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Abstract: Digital intelligent weather forecasting has grown rapidly in global meteorological operations in
recent years, yet conventional methods face inherent limitations in nonlinear error correction, spatial and
temporal downscaling, and multi-source data integration. Deep learning, with its exceptional nonlinear ap-
proximation and pattern recognition capabilities, has emerged as a transformative tool in digital intelligent
forecasting workflows. This paper presents representative advances and achievements of deep learning in
five key areas: numerical weather prediction (NWP) bias correction, high-resolution downscaling, hetero-
geneous multi-source data fusion, hazardous weather prediction (exemplified by typhoons), and data-
driven weather forecasting. The results show that deep learning models can substantially enhance forecast
accuracy by learning complex forecast-observation relationships end-to-end to correct systematic biases,
employing generative adversarial networks to refine precipitation structures and improve heavy rainfall pre-
diction skill, integrating radar, satellite, and model data to extend severe convective weather nowcasting

lead times, and developing data-driven models that generate forecasts in seconds with accuracy comparable
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to numerical models. Notably, the Fenglei model demonstrates the superiority of generative approaches in
convective nowcasting (achieving about 30% improvement in hit rate for radar reflectivity =50 dBz),
while the Fengqing model has been operationally implemented for 15 d global forecasting. Deep learning in-
tegration has been advancing intelligent forecast products in spatial and temporal resolution and uncertainty
quantification. However, its current applications have persistent challenges including limited training sam-
ples, model interpretability, extreme event prediction, cross-scale consistency, and computational efficien-
cy, all of which require further investigation in future’s researches. The research priorities in the future
should be put on the following aspects: expand large-sample and reforecast datasets; incorporate physical
constraints to enhance model interpretability and robustness; implement tail-weighted loss functions to im-
prove the reliability of extreme weather forecasts; design cross-scale coherent frameworks to ensure consis-
tency across scales; and optimize training and inference efficiency for operational requirements. The syner-
gistic integration of deep learning and numerical modeling, with their complementary strengths, represents
a pivotal pathway for advancing intelligent numerical weather prediction.

Key words: deep learning, digital intelligent forecasting, bias correction, downscaling, multi-source data

integration, typhoon forecasting, data-driven forecasting
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et al 2024 ; & BERESE . 2021) 5 DY S 51 A B B 1 9K
S IARAESE , i 450k DL M 2% 5 =4 B AU AR
18 5090 BIK B P R R AR T s S AR S R R
i (NWP) 35 4 1) BE LR BE T, AL 5 A B Rl
T 4 O m) A R 4R fE TR Y B b 2% 7 (Pathak
et al,2022; Bi et al, 2023; Chen et al, 2023a; Lam
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Fig. 1

Comparison of false alarm ratio and miss ratio of 10 m gust forecasts with 24—168 h lead time

from the original ECMWF-HRES forecast (blue), the U-Net corrected forecast with
MAE loss (orange) and the U-Net corrected forecast with MAE_MR loss (green)

et al,2021; Harris et al,2022; Wang F et al,2023),
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Fig. 2 Comparison of ECMWF model forecast and Corrector-GAN downscaled forecast with

observation: 3 h accumulated precipitation during the heavy rainfall event on 1 July 2024
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SRR A 6 B AL B H #20™  (Overpeck
et al, 2011 ;P04 % ,202052025) , 383 A 501 £ R
SRR LG T LA A Sl G A R TR AN R BT AN
[F]IF 23 43 FE 2R 1 BEORE 48 R 1 B I i A5 R 4 (B
W 2022) RS AL RS HEAL TR SR A A ) S

