
H PR AR R X 58 5 I 32t 30 53¢ 3] o 2%
FRFE AR 60,3 m oo 5T YR GE B AR O XL CRE TR
PEAEL2019 3 Z8 B Jp 45, 2021) 43X 2t B R A 4 L
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i ic sk B Y AR B K AR Y ds R B B XU

o 2 B AT LA Sy 2 I 2 BRI L 558 R K 2
FRAR DL B 5k K B 2 B K = 28 (Doswell Il and
Burgess,1993) , ifs 77 £ — 28 RUBE BN il Ji g 2 4%
AR P R B A, o A A A BT SO A LR AR T
BRI A 2 A e s O IR IR 55, 2015) . A A
T R B K T 1 BT S A7 R R 110 T L XUUTD A 5
i) CAPE , HAN[F] 288 21 i) B 2% 58 4 14 B4 555 2% 1 A7 12
255 6 R I TR R 9 R R S IR A 1Y) CAPE {H
BN OR IR 45, 2015) 5 45 ] - 55 B KR 9 B ik
F18) A 455 T X0 7 A R AR 7 R PR A X A 5
S LB BRI A T 3 Z 8] (£ 75 W4, 2025)

25 R PR A 110 B SRR R AR T L2
30 A 45 |5 M U0 (FFD) F 5 Ml T U <0
(REFD) K AH R A i 14 R4 A 00 12 XA LA B i )
AW EJF R W X 4 (Lemon and Doswell [,
1979) 5 A eI 1L, — M A e BA 8 AR AE 1Y
EAR 101 g B AT 5 B T P AR RFD, 7E 55 = Kt
i (Doswell [l and Burgess, 1993); {£ #8 2% 8 &
RFD (4t i 1 ¢ b AT e 2308 8T 19 Je 4 (Davies-
Jones,2015) . 55 R /K 9% B AR 11 B 5 32 TR 7 IR
Rk X5 BT 20 8, T RED; 5 [ 7Kl 2 54K
KK S H AE FED X8RI AS B 8 1) £ 4R [ J IX s o
AUE A T ECR T 0 Ay B K BTl 2 L A 3K (AT 5
“EIE7E“S JE” (Doswell [II and Burgess,1993), 7
] iR 3 KRR 2 LR 7 LUAR AT RE v T 3R 1 (55 B 4%
2025) ,

AR R Z AR )2 A E .. (HI2 R R 4
B P AR AL TR Z OB RS R ARG 8 Y
BEX Y AE % UIAH 6 K A TER L HSLC /Y B 5 o
(Kulie and Lin, 1998; Clark, 2009) ; J¥ % # 2% £ {k
Wb 8 FEAE AR )2 S E (Bluestein, 20135 £ 75 W] 45,
2025) . IR AR)Z o AUBE I i 2 T A i e
HARBER B8 U a7 i 9 BT A aG e . B
1 8 2 PR R B A IR 2 b AUHE B S BE 8 i HE AR L
T4 W HE % (Trapp, 1999) . 33X 52 Bk B 4 % 510 56
i T, 2 T TP B 1 IR R A 0

XU 4 R AR R BRI B — 2P s T AR Y
T BRI R Bl I 450 . 3X SRR AR A 4 22 43 IS R
W T (Zo) #E GE Zop #EELA Zop 72D  Zor B AKAR
FE o) 200 B FE M H B (Kop) #EL Kop 2 55
(Ryzhkov et al,2005; Kumjian and Ryzhkov,2008;
Romine et al, 2008 ; Kumjian et al,2010; Wakimoto

et al,2018;2020) . LM Zow HEAN Kop ALK
Tk BT KGR — AR Zor FERY AR T
TR R B A AR A, A AR T R TR
F189 25 ) 73 A1 5 Zo SR SR 388 20 B4 140 107000 ) Jea 38 Z e 8
5 D, AR T R ALE (0~3 km) 58 3 B R Y 48
0 126 A [+ ik KORE 5 1) 25 2R e 45 KRR IR AL T IR Z T
T I 8 AR — O A9 B 3 3 DR 3 R B IX 5 P )2 Zow
RHN on, B (] 2 FAE 8 2 FAAA 10 5 ZUE e BT (b R
JIED DX % 7 12 DX Sl P T 18 ek B BT T 04 i 1 Ak
JZE BRI IE Zor R H X [Ohvﬂfﬁﬁlz‘(van den
Broeke,2016; EFHHHS5,2025), H T Zop ¥ 10 i1 J&&
o RN B S e T 28 B RR 2 SR b TR Y 0 A
R Zoo bt 522 3 85 CAPE 0 g1k )2 28 19 5% i
(van den Broeke,2016), Loeffler et al(2020) %& #i
FEA A R AR Zor RN Kup & 47 # (Kumjian
et al,2010) 75 [a] 55 X 2 ¥ 2y J7 [n] 56 2 0T 1E 58, X 3R
I o A I A R B W e W S SR S I

e T KUY AZ 7 AU R8T IR i i R v S O
YE ] (Klemp and Wilhelmson, 1978; Weisman and
Klemp, 1984; Klemp, 1987; Davies-Jones et al,
19900, B 5 A Ay v 22 v AU JE i 3 T TR AR B A
A gh 2 H R T AT A PR KT i B A 163
Gy S AR AR I 3R B . AR AL 2 3K R B I
I B A A (A5 AN [) e B8 10 e XU D) 28 R it I 2
XA AT R AUE R G XU s o 5 IR I
WA T e B B e R B A R . B SRR
AR T T 1) B 058 XU i £ o LG D XU 25 0 3
NI R A R

AR E AU A 2 RO LT L i R 58
VG RE VAN ALE S O G B . A A NARE A
FRTE B 5 AR 2 V2 1t I SORE S 28 LAY 7K - 388 B2 L BR 45
RAAR)Z 1 H ) 22 i SOKF- I8 B2 1 3 B #R A
5K H & Z 18] AT BE A EAH B AE T L AT BE A7 e
b ER5E K V- T B2 10 3 B R ] (Bluestein, 2013)
195 3 PR A HE AP 7 3 W] b 9 B 488 3 1l 114 7K T
FE I B 1 % 0 & i Kl 2 — (Schenkman et al, 2014
Roberts et al,2016 ; Roberts and Xue,2017; Roberts
et al,2020) s WA & 2> PE R EUE BB 72 22 W] AR 2
Hh A Y 3 L B AIRZ K K B D) AR TR
1) B 55 7K1 105 B2 118 U0 8 2 L 7% JE i (Coffer et al,
2023) 5 T A7 26 55 73 B HE A AU I R BT IR 2
A FED i 12 R AR 2R B iy Wi 4 2



11

HR K 6 A < B8R X U K AT UL ) A0 B4R F 50 4 3k 1501

it 1) b AR 2 ABE T B SR AL I3 0 B R
JEFE U FED 11 514 A 22 1 T A1 i B 1) B2 45 (Orf et
al,2017;Finley et al,2023),

2.2 QLCS fnS#[E K

2.2.1 QLCS

%[ QLCS 29 5 MCS ¥ & 9 32% (Ashley
et al,2019) P EAEA 139 4. T8 & 476 F i o
X, EE 21 %M RE .28 %K KK 10 % HAR=
5 em B R UKE i QLCS B 8 (Ashley et al, 2019;
Kuster et al,2024) ., 7EFRE, I QLCS AU HE
i 38 St A i R XU DK R s A BB B8 5 BBORK o 54 e
KRR CHEA 20200 5 F2 00 QLCS J2 5 B i 5
R K RSt 2 0 i KRB 25, HLH 9 5 8 [l 3%
e oy F 7 A ) B K RN FE 2R KR R (Ma. et al,
2021),

QLCS HFZ ML, WHjF)ZR oM (LS, B
Bifi JZ2 R = B (CTS) M- 47 24K = 8L (PS) (Parker and
Johnson,2000) . JRHE MR Cal( i B I fRO) #6 2 (AT B¢
45,2019) . L )2 = P& /K B (Gallus et al, 20085 Li S
et al,2021;Ma et al,2021) , 2R HEF /4R HE 2R =
U, WEFR 11/ )5 T8 8 4 A (Schumacher and Johnson,
2005) L P RLZOR 18] 3 (LEWP) L F5 28 K X R 4
(PECS) . 5B Il 45 .