FIAWEE 2] h 20 R B A et 7
IR K TR . 505 dE ah & ik — ko
R TF By B (stage-based) . 3t T 45 1k J2 (feature-
leveD) Fll3& T 1E Y (semantic-leveD) & 1. X
SBE T4 28 E i A W A B S G R R
FH LT 08 SCRY =1 2 Rl SR o R FL DR HRORE 28 95 41
I B fR7 BB 42 00 Bl e A T B IR ST BB B B B
TR 22 R CHE =2 () 14 0 2% DG BB O i 9 iy il 45 0%
%5 (Tran and Song,2019;Geng et al,2021;Liu
et al,2024), TG, TR 2% 2 2% ] D) SR AE B A (A
F 5 RAGE R Z 0] w5 B AR LM i i e R e IR
GE 2 M T 1 Ry B o AT B4 b A A TR R T
ZLAb 2 T 5 i 5 S A R AL S 8 v 0 AR i R RS 5 Y

P fE /1 (Senderby et al, 2020; Espeholt et al,
2022) . FLUR VR BE fl 28 W 2% 58 1 2 )2 5 B IR 2
TCAELE I L RE A I i 2 A B0 v B Bl 4R BORT s o0
IRAFAE o 52 BUAS [A] 9 R il 3R AE . 1] 4 465 B ph 22
D) % T LB B 35 R0 T AR IR v A =5 ) 45 4 L 91 B
22 ) 28 47l 412 B5F i) AR AR AIE 4 T8 R R AR
SERL 1Y %] ) (Shi et al, 2015; Wang et al, 2017;
2018) . B = IRHEES I BRI Z AN A B AT R AT
F 3 R PE S BE S HE 4  EAR ERTAGAS T D 3l R
I 45 AN ) =0 0 B304 il A 48— R B TR RE B2 v, 93
b 38 A A3 e FRRAE 2 2] 8 0 R HE A5 B DR
B B AME# (Geng et al,2021; Liu et al, 2024 ; J&
WESE,2021) 0 B2 o A8 B IR FE 2 2 5K 1 R AIE £ B
EEEAGRARE J1 . A5k 55 7T DA R & Ik 1
b TRDULIN DL B e =05 2 0505 B, L B B 42
J7 1k A il A TR 2SR (Senderby et al, 20205
Geng et al, 2021; Espeholt et al, 2022; Liu et al,
2024),

A Wit 3T 9 41 A0 66 I 9 41 450 3 22 5 500 il 1Y
TR U IB Y] 25 B T T K 5 T 0 B 22 o) 4R
RW5E. H, Google i) MetNet & 51| TAFE % &
AT Z PR G O TE K IR T B .
MetNet 5 R 58 13 K5 O 152 1 19 T8 BE #2845 . %
1E TR = B |l T 38 (R0 6 T SO 30 sy DA B il I 55
Z FECIEAE S i A A UK 40 1Y) 32 53 B B3 K A
i (Senderby et al,2020; Espeholt et al,2022), #H
BEALGE 1 6 T A0 HE I 3T 0 bR R A6 A 18] 4k 1) B
B, MetNet R 2% (K T A RLCHHHR B 250 (e
Al 8~24 h) , IR T4 1 B[] 25 ] 43 B 25 45 5]
P53 2 min 1 km, WFFERIT . 2 90000 B8 1 51
AXFHE R 12 h DL PN 0 B R K R A 4 R 1 Y O
TET BT HR o SBT3k 25 AR B — T 3K AN HE T 1 AR
BB L 1~2 DBy R . B 1 B K T4« 5 X i
KA G A AT . B, Geng et al(2021) 14
TR 22 U S R R B A AR T LA
HLAY 6 h T, 3 R TN H T DX AR A R
HERA %, Liu et al(2024) F 85 35 18] 31 L DA H 2 07
E TR E S R B LT R M X T AR
RRUER) S I F0UHR A R T 1 3 R 3 R R ) 2 G RE
1. XELWFFE R 2 WL Gl o TR B A o R W
T A 2 S5 S A 50 - AT DA b S 9 X B R Y i
DA RE » Syl 55 TG 4% T4 42 A T S ) R 45
2025),

T 16 M 45 7 & ) 5 A4 o 0 A R ER R TR
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JE 2 2 Rl 22 U5 B0 LA SCHE A [R] Bk () RUBE 1 58 % i
RAT I AT T — RINHCR .

T ) O~1 h RUBE (% Il 3 100 i o SR B 22 0 00 ) -
TR RAE-ME R TR 7 B F R B 21 J& T Lightning-
Net BEBIAF % (Zhou et al,2020) ., BB L) £ 38 4 8
R A RO R R DA Z A A R HB S A
55 B A 22 ORI Sl A% O A« SR FH A R G 0 RN L
TR STHLE B 25 B AS 18] 25 74 R0 B (i) 5 A8 R AE , 2
X R I I Bl 22 TR A AR LR A G R E
e 1 h (N AR, ST ER, TR
T 1A S 25 3G i 1 6 X a0 A= 5 PR e e B B i)
A 5 AR T AR T 3k 4 PR — WL 5 b 7 RAE
PR FEL 341 1) i v 238 R 23 ) 67— S0k Oy SR AR, RE
T L B0 0 AE B 3R I M & X (Zhou et al, 2020;
Geng et al,2021), X —&5 R FT W EIGERE L,
225 S5 A6 UL A B A B Rk 1 h R A TE AR 1 ]
FAE B TR E 2 ) Al AR e R 15 B 4 . ik 1
B U 22 TR A R AL I S — B0 A R R
J i s O I 8 g I ) e B R 1) e e A e 4 Ik AT A
g & (Shi et al,2015; Wang et al,2017),

5 0~6 h [ R I T4 RUBE b o WL 26 36 14 K 2
fil kA5 5 SRR L0 3 ) T RS
KA, LightningNet-NWP i S 43 # #E 42 (J&
W 520225 JE) B ME S, 2021) K5 Z2 YR WL (IR H 2% 3 LB
KRR R TR 2@ i) 5 CMA-MESO # 2 fii4f

AL 9 R FUEAT UM R SR o 3 AR UL A 56 £
il fish K /R UE B S8 3 0 b RO ) ) SR 554
A BRI B IR T T 0~6 h P IR HL P& DX RS X U
T4 DX T4 1 B 28 — S0 A e e ok R BRI 4E . 202D
A 43 A 2 B CIE 3D, il G 22 15 0 I 5 A X 1 T 41
B L (SR Hh R A5 =X ) 79 41 A B 2y b DG i 52 25
TRANE X, LRG0 e R Ru, fa b B
$25 POD K FAR i A St B F L # % T
25 (7] 43 1L I 2 B4 5 o 37 B0 2 (A et el o K L 7 2
KIRGVKED » 2 V5 R G 5 38 45 b 2% fif . — {5 18 U
R A 5 ST R M P B A ) ) R A B S e e R
Al 55 (Liu et al, 2024 ; Geng et al,2021),

X 6~72 h i S I R R L O ) B
I {5 B IR 5, 288 2 RO BUE WS BOCh
FF. ML EZRIE R ORH T 2 RERER
TR B il 4 B R (R, 2022) , L ECMWEF-HRES
(RERE)H CMA-MESO 3 km (ff R BE) fy 232
5 R UR L R UL g 5 | B A A 2 119 445 A4 T XS [] R
JERRAE SR AT 5 AL A, I 45 & 1T B 2 2 R i AS )
Ze / XS A AT AR PR A ) R, SR AR B S
K FH i 6] 3 2 00 A 232 4 B b AR o O 2 4 IR 45 i
ERE AN SR TR, R B (R D,
A R RE AT ] B — B U T i 72 POD.FARETS,
TS S5 45 135 3% 00 T34 15 R 7 RS 0 5
ghE P T Tk e 4 25 10 S

%* 1 ECMWF-HRES.CMA-MESO 55 REHEEAREMEEHHURLE:
2023 & 8 RN HR K H#t BRI
Table 1 Comparison of the performance of the lightning forecasts by ECMWF-HRES and CMA-MESO and

the multi-model cross-scale integrated lightning forecasts in August 2023 (batch verification metrics)