ARG IR TR W B = T 58 iR B QLCS
X ¥t DX AT T 5 Tk A AL X BB B X B ke
TR A LS B TS R 3065 3 X% 24 47
T2 iR OB B X, T PS 7Y R4S B IR A S 19 38 X
XA Foe AR X . X 2 QLCS 83 by 3 H X V)
28 B R iRt i (Parker and Johnson, 2000 ; A fiF
BEAE,2019),

QLCS FH £ Fh I ik J7 X (Bluestein and Jain,
1985) ,ALHGE AN % BL 28 1 L 5 J7 B AR TE WL AN iE 2R X
WY B AR A K IOE B AN i 2008 i R 3l 0 U A B
M. TR A FHRZRE L L . NES
& RAG T3 8 A= X P AOE 07 Kl 0. b
QLCS IRy A A i 207 Xy £, B AL TS
HE VI ARAERRZ . P EaE 4.7 G
Al QLCS 1y 4R iy 52 A BE B J6 T 78 KA QLCS
(Meng and Zhang,2012;Meng et al,2013) ; K VL H
T XA R QLCS P A A s ik 7 h CE R
F5 A 2 G, 2012) 5 Cui et al (2023) & B4 db 1)
QLCS HZ M T 1. (Atify—2t QLCS I L

AR F UL i, Luo et al(201) 5 H T
o A B — A AR B B K QLCS /Y JE it
T ALEE T 5 J7 8 AR 6 A B A HE B R 3 R A HE S
WA 2007 4 7 4 7 HAERUA — K QLCS I il
R SE 2R V4 1] 4 5 208 JZOIR HE 90 % i KU SR S
T SR LR — > R AR 5] 2R R T ) A% Bl TR XS
GERARFL Bl 7 ] 18 22 A7 IR A T B R T B8 DA T
KRN QLCS(H LA ,2019),

QLCS W] KA AE Z RS ARAT T o XT3
QLCS, 1[5 QLCS B e B i 1 3 )% | 7] 5% [ A 3
A2 CAPE DL K AR X 55 19 3 5 X D)2 3 85 T .
HT A ) T A A R XUR R kgL . QLCS 5 i 2%
BRI R BE A5 1 R 2 ok T B XU Y] AR K5 CAPE,
I, QLCS 5 A BIEXREY.IRZ 5P K
QLCS iy # 9¢ B{k & & i 3k (Klimowski et al,
2004) 2 QLCS & & i #2 v B i M 2 B AK 0 A AT
BEAE(2019) B BEA (2019) (PP K CAE (2023) 52009
A6 5 HAZRHLIX Y QLCS 5 i J5 i1 8 4 3 1A X
FIL T “57 5@ 7m0 R GRA RS, 2012);
Keene and Schumacher(2013) 42 9“5 " 5“%i 7 i)
XU XU AR 4 5 A AR AR (2012) TR Y 2 5 T8
Il P 1) J T I8 BT 55 Ah— 2% QLCS,

B B 26 B QLCS 1y B AL 25 44
et al(1989) 25 Hh YA AY L 3 > 50 A H 2 2 s 7 75 )
] 9 1) 2 R AR TR, 3 A B ARME A R AR L AR A A
] LA R BT A R A 5 A 284S 1 JS A IR AR
SR A LA 5] U AR 55 5 485 AR e ) X A PR A KR R 1
i) AHTE QLCS AN[H] & J& B B FlAS [] 4 A~ 4] o B4
A [ {7 8 )5 T R . Bean 2021 4F 4 5 30 HE
M YL 75 DR 70 14 i Al 2 DR XL o R ) i S B B JE AL T
— 4R BRI R E AU B R R LR ) QLCS, R4
A2 24 50 min; % QLCS Xif It B 44 & 1A B & 1) &R
LR 7 1) CR B AR 07 1) » & 0~ 6 km 2 F
DRI AZ 59 M) 28 T ) ) AR CIET 1) 5 1 3% S 3 B XY
SIS

QLCS By At Fp AL 2 ] G 2 F S 1Y B 22
6] @ 22 — ., Rotunno et al (1988) #2 H T & H T
QLCS %k Ji& Al 4t +F fe t R & 19 RKW (Rotunno-
Klemp-Weisman) B i ( Weisman and Rotunno,
2004) , A Ay 1T Hby T ¥ i AR Z 045 i 5 KU AR K P
Y- B oA A R A Rotunno et al (1988)
o AR 2 & 48 0~ 3 km B 3 @& B, Weisman and
Rotunno(2004) #2 H RKW 38 595 )2 37 55 3 H X

Houze
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Bl 1 2021 4F 4 J1 30 H 21:05 VL75 Fg 3l 5 3k (a0 1. 5°M s S 4 FR 7 Je B
(b)Y Ta v 8,50 2k 1 2 1 50 18
Fig.1 (a) Reflectivity at 1. 5° elevation and (b) vertical cross-section

of the Nantong Radar in Jiangsu at 21:05 BT 30 April 2021

PIAS Al P F) 0~5 km Bidh i B . RKW Hlig—
AETE AP UL BB 3 i R 44 22 0 7l 28 K KA B8] S /s BR
B YD 28 B 55 T RKW BG4 S 0 45 14 7
EEMRZ 5 QLCS v X} it B 1A B S ) 1 B X\ V) A8
S BTN 71 Rty s (o K 1 O (B0 B O N 2 s e = A 7
R % IE B A B g v i B RCBT) AR I ) AR T {0
Fh A N RKW BS %A % 185 A i 200
(RID) | A5 3 03 1€ 55 %F QLCS & J& 11 5% W) (Weisman
and Rotunno,2004) ;A4 RKW Higd Figid 17
THA % B XK A A s QLCS By E 2%, A R
QLCS A 2337 % J2 )2 F0 )2 2 B XY A8 S5 1Y
YEF ( Markowski and Richardson, 2010), I,
Weisman and Rotunno(2004) 5 i RKW 3 {5 3 fi#
TR ) A ) 2 o Oy A 2 B0 58 i L KUD) AS 25 i i o
SRR R QLCS, i He fif e IF i R T AR)2 1 H
RYIAE X QLCS & i 4 5l 35 2 1 22 Ji [ fHAS W]
REME BE QLCS & LAY & > J7 . Mulholland
et al(2021) i i PR AE B B 400 QLCS & B . B3 1Y
I%)2 3 H X D) A2 2500 Je B AE FT S s b TS0 i
b2 XIS R b TS0 5 e 55 AR 2 Rt
SRR )Z T XA A T QLCS I &k %
Bryan et al(2012) 3\ RKW F it H 2 it B QLCS
ERI I HIE Z — s INIE AL (2023) 1A RKW BRiE AR
T b AR R A R R R XU R S R ) A
Z A EAE AT BB X3 B 2 02 7 QLCS #£3)
FERE . P AR 55 2238 — 25 % QLCS 4 7 4Ll
HATR AW IR D4 .
2.2.2 ABwEk

SV AL R Wy RS R NI R I NV P ) Gval I
A DAJE R 22 B B A B ORI B R S R A A
A9 %8 i AU 22 B0O1E DL SR AR Dy — 38 4y B R 7E QLCS

H (Yu and Zheng,2020), Fujita(1978) Fx 3 T
“E T Rl X — 44 FR o 5 R 2 5 R 0 — A B R AR
ST T A AR w K B AR 0 B0R M T 2R R XL gk
JE5 T derecho (] 2) IfF & R 4

RSS2 Ay R R L N WA A S B3
T IR E AR S W K AR R AORE B 38 PR B A
X R 55 (Zhou A et al,202052023), Johns and
Hirt(1987) & B3 [ 86 % M #E 7= (5—9 ) 5B
5] 3% 7= A= 1) derecho FF & A= 7E 500 hPa i P4 KL 5%
VEAL R IE R L1 40 %6 (4 244 500 hPa Jy 4 %
f#.500 hPa ‘I X # ik 21 m « s ', CAPE {H N
2600~6300 J « kg ' (Przybylinski, 1995), Burke
and Schultz(200D) Gt A M EE L ZFE 2% 5 B
13 % HE7E 500 hPa P4 Eg MIE#F . 0~5 km 3 H
ANAESE3 S 23 m» s, CAPE {H 444 1366 ] «
kg ', =2 — IRy CAPE fIT 1000 J « kg ' 4l
WYy =0 2 — kA e HSLC 3R,

598 1 Y O B 45 4 R AE 2 AL — > 20 ~
120 km KA 5 IE A R S8 (Fujita, 1978)  FEEH#1%
2~3 km A7 58 RIJ ZEfif 3 55 8 8] 3 1) 1 2% . F 3K
] b 52 B R s AR R 1 L 5 1] 3 B 1 g o)
A SO AN B e =X T 3 2 b T ik S A i i i
By 2 S i JiE » TR 2 R S AURE B BRI g iR 2
i A T =X 109 T 1 5 5 75 TR [ AR A S R 3~
4 h (Weisman, 1993; Przybylinski, 1995; Weisman
and Davis, 1998) ; it 78 3 1 45 ¥4y BRIl 3C 45 Hh (9
QLCS Z5 i Al .

SIE R A AR ARG KA, Johns and
Hirt(1987) %4 55 JE 1813k 43 Ay il ik 24 A0 37 2L 2
BTHE Ry B — 1 5 08 1 o5 T 5 T8 A 76 705
JEAN RIS 2 D A 5 08 [ 3%, 8t & LEWP 2
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@ 26-32m-s! W>3m-s!

&2 501 [l e T00 s B 3 B2 45 i 0% e A e IX 32 derecho KR IX BT £ 4
R YE B K3 22 D [ Squitieri et al(2025) 8% H Fujita(1978)]

Fig. 2 Near the bow-echo apex and to the south of the line-end mesovortex being

the derecho wind swath occurred (delineated by theoretical wind reports)

[Reproduced from Fujita (1978)] (Squitieri et al, 2025)

QLCS. Przybylinski(1995) ¥ 5 J [a] i 43y 2,
B—H RS IR w2 LEWP B QLCS 5§
Johns and Hirt(1987) 45 i (1 J7 51 B 5 55 4h =248 &
F Johns and Hirt (1987) 25 1 i aij kA, Hoep 55 —
FKIE L — 1 5B B HL R KUy R A2 7E 2 4 X i
T 55 =R B — 1 5 8 [l P A AR AR 5
DY I o 0 L 2 pl R AR KRR 2 PR R R R T O 1 H
— 5, Klimowski et al(2004) % 5 JE [8] I 4
o) e S EZE S B AT B A S A CI 3 =R e £ NN
LR NEPIALN N e EE B AR

MR B XA FE CAPE 38 b, 598 [nl B
TR T2 B PR AR N i KR Y RTJ . Weisman (1992
1993) 3 3 BB A 3D & B+ 3% S U bR 0 3 SR A U 95 2
GIE I KRR T ) OB TR B, Bl T4
Ui 0 JHE 1) A JRe A ) 3G iR L I — A e 380 % il T 2% T
S v B 7V 2 N A = I 1L R = D A (B 7 Rt (8 2
Ui TE R G0 AT S8 R R s il 46 TE . Grim et al
(2009) & & VAL 1 LU WA AL X R1JOJE B8R 53
HR < 0 03 53 A1 5 R 1 K- A6 BE (3P ) | 5 i it JiE
SEB B S R ERE GPy) VIR S B8R 3h 1R
JEHSBE (SP) KA B ) AE# B (8Ps) 5 3 &
BAE 5 08 101 8 BB B - 0Py T Bk 55 K s T A BG4 A
ks B BE SPy 0Py iy At ) BTk 2 A 70%,
Meng et al(2012) i FHECEBLIADFFE T 4R — K 5
R QLCS My J5 M A I AL s % B rp )2 J5 A i
E LT 5 i 169 JE 548 38 T i AR 2 I I A Ui 2 fR 3R
B3 AR AE 7 A B 7K1 108 B2 BT 3

=5 T 15196 94 i 114) 13 i 168 € T i PR R R
GE 7 A VWt T B R KT T B ) AR s s 2
fBIRR 9 B A4 v 2 o AT B T P S BP PR B i X

IAETE LR 7K F- T B2 e 9 b T 00 1) B R AR S
BT DA 18] T R S X A5 S T JE A4 T RS T A
FH s T SCRT & B B BRI i 4 T 2 AR i =ik
JHE S 58 5 5 Y A 45 XU U0 722 1 4 2 0 R G i T
T B 58 A B8 B TR AU AT A P g 10y i B O
(Weisman and Davis,1998) ,

S I A 2R 77 . Fujita(1978)
a5 th M B 58 [l I A B R s 0 AR Y S
e K Je Sy 5 I8 I i I 18 72 R0 i e Il (B 2) 5
Klimowski et al (2000 G731 T 273 MK EH 5B
13 19 T2 o A o 43S =2, 430 Sy el 5 A
BN AR EAE D 24 X0 i SR L QLCS 21 1K
T 2 9ok 4596 .,40% 15 % . WA = I [0l 9%
o1 QLCS 5 HHij Jr X i 5 A 5l 2 80 A5 JF B 1
(Burke and Schultz, 2004; French and Parker,
2014) ., Zhou A et al(2020) 1 Liu et al(2023) &
TEAE T AATE th QLCS 5 H A 5 /Y % i B4k & 51 B
S T Wl AR HAT 5 1 JS A s Zhou A et
al(2023) ik — L Gt R WAL R 5 IE |1 62064
QLCS 55 JLHi 77 1 % i B4k 5 P L. 38 0 B T4
5508 13 HLAA I 00 5 08 [l 22 7 A it R K
KA
2.2.3 AR FH Rk

SRR AEARZ BT &% A v o R i
JHE » 1EL JH Al 258 78 %08 A2 114 1K J2 A W] R 23 2F A it
Jig o vhibs JiE B HE BT B R GE Dy 10 7 s L g T
HAUE S AR i S — R T R AU . IR IEA LS B
RN VA 56 B 15 T 46 0 iR [ /K 55 % DDA 56
(Weisman and Trapp, 2003; Schenkman and Xue,
2016; Wang et al, 2023457 %5,2023), 2006 44
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FIHA ] VL 95 — 4% QLCS 19 -£ 4 8 4 4B S th I i
IR CRI5 5545 ,2019)

H BT AN 5] 8 BIF 530 o 363 JE 1) 40 5 B A ] L A7
—E W, W Przybylinski (1995) B K 44 H )
WRBEIRE=>=5X10"" s~ ';Davis and Parker(2014) 3
SRIBEZ=6X10"° s ';Tang et al(2020) Z3R f) H iR
e E=10" s ', =/ HF2E 18 min, Przybylinski
(1995) f S $ t f4 rh i i€ B A2 29 5~ 15 km; Tang
et al(2020) X H i i (19 FL AR R/ R AT v o R
) A SChRUE S B 2~20 km,