1 R R R ) POD FAR Bias ETS TS

ECMWE(A 2%) 0. 364 0.705 1.232 0.134 0.195

CMA-MESO(A 2 +B ) 0.446 0.751 1.788 0.119 0.190

ECMWE(A 20+ 0. 445 0.678 1.383 0.166 0.229

CMA-MESO(A 2+B ) ’ ’ ) ) ’

ECMWF(A %)+

ECMWF+CMA-MESO 0.472 0.743 1.839 0.127 0.199
CMA-MESO(A %)

ECMWF-+CMA-MESO
0.433 0. 630 0.169 0.191 0. 249

e L PR T I

TE A6 S A BRTE g HBR 7 A2 b A SR AR IR R B LB R T a2

4 EME R A 5 Bk N (BL &
SR LID)

B U M 55 AR — B R R R A

HAZOAE T 5 PUAE I B A R 8 32 95 A 3 e o 2
JERS G 0@ B AR MR AE . JUHR 24 h =R
B 5 (RDAETE i 5 XU 0 AR 7 AR S i
AR B L AY) AL 2 2 7 JE A il e, 5 SR S48
T 7 IR AN 5 1 ME LARSE il 4 AR A5 5 B
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Fig. 3 Comparison of (a; —f,) CMA-MESO model forecast and (a, —f,) fusion model forecast with multi-source
observation data: the occurrence probability (colored) of severe convective winds with 6 h lead time initiated at

11:00 BT 30 July 2021 and the observed winds (barb) at the national meteorological stations at the corresponding time
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AR E DU T WAFTER TP gl EILH R TR
JE 27 2] i 3 T TR o [ B 3 0 s A 4] v
A 3l $2 BOH PR AL  BE 88 5K £h 3200 98 — Bk A
R MR T RE ) A PR A5 LA S 5 XU I 5 T4k
FEHEHT A FOAR B8 A2 50l 55 185 #7572 (Pradhan et al,
2018; Higa et al, 2021; Jiang et al, 2022; Wang L
et al, 2023 ;£ & 1645 ,2021) .

FREAR Ge WAl J7 125, IR T2 27 2 A & KUY i
FAEFZARRAELL T rm. (1) 5B s W4
(CNNO ] H 327 ) TLA = B 1B &5 % 5 SURRRE
X Dvorak £ R 85 28 55 ¢ AE 1) 3 BE MK, 76 T
JHE A2 67 0 5 WL AE 5t v 2 B HIE W A 2 (Pradhan et al,
2018;Higa et al,2021 ;4R A7 W& 45, 2021) 5 () JEH A
Z W 2% (RNN/LSTM/GRU) fil = 4 % F1 45 ¥ fig
AT £ IRV B R AL ) N S AL A S A 3B XUAE
fir S8R 91 5 BT 3 1) O[] 5 A A B 4R T B i
TR BE A Ak i AT B PE (Wang Loet al,
2023;Jiang et al,2022) 5 (3) 4= s 204 B A0 7 2 S HL
il A7 Bl T AERE A A Y B T T 5 A0 0 A5 o 112 S
PR RAE , I 10 1 fill 5 22 U5 B0 B4 i X OC B ) B 4
RAEURAE T B R 2858 &M R  B 3 )
#](Jiang et al,2022; Zhou et al,2022), 3T Eik
PeFh TBE 2 2] BB i 7 R T 5 5, 3] )
O\ B AR /5 RE TIUAR 4 PR B o Al 55 0 T v (B A
Aok th B e v e b 352 B CE b 5 P ] R A 0 A
2021 B HE4F . 2022)