RAHRJZ B9 v 3 i 1 2 B XD A2 ] T
SR 114 TR JEE 1) K A= i sk e I6s TE & 17T 559 ) L XL D) R PR
B v By v T i 3 5 BE 55 Ve O L AR Sk B[R] 5 B
TSR] g ORI XU ) R ¥ S R A R T 5 i T
i) A F) IR 2 (Atkins and Laurent, 2009a), 5
AE e 45 v b e AH L L e A s e AR AR 2 BB L B R
JE L FF £t E) 8 K (Atkins et al, 2004 ; Davis and
Parker,2014),

Davis and Parker(2014) G5 3143 5 T 3¢ H #5 43
Hb DXV 2 77 A e A VAN 77 A e A6 1) 2 B A v e
5 QLCS R JiE /3 A FRAE . & Bk 2630 JiE = A e
Bl A i s SR 40 min, AT 7R AR R B 1S3
30 min; P AE AR QLCS Hribs e B K5 T4 B 45
QLCS i jié . 7EJE B 75 3k 60 km SR L 7= 2E Jo 45
19 QLCS ity Jig 7 ¥ 1Y 75 3k 45 ) 3B U) A 2y O
L5107 st i AE g & QLCS w10 Jie W 25
1.1X107% s7', RHATARAF T Davis and Parker
(2014) 1y i i € AR s Tang et al(2020) 53t T
VL E b DX e YRR, AR @ O 4~ 12 km,
TSR ) YIS TR O (1~4) X107 s 1L F AR
I 77 HE e I T 1 0 R R 2R A R I E 3 S T RS
BRI R MCS BB, MCS B E SR AEAE 7 A i
J B 5 H AR I ) B,

Kuster et al (2024) i3t M 45 T 167 4~ QLCS
H IR JE 1) OO % T 5 00 D AR AIE AL R 29 95 26 11 iy
JHEF4) K op BB /IN 56 T v 8 e B B 5 3 R KU B e
B 10 TP i e T E AR E Koop A% 58 3 DL R AR 2 5 2 32
T DX R i R R A

i e 19 B AL ) A £ B (Schenkman and
Xue, 2016; Skow and Cogil, 2017; Kosiba et al,
2024 ;Kuster et al,2024) , A 45 . @O X & R/ M 1) 72 1
HE O B T BT TR AR R IR B T KA
WA B R K T D0 Ll 5 B B (Trapp and

Weisman, 2003 ; Atkins and Laurent,2009b) ; @ RIJ
THIE AL (Kuster et al,2024) ; @ ¥ # 4 3 ™ & F A7
(9 7K SF- o 8 b JH AU B T B (Atkins and
Laurent,2009b) ; @ b [ 58 482 4 1B B A 7K 7 18 B2
] B S TP i e T 8 1Y) B 23 B2 R 5 (Schenkman
et al, 2012; Xu et al, 2015b; Parker et al, 2020);
© Jmy b 1) PR 8E K - i85 B i (Wheatley and Trapp,
2008 ; Flournoy and Coniglio, 2019) ; © i 7K 3 Y] 4%
AN 2 B (Przybylinski, 1995; Trapp, 1999 ; Con-
rad and Knupp,2019) , 3 A 38 15 7K - i B 40 44 F 2
B 4E A 3858 (Buckingham et al,2025), K-
A VT A o e R T E B W I E DR GRS AR
JREXS o A WL = S IE B rh S0 A AR e i R AT
SUE 2 JE % 1 18 € in 3R (Klemp, 1987; Trapp and
Weisman,2003) ,

3 SRR KRB AR AR AL

3.1 ERsEPEK

L R 826 7K R R 1 L TR S T I
T 5% A1 35 22 B 18] (Doswell T et al, 1996 ; fiy /)N &,
2013) . WA R 58 I B K 008 L b T BE A B TS R
eyl Mgeit. R BRI KE =
28 mm Jz 5 B 5 R K KRR AR 0 B A 3k
60 mm F22 T B I 5 [ K R AR A2 1 3840 S50 TR
F) 70 mm B2 E M 9 KK 4% 1 (Tian et al,
2015; HAT A5, 2022) 3 B RAIE# R 18 2 IR
JE W B e A AT T T TR 9 T 2 T ) R I R R
Ko XA BTz g R T e T CAPE 19 K
INBI I 50 AR R AR v R RO A G X
BB TE IR 1 3 Bl ) M TN e 1 B s S A i
SR 1 o A E B 45 0 I IR 2 e 52 T 1 B[]
(AT/NE,2013) .40 2017 4E 5 H 7 H) (LI M X
et al, 2021),2019 4 8 H 16 H kM (B & %,
2023).,2021 4£ 7 1 20 H BRI (Wang et al,2023)
iy A 7K SR A5

XoF L J2 R 2 RN B K i KU )N
TR AN 25 50 78 R o D0 o 7K 8 3 i v o TR OB 22 250
S8R K2 K = 1 B TE 55 2 L RUD) AR BR R P CAT /N
2013) A X U) A8 PR AT A BEOAR X T R K A
AWK AH T T B 9 1A SR A I8 e 1 %) it
R o RIS AT A AR 22 J6 s 5 648 7K 5 A i 5 o 7K
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&AL 2012 42 7 H 21 HALSRT AT/ 4, 2013) |
2019 4F 8 H 16 H kB (g #555,2023) %,

i st s o K T LA el A P 78k 9 R 2 Y TR
%0 K 72 A2 (Lemon, 1977 s fir /N8 . 2013) . K
i B0 g XU R AE AR )2 88 UK P B R A TE
T2 3 R R 5 K CAPE {5 Kk | 3 B ) 48 &
53 1) AT HR L JE T A SCHE E A AT X T (Zheng
et al,2007) , XJ W 17 BR 14 VK AH 2 A L 7 2F 1 TRV B AR
BER o FAGHE T TN O R R AR AE AR )2 R A (E 3
TR HE 2 AR A R L UL R e R TR
2 PRI 1 R R BE . CAPE {8 2 v 45 5 %
AN B RA S B KR o R T AR /0N RO B
FCTE IR Bl s B2 45~50 dBz Zi A5 /NI R 8 A] 36
80 mm L [ ;41 2017 45 H 7 H 05:24—06.23 |~
AR i 3 7K ) TR 3 0 A B 32 S AR T R RN g XL
AT A%, 2018;Li M X et al,2021),

e BLAE 1 02 o AR 22 5% Ui KU A ik i 2k
R 22 (8] 5 L A0 2 7 A TR 5 A 2 R K b st S A A
Ui 5, ok 7K A1) OB #2245, 2020) K8 1 98 40 1 i g 7K
AR (Yu et al,2022) 45, 33 6 6] 3t KU 2 o RN I R/
Bb AR M R K (R H 3 2 KR A, X AR g D
IR it T 568 118 R 355 49 AT R B S R L 1 385 o s
L AR i R ) B AT O I IS A KOK & LT
O 349 RSk L e BB I S ¥ B (Gao et al, 2023)
X 2021 4K AR it /N B I B (201, 9 mm) YRR T 3
FEAE A3 AT & B0, 02 I 6 IASCF- 359 B A% TG 3 K B

J L R0 P G 8 L DA T 0 K R ) L 3
(T4 ,2022)
o [ K B 22 Bt 1E] (Doswell I et al, 1996 ; Doswell

IM,2001; A7/ k5 2013 PVAE A, 2017) 5 RTRE R
G210 sl PAg FRR e M L 6 I KU 1 B8 B RN RS 8
1] o DA B 5 2 A5 4778 50 42 500 L 5 O % B A (B S
ﬁf%%%>%%ﬂ*ﬁa‘é IEREREEE Y WS i
REK o 3 H X I LB 1 A ) R R, A Ay o
. Gao et al(2023) X H& 1 Ik B 45 it W 56 719 X6 378 JXL
TG K B o I A W o T 5 ) 3 5, B 2l B v
FRURE X i K2 77 A

Jd I 5 A K B B T O AR ) I R R K Y
KN—E R LYo 7 5 M A9, UL R KW
25 e ity B K ol i e AT A e I iR R K R A HL A
Uit e B SR R K & AL T 2018 4F 8 H 3031 H — 4%
R K A i ) RUEE TR I 5 | R I A T Y VR
Rk (RGBS, 20200 % 2021 4E 7 H 20 H AN Y

FERZR TR R o (E e ] i A R 8 K e A [X 5 R R
X FHE R 58 4 — B0, 7E 5 ik Ml DX B AR g RN P R
iy X ) A R b DXL I 58 R 7K 0T 2 T DT K A o Sk 3
AR5 ,2023) . FESRINIE)Z P NATE B2
o PR 1 K Il 2 X 3t X 2 B 65 7 AR I iR R KL (H
B T B KR 22 e ) i e 38 R 23 7 A AR T

XA e T 325 0L I 638 8 48 7 %ok i XU v 1R ks 28
YT RS R AE L T B A R 55 (Zhao et al, 20195
Kumjian et al, 2022; %% i & 25, 2025; 7 0% £,
2025) s A I 7 T W 0T 3 XL 8 gt K il Y 3 2 AT Y
R AR A 4R TE A 1Al I B K BORE BE . WHT BT IA L Zoe
FEFN Kop HERAE T X5 0 KU N B 5 b FH O AR AIE
Li et al(2024) 434 T 2021 4 7 HZO H R M 72 2
Uity /)N B S PR 0T 3 XU 2 18 R Al i B O8I0 AR AE L &
BLE 58 [ 7K ot 1 I 2 A 7 mei%%ﬁ,k S
TEAG )T 0 R AR o 5 B K 5 Zog IR T WAL 1l
LS 2 W O 1/ VAR R A i DS

3.2 RikE

FEAR G F SRR #1EC (American Mete-
orological Society,2025) & X VK& N HAZ =5 mm [
[ A R Ko T R Ot T R R RIS
VKB B E L ESR HAR =2 mm GRIE%,2017),
— B 5Y (Kumjian et al,2020) % H#=>10 cm 7K
BFR N E T (giant) I 4 H A =15 cm 190K
BB E R (gargantuan) 1K £ E 99 % “E
WK BB AR 4, Blair et al(2017) 3@ 53 4p
L & B3 [ 90 Yo R G PR £ 7 A AR =5 em
VK E .

T /N RAF (20200 B 25 25 T A R T R UK 1Y 3

Be & R CAPE (58 K i) —30~—10C
CAPE. 88/l —20~0 C Y JE ) 3 ) 0~6 km
WREZ(=12m e s P ERE, >20m - s 'l
SR AEE KAL) A E TR BRI 0°C 2 2 M i =
r“<2 0~4.5 km), HVEV i R G 5 K AR I R IK

LA X B IR BT A5 R R RO FUR LR, 202D)
EPEME&T&i@ti?ﬁﬂk@%ﬁmﬁJﬂﬁi&gjwka
%k Cl Ha g2 5, 2018 Li et al, 2018), HF Hi 58 &
(2018) % B — % 9 B UK A8 1) K A A 5 b — B o X
BEA 2 KRV KR CAPE 87 38 (1% 25 B
s, (AT R koo AR & R AR R VK
2022 8 6 H Y Bilg KUK (e K E AR
5 em) MBI & A 7E FI AT R R TR R D) AR
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H8,0~6 km KR EZELL 6 m s ', CAPE
Wkt 4000 J « kg ' TERIREE 0C 2 & 4
5.0 km PERIRE 0 CJZ2y 4.5 km, J&§ T §i 3 fif ik
G007 QUINRIE= 1Y QU I DO P NG WU 21 <y L P (S Wi
IR VKA B2 813 T Markowski and Richardson
(2010) JI7 4 1 Bk ofr i 6 9 R A3 W5

FLT UK ED TR e (¢ B R T R E SR ISR
AR Jay BRE (B e 7 55, 2022) . 2 4F R Y BIF 5T
(Allen et al, 2020 #k Ji& T %5 . 2022) 1F B . vk 85 T i
A T80 B R 1SS T8 LR I s — M 43 R R T VR R
TV 5 O I e A 98 T O R 4 s T VR U DK A
AW, H R A = % K )2 8RB A ]
BT M . il BE TR E T UK = B AR S I o 410
o TEVKE T Bt 72 AE S 85 IR 1 o AN R R 3
SEURTN IR IIELRF SUREY S 36 8 I BURC S E Y/ VA
RPR 28 s 32 U B2 o 2 K O e BfE Criming, BT 1
LB AN 37 B 1 AL BRI W VK2 5 45 3 ¥ WS K AT
PREFFI S - W AR O 8 1R 3 1< Caceretion R4 10
(Allen et al,2020) , JE 53 JZ (9 + 32 WA UK 5 W ffY
MG KA KK 5. P EEF R
14 3k ¥ 7K I B R R DK R 1 T i B 1 K b B AR
VKB FEI R R R AEAEL —25 C (3 —30C) ~
— 10 C AR EE X 8] N BT 43 Dy T 3 K I 1 < i 4
HR GRABK G5 HAE— 1) i 78 L Horb 5w #h a
K- 8 E (Allen et al,2020;Lin et al,2025),

KUK TE B By 5Q 5 IR 25 02 VK 83 15 K B[]
(Allen et al,2020) , HA 2 yK 80575 & B 1Y A4 K
A5G v B 5 R Y I ) L A B S5 B I 350G K5 R UK
BRI X I ) GE 45 B 10~ 15 min £ % g1 I [A] 5
UREAE WA b T Y B A P T L A] R A 1 4
] 5 B A Y B8 B2 BN O A B TR e KR b
KW 1. KB RIE U £ A T b o AU X
PEAR BA — A F W BTSN UUSG IR Z0F5EA
H LT AN 23T B ie X 3 S0 34 3 4K 2% 42 (Alllen
et al.2020;Lin et al,2025),

R UK 18 Bl 4 TR A0 3 1T I R R AL 4 .
[ 5% 18135 (55 dBz 1) 5 8] 3 3 B @ 3 — 20 C 25
LN LB e BE DL B AT AR AL B BE 65 dBz DL Y
588 T 96 e A I Tl g Ak T A 55 [0 3 X 8 G PR B
55 0198 DX, 2 B 2R PR AS 1 K i (VIL) 850 R

FU eI 7 45 (2022) 48 Alllen et al(2020) 7R £ h B0 $8E o5 B8 " S0 i o 48 o i

[2Thttp: / www. chinanews. com/sh/2021/04—28/9466513. shtml

VIL %5 B2 = BT L R 5 20X 2 To e IS Gl e
45,2015 fir /N 4E,2020)

TR UKL Y S TR0 4R T 0 0L I A Ak £ A AR =
T Zog K one AR Kpp o T F1R VKR 1Y B I F7
SR WLI R AE BoA AR K 22 % (Kumjian and Ryzhkov,
2008 AT/ Al 45, 20200 . X F T UK E . Zow KA R
0 dB,Kpps& 07+ kmﬂﬁzﬁz\lﬁ,q:jtbj(%ﬁﬁ’ﬂ Ko &
23 UL B 2R 5 X TR KR X i KR A A
KEHENO0.5~1.0 cm WIBE R, Zor &8 K1H .
HFEZ=1em BEN Zn £ —2~2 dB, HiZ2 =
0.8 e S {ﬁfﬁ'ﬁgﬁﬁ/‘] KI)P%IE{E’W C#Hn X /BZ
B ik iy Kop KA Sy 708 5 ) I A 7K &S AR I B9 on
WHE/NT 0,95, PKEL T Bk B b2 iy T UK 8 Rl b
SR T ¥ B4 7K B P M S Zor 1 K 23 5 5K
0 %y IEAH GH 145, 2018) .

HiSCHTR ) 2022 4 8 6 H 1l R vKE A .
R R 3R T e Kl it 60 dBz A 8 3% 1) = IR 1
YRR AR R B Ry ROBE e i
i@ (oA 3 1) rh A0 5 88 ) 85 J2 1 52 e 2 i g XL
TR B WA ZoehE  Kop S RFHE #5360 dBz
X4 2~3 km 5 BE 1Y Zop 29 1~2 dB.fH 2~3 km 5
JER Kop 2y 3 7« km ', 00 908 0. 95 Zif7 - BER Y
Kop (E A/ on (LR W T 0CJRE M K E E
LR R

R VK, [a] B i 548 o 7K B 2 DR L e 4 S U T
IRERATIRR ELZHERERTIRMEL RIS
B 37 ] 5 6 B A GX 2 R AR B 2 (Allen et al,
2020), Blair et al(2017) i &F &b 37 WL & 2R » 5% =]
RAJm B R 1 AR 2 35 B vk & s (H ik &
2 W ARG VR I B R AR

T — S 3 PRORH R A5 v 0 DX 491 dn 3R T s B
S | 2T o =) NS SN ES RS R A L PR R o 18
Xof i KU 7 A TR B KRS R DK B R HE AR B
Al 3% 60 cm (Wallace et al, 2019; Friedrich et al,
2019, 2021 4F 4 J1 28 H FF» = i 3C L 1 43k X
AL A KN 22 153 % 1) A B T vk L B
RVKE HAZ 2 em 7247, d RMEARR LT 20 em,

= W IR B K KL 1 X 2 R G218 M UK L
AL A BRSO » &) TR BOCE Y R I HER
Ay A R vk R HE AR I 6 O XU Y K e BT R S
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HR K 6 A < B8R X U K AT UL ) A0 B4R F 50 4 3k 1507

7 %+ km~! (Friedrich et al, 2019; Wallace et al,
2020) , Wallace et al(2019) #t— 25 & & 1T fif F b 4%
TR I A2 50 8 2Ok AG T M e vk R B RUE B AT
AT

3.3 THRERMEFKRX

i R U R AR R AR AR R — A 2
AN KX, G R B A AR SR 0 % R . Fujita and
Byers(1977) fi 1 45 19 F i 2 i & X b 46 19 2
8 UL BRI, S T O A ] A Ak BRI
L Wilson et al (1980 48 B2 <<4 km, Fx K12 [
WGH 22 =10 mo« s 1040 A CHT 3R AR ) XU ) )
FMF R, THEWEQ2DK FHRFHE XN
H R 3 XU 9 T T 51 & B K REE 10 km L
TSRO . R R KU AR O R ORI,
Fi £ O I XU 2R T 1l e B T 7 A i 3R e A B R
K (Yu and Zheng,2020), T i #% i & X i K& 72

& = KA 3 2 )R H (Johns and Hirt, 1987;
Przybylinski, 1995) ., f% 58 K X K F Al ik F3 2
(Wakimoto,1985),

QAT , 5 I [ %) T 530 derecho,  Squitieri
et al(2025) & M derecho & SRy —Fh I Fil 1) 58 AL
P S B — R GV E B R o 2% 30 2H 8 it R XU 2
(=33 moe s BYFER 5 MK 3l 1Y IR A MCS
(& 2)

T i 2 U R B KU UL B R 4 5 3
BN I = WAL 7) RGP T S BN = R B S B A |
B G P AR SRR DG .l R R )2 2 DL
AW T2 X2 IR R AR R DR Y R 55
FNET 5 TR BOT 7 200 24 w5 I XA ZE R
TET)Z (T-Inp P 2 BUE VI IR LD In Z A%
JE A A 35 R 2 Ol e 25 I R R 585 00 A X L g
fig 7= A=k iy 2 3 (Wakimoto, 1985) , Bt . 55 F T+
PR AT = R e S TR W T

Proctor(1988;51989) %} I 37 T iff %% Uit A &L ) &
BT i B R K B 2R R SR Y R
2 UKEL Bl AL 5 | 7S B v A 3k A Al T B0 iR 7 32 0L
WF9E v A8 2 4F 32 (Kuster et al, 2016 ; Richter et al,
2014 ;Mahale et al,2016; F 75 B %, 2023) ; &5 £ ki
THTHERE T T i 208 By 35 R (Proctor,
1989 ; Wakimoto et al, 1994 ; Wilson and Wakimoto,
2001) , WAL K B 25 T8 BURH X A 7 1) b LA O 2 3k [l
P RN IR

TEXF I )2 KA HMR 15 DL 58 5 7K i 46 B
ZE RAE 2 S BOR T UTA 0 QR T 5 & 3D .
PLsf i AL » 2 5 FA 7K A IR 18 Bl R R A L 4
JE PR TR R B R B B IR = A X
5 81 A5 %) e 00 v v 2 T R AU B s AR T
FEK 28 R R HIVE T S BOT Uiz g W) B 10, 2 ™
A TR AR R R OB R 2R (B U 5F, 2014) . TREEE
RS2+ 30 A A T P 2 T o 2 A 30 M D Y TR
Al g4 S EU™E R E N 2020 £ 9 H 12 HIRYINE £
I R B0 R A5 2021 45 9 H 18 H &'
U HE AT VL e A T o R 0 B R .

PR R UK SR K AR R R 2 2 R
FRRMCEF5 B 45, 2023) , X 68 2 K Z H RFD
S W T A RUKE R I AR A B
CAPE 5 & & 9wk 0°C JZ m B2, P B3R B3R 58 K
R R LN E: N = R e S oo 7 S B 4 e W AR
A F T 5N U s VKR R A e HIE 8 [ TR S
KL Y28 K0 T i 2 i B AR G #E (Richter et al,
2014 ; Kuster et al,2016; Mahale et al,2016; F 75 BH
85,2023) 43X & R VK8 KA Bl R KR AR
R 33 2 R R 5 T 5 A K T R B 1 R XL GRS Kk
4 ,2015b),

WF 5% 2 W1 o 103 Jie %) o 2% R AU AT = 24
(Atkins et al,2004;2005;Xu et al,2015a) , ZESIE
(] 95 THL A5 1 o 3 @ B O 23 B BER 2R R OXU (I 2D,
Wakimoto et al(2006) A X 2 i fie Tt 19 R1J
(9 B ISR T Xu et al (2015a) A Ky ix 88 2 g =
JE Il i RIJ 78 H i JE B 3 79 v BE 1 8 i B g o
Y i NN I NN ENA A - A S ER Y O N
SR MR BT e

X g X P XU B0 O 1) J) 5 XU ) T L D 25
A Z R R CE 55 145, 2023) , 4545 . QLCS H i K
N O R WA LI Sl L = R U =) LK (|
(Miller and Johns, 2000) . B X4 Aif i (19t 18 i 1
JH (Trapp and Weisman, 2003), T il; & i 5 3 sh 1)
HL 18 /E B (Mahoney, 1988 ; Bernardet and Cotton,
1998;Childs et al,2021) %, 41 F o7 2 9 5 & J7 P9
s R B YD 2 i 3 K-H A AR OE St [A) S Zom X,

R I LI 1 5 ARG AV 7 A% o 3 R (R
20 m « s VY RAE X 5B [ W R AR )
WA BE L 15 m oo 5T BE XU SR B R
JRUHY B AR (AT /NS 58, 20200 o X I KU 2 v il Ak
(UK BLAL T BT B Zow B (Zor B /MED (Kuster
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et al,2016; Mahale et al,2016) ,Elifk 2 Fif T 1) Kop
¥ (Kuster et al,2021) J& # P T o 2 9 5 220U 4k
T IRWLIRRAE » HL Kopp 2% 7K P86 B2 BORFE 725 9 B
T WA R K (Kuster et al, 2021) 5 40 \f fF &,
QLCS ™ A R XU Bl e 4 14 Hh 103 g 1) K o A% 1 338 3
% 5% B o (Kuster et al,2024),

AT UG 55 WL 0 A S8 w56 4 e I 3
T YRR 2R R XU R A L R KA A /N RUBE AR o R
T 37 V8] A5 2 5 1% 8 R UAH R L 5 EE AN A )
A7 85 1) 0 BT B (Fujita, 1978 B K OGAF . 2017 5 KAk
JEAF . 2018) s BIR A FE 1% 2 R AT AT Y 2 75 5 i B¢
Bl T B AR R XU BOK E RRE R R
AN [A] (Fujita, 19815 19925 Meng and Yao, 2014;
Meng et al, 2016; ¥k Y645, 2016a; 2016b; 2021) ,
N 3 e 4 9 B AR I8 T O BN AR B R S e e 1k
Wy R AL R T X35 0 B AR RN b A A UE RS
FEJ R A BRI, Tl R U A R R KR E
SR R ECR B 2 SO A e £ A
H 2R SR A HoA 23 (8] 00 A AN JE 22 22 ROBE Fl iR
IS 23 RUBE /NG R AIE 5 (H 55 46 ] BT o 22 0 1Y
G e KR IR WL A R A T8 X DL IX 7y (Fujita.,
1981 ; #37k Y645 ,2016a)

3.4 & %

T2 OFR N T 2 K s S iR R A HR i L MR
9 R He g i b 8 M XU AT G5 140 m»
Jones et al,2001 ; Bluestein et al,2015), J¥ %13
BHRESER N 10° s @ THABEM =R, KH
RR¥ S RAF WL ZREREEE X
(American Meteorological Society, 2025) . 3 £ #r

s ! (Davies-

9 5E LI I 2R 3 L AE (2 BUIR = 2 I8 1Y PR 3 g
Beas SOAE Y M BUAE Rl b b 23 ) R Rl O b T
R R ks = FE K b 28 i AR e 55 (7K 5% 5 i
SR 3} 2= IR 2688 B (B 3E K AT UL, I AT BB 43 5
RN B EIE M =R XN EEAE T .
EF2 9 ) LA b 25 90 e 45 FR 3 b 2 5 14 b AUie JE
Bo ARH A S S M TE QLCS 55 8 [l
S 0 P i T8 P ) e A R b TR S AR R A
1% 75 1 JE 388 3 X 3t 2= o b R L A i T e
J ) I % (Wakimoto and Wilson, 1989 ; 4 7k 56 4§,
2015b32017;Yu and Zheng,2020),

FE AT 10 487 B & 48 29 & AR 1400 g4
(Kosiba et al,2024) , Rk PN HH4E K A= 232 A~ 4
(Taszarek et al,2020) ; H [F] Jg 4 & A4 5 R Ik T 52
=] FOICH S S 34 5 4F A B 100 A (S AR FaT /b 4
2015) , Je 2 K 280k A T M HOF 30 A IX 5L, 5
B TE 52 2% Ml XA H 27 DL (Bluestein, 20005 Bosart
et al,2006) . g4 PR AR K BE I H ALK T oK L (H 2016 48
6 A 23 H BT &M #AE KIBIE 35 km, 2021 4 6
A1 HRRITHE R KEBEL 50 km, 2021
412 H 10 H B CY s ED 358 [F & 4B 1) EF4 2%
Jo 4 B AR 3K 266. 7 km, FRZEE] 35 178 min,

WA 2026 26 1 8 R AR 7= 2E e 4 (R4
SR P AU N i BEBS T IA T 1000 m, JU) 7 A R A5 1Y
MR 2 40% (Trapp et al, 2005a), 2 J5 JF &
(2013) & B IR AL 3tb DRE 2 BLAR Cop 008D 7 A= e 45 19
WE 2 E 18% , Trapp et al(2005b) G it15 5], 3£
] e 4 79 Vo Fl U SRR Cf 5 ST B A XL 2R R £ B
TR 7= A, 1800 B QLCS j= 4, Hogk 300 % ih
B Bl B AURE AR ] e A o U R U Sl

(a) o (b) Tili%if
Wﬁ B TR
\_\‘,\—’ S e\
\¥'V / 2 KR
\¥‘V / FAHRT iR AT d R
Z— >
O A)
& = L)
X = =
o R KA

3 (% (5] A Doswell TI,2003) H#1(b) AR i 3 (B 2x A Fujita, 1985) iy 3 3T it L GRS K 6 46, 20162)
Fig. 3 Surface airflow patterns of (a) a tornado (adapted from Doswell [l ,2003) and
(b) different downbursts (adapted from Fujita,1985) (Zheng et al,2016a)



11

HR K 6 A < B8R X U K AT UL ) A0 B4R F 50 4 3k 1509

SRR Z 0L, QLCS A ZUE At A — 24> ] G
KA, 2021) s Hodr VLR R i 5020 1 e 45 th 2
PRI 2 G5 (9 8 SR 7 AR 2 3000 e 45 i
QLCS 7= (17545, 2021) .

— & CAPE 53811 0~6 km 3 1 X Y] K1Y
EPAR: A AC NN EPO RT3 N DS ki il
O MK MAK)Z (0~1 km) 3 7 K48 25 (Brooks
et al,2003;Grams et al,2012) &4 F| T 74k EF2 2%
Ko VA b epr SO0 e 4 i BR824 o (H B AUE PR L
W& B KR, CAPE {H % /N (McCaul , 1991 5 £ 4%
% ,2015) . ARG, 8 T RS E HSLC 345
Hh R AR B 5RO IR O K OB 45 - 2025a) , 7RI PR 35
R ISR B A2 Hh SO 9 R 4 B A 7 A e
G H RS BRI 2 A
TE¥® I K £ 4> % (Kulie and Lin, 1998; Dowell
and Bluestein, 2002 ;Clark,2009 ; # #1 %X 45 ,2025)

R BRI AL 4 TR RS R AU e A 1 A
WANTT D IR A AN BE RS L T8 5 A R R
ZI/NT 4CAHHM T & H I il (Markowski et al,
2002; KK 645, 2017201852020 , 71X >3 A v
FFD Al RED B9 F B4 1R K 22 5 (Markowski and
Richardson,2009; Orf et al,2017), FFD & & 1) H
i AR AR 7 A B U 7K - i B2 2 I8 1T 45 B
TRV IR TE /MR B = ZE R PR (Fischer et al, 2024), 5
S ARZ A FED H U 00 0 0 193 B2 3t 1 2 i
JZ A E TR JE B E KPR (Orf et al, 2017; Finley
ct al,2023), K& RFD [k e % PRSI i 5
BB BT K P03 BE AR RED A1/ S48 AR 17138 E
“HERR”TE B e X RED 7 AR (1978 I T 9 &R K
-t B X e 45 B W AT E AR ] (Markowski et al,
2008 ; Markowski and Richardson, 2009; Mashiko
et al,2009; Marquis et al, 2012; Schenkman et al,
2014) ,

Markowski et al(2014) Fil Davies-Jones(2015)
B b S e B Y a3 S = A B B Fischer et al
(2024) WHE Hr=é e 4 19 TE 18023 0 DU A Bir B 23 il
R B R DT AR 5 A B K T EE
L2 7 10 W JL 30 4, 4 10 Jié /N B L 3 e /s B 20 2l —
AN R 109 e HL A L A 0 5 | A 2 R A R B

N R N DN S VRIS 1D UE 3R TNl
PN AR I A R BEAR AR (TVS) L Zik
L Zow VA Zog 3855 R 0B 3 A F A 2 B 45

A e JE {5 5 Z — (Rasmussen et al,2006) ; XU
P B LI ) TDS Ol 4555 7 FRAIE D 45 2 W I e 45 1)
FTHE K (Ryzhkov et al, 2005) ; 41 {if B7 iR » Loeffler
et al(2020) e AL H Je 46 1 8 2 SR b Zow S0
Kop /& 1 73 8 77 18] 45 K 2 8% 3 J5 0] B8 42 3 1E 52 .
2021 48 5 J] 14 H VLIRS Jo 46 6 2 B4 1) 2 4R 1ol
XA TACH Zors Zor A Kop 2 AH BT 22
(Yuan et al,2024),

QLCS 1171 i€ K 2 A 8 & ey e 4 . I il e
A 14 v I8 E LL AT T IR 45 Y v T e 5 E B 5 L F
SN A] B A L 3 7 S AR )2 T B i BT 9 ik B e 4 R
J&# (Fischer et al,2024; Kosiba et al,2024) ; {1 5 v
i SE L QLCS 19 R1J. U e 45 19 o] B 1 5K
X2 A R A A B T AT s DA TN SR 10
W A TE BB AE R0 4 (Atkins et al, 2005;
Davis and Parker,2014) ; {1 g SCAT i, 7= A= KR EL
T 1 v I E A TR 5 Kop A% AR ] 3B 3 5
(Kuster et al,2024) ,

H 2 — ORI 19 e 48 KCE PR AL X 2012 4F
71 21 H bt 2R T a)E N X 5K K e 4
TR %84 (Meng and Yao,2014), 2016 4F 6 H
23 HILI BT 32 EF4 900e 5227 B0 A iff e
R AR 34,5 km, SR TS E L 2.0 km,
) 4.1 km (KK 645, 2016b; Meng et al,
2018) , fig 9k P UBE HEFE A E y 42 m + s ' (Meng
et al,2018), 20194 7 A 3 HIL TH R KL T F
W EF4 9000 4 2% 90 B A T 4 IR 2% i3 7 A 1 e
K s B TN U JE AR Z A R AR — A R e
(R PR A58 A 2 DX 0 AR 1m0 3 3 43 4% 30 31 8 45 T8 1
DI 7 A TS R R R AU A s 7R A AT
F AT R SE AR TR B T %k Je 45 s
AUREHERE B IR 30 mo e sT L B O K OB %, 2020)
2016 4F 6 H 5 Hifg g X B e 45 8 T AF 7Y 2
TR JE A (£ BIFIAT /NG, 2019), 2023 4E 6 1 H
P R N AL T RO e B R AR A R It 1) 3 % (B
F4E,2025),

e B R AR E L . E E KA B
R & KRB & F A2 2018 48 & XU JBE 3 7 7E
AR AR T 11 A et (3 225845, 20200, 2021 4 7
JI 11 H v o AR A 1 AR k2R 13 A e 4 (Wen
et al,2024),2024 47 A 5 H ¥ ER e & LR P
PR A 13 A e s CE 56 45, 2025) . Wen et al
(202D XFELAM BT T 2018 4F 5 A EEHR " Al 2021 4F
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BB K, KB 2021 4R Je 45 CAPE,
0~1 km XU ERAH X SR EE L0~ 6 km 3 B X )AL FI
KA S IAEWE K.

4 BRI R IR

4.1 BXRRSWHLF

F T TR A R A 5 X A R A TR R A
HE AR B S8R i 43 Sy A R RN S AR T
7 2 A AR R A 5] (MceNulty, 19955 #h 4k #4 55
2014 5 G /NEL 520200 o FUAROE 55 L 3k TR [R S A
Xof L IR RIS 6T IR A A LA L S L B R R
TiE S 54 o0 FH 22 gt R 0 5 00 1 AR 7= b LA B 43 A 4
AR TR AR N G S AR S T 7R L A
— 25 A S R ST T oK /N IS AL 2019 5 5K T 55
20135 W ¥ 55, 2013 3 KR K 6 5. 2025b) o A I Al I
I VI 255 et A O AT 5000 U000 R R 4 R A (O
A ) N

FE TR A T TR 25 5% L 1 B e iy HE AR A
14 22 12 Wt 4y 38 Sk 3 248 SR 3T SR A0 T R e
BB S BR TR SCE A AN B 2 T R OK R S
IKIEA P . CAPE O C 2 E I A E R EHR
DIAS 5 B S5 ) PR DASh iR 75 61 850 hPa 55
500 hPa i 2 e L6 T+ 48 5. N UL CAPE, RIKE
T80 e 18 5SS 2 s W ) B (B i 45, 2017)
Rt T L B B DG T v S A R 5 0 i XL
FHAH I B8 5 CAn e K b T R e 5 e 45 4 4K
S5 1 AR L O T 2 B4R B Time-lagged 3, 4B
383 RIUB 2R D g 45 5 96 R 1T 1 IR T 5 40 H R AU
LT 8 7 (B K O A5, 2015a5 2015b5 2025bs
Gallo et al,2019; fF 3C30 FIER 7K )G, 2019 ; H Ha 5K 45,
2021),

4.2 WHFHEAREHER

TRIE 5 2] 7 15 38 $ T 17 5t 0k it R U I L
I IR BE 7 . A 5 Y 58 6 I SR SR L R I 2 L Tt
0I5 S GETT A 58 X AL 49y B RIS S A g
AT I FRASEAN) S22 0 AT X i 22 1R I 25 AN T Py 45
ARTT XA [5] (9 4y B I SR e R B 23 A L

D e B2 T AL WRWTHT . 2024 Jp 365 1 5 Bk RLBE S i 46 & B T4 3 4%

Lot 5 Z 0 22 45, B 3l AR T4 45 2R
CINER #5545 ,2012; 8 B G155, 2015 FAY & 5, 2024a;
2024b) A i FH A 4120 W S5 L SRR 1 AL S AL 5
PLAS 2% M L R R . TR Tk e i
V7 FH 4 B R iR 43 3 23 DX 4 A5 = 1940 LA e 22 U5 08
TS5 55000 5 43 300 ) S 1 R R R R K L VKR R
KR TR A 300 0 R T A R TR i B 4
75 ¥k i E 2 FF (Zhou et al, 2019520222025 ; J& FE M
2 2021),

i B TR i 7 B T B AN T v 43 B R B TR 1Y
K. FEEDF LRI T B B R %7 (Warn-
on-Forecast System) f&¥5 3 T 15 20 P R HUE TR 70
TOUE R AT R G LA N e A |5 T 2% R L A S 1Y
PERTRT A, H AT K 4 9 R N 3 km (Heinselman
et al,2024), PTEPETH AT 3 km il 1 km 7 B
L% R (CMA-MESO) 4, 2 58 %5 B % T 1i
F EndD-Var (5 DU 4E7E 43 ] Ak 55 B AR 1 8 & 4
B o I O AR A BB TR R 465 2024 4F fe s KO
Gy HERR R A3 me BT R A5 i E IE AT A B AR, 50
FWHRA — @ W e TR %

SR A R B R U T R
SOG4 I ST TR AR AR 3 R T L £
P+ W A 55 M0, 50 45 A DA JLAS /N 1 9T 412 R ik o
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