Fil 58 5 XU A8 A 008 38 3K T IS A% 0 TR 95 B » I
AR SEBIRIE T st AR R TR AE T iR R AL T
A JaR. B TR 7 1H . Wang L et al (2023) fff
FH 1979—2021 4E PG AL K-V 7 52 & X% 42 Eic i
Zx RNN/LSTM/GRU, X P iy 52 A & 5 51 O i A
RIRTSEE 6~72 h i 5 RUG% 28 A2 il , Horb 6 by
12 h P X 8 R 22 3 ) B 2 20 17 km 44 km, 58
J¥ W4} J7 i » Pradhan et al(2018) 1 S5 {fi il CNN X
B XS B AT 2 WL 0 28 IR B T Al T A A A
B vt 2 i 7 1R B A ST s 3 — 25 i, Higa et al
Qo2 ¥ M 51 A VGG-16 M 45, S8l 1
& WU B 25 907 51 R 43 Bk 0 oE A 3R 0 4R T
1] 1] 2 V5 2 4E R 553, Jiang et al(2022) %% = 4E A 5%
75 G KN FBES A K 5 A R ] 4/ = 4 45 1
IR RE =Wk 8513 iR = SNy = N N W
7oA B TR R T, X SE AT A R R W] A5
AL 5 T IR 23 AR TG 3 o 45 2 4 T AR R 32

Ak B A AS {4 1Y o< B8 (Jiang et al,2022; Wang L
et al,2023),

X RCA AR S PR S a8 ) 0 X P A M
R ORI 2E ) WIRIRE o T N A 1 R R R i 5
Az BRI 7 T AILES 2 2T 3 3 LA KRB Bl ) bR
Chnifg 22 ik B R 2 W EME TR ES 57
R Z M A AR Wit T 32 24 ~48 h N4k
Bl kA U i eh R RS E M M TR S
{EL 48 B8 25 J7 1 o L& #& 1 (Chen et al, 2020), RI
H 9 J5 . Zhou et al(2022) & ResNet 5 I} JF 45
F 85 A 6 E Ay 50 48 7 BT 28 A FF AR R 2 4 A0 g
BRI ) TR B B TRk 24 h B XUE A K
RI B0 50 BE 77 5 e 26 465 780 A A 4y H 3 & 119 A % i
2 BB T S50k 55 BE T R T AT T WML &
WA (Zhou et al,2022) . BRI F , & KL A RI
FIIE A% Gl 55 b i 3 55 B8 Y T B R B3
Be” Z AR TR 4 2] R X WA AT B4t T T AR Uy
SERNSE A ) AR Ay R AT 18 5, 20215 B D HE 4
2022),

16 R BT ek 55 5 T A R ER
bRl R REZ, ERILPLCERNR
b 55 5 A5 TP g | AR BE 2 2] BB BT iR e U0 L &
R 58 R e e e R ) — IR R IR S B
B AR ITIE K BRI & W . B, T E
T A N ) T B8 2 S B R0 (SSD) R #5110 41040 = 1K
HEAT 22 RUBE Ry A1E 412 B0 36 4 A= 7. AR08 76 & 24
SR ARRE RG] & KR TE bR (B0 55, 2022) , B
J&i + 3 F ResNet T 19 & WU BB 2 s B AR LTS 2%
2R R 5328 5 R RURE A A6 2% XU i i i (1] 4D
M7 AR AR BEAR I 3K 25 SR H A (MAE 298 3.8 m »
s ', RMSE 254 5.0 m » s 1), i Bk 55 & W5
SR NG B T R OT L a8 18 o B i o T M R T e 55
2021), 7E 58 B 58 A8 WU 2 0 L @G LSTM iy Pkl
Bt e A R DL 5 KA i s ) 2 B 8 R R
BN B ROk 24 h 2 & RIS
2 (B 5) AR IS 7E & XS 00 08 B S8 3 A 45 Hh 1 1Y
A5 THE 2 (Zhou et al,2022), W abHf [ iR H
AL — TR e TRAE L I S AT IEZ W
—HMARIEA BT 5 T A KA
G AR Sl ) R A B TR, R R T
i 031 F B A e ) 3R T T 5 28 A9 Y R AR
PE B AT I 45, 20215 BDHESE ,2022)
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Fig. 4 Typhoon vortex auto-detection based on

SSD object detection method

5 BRI Bl Y IR AR 2 A R 1

wAe

DA 390 73 5 8 D A% 0 ) A% SR R IR =X
A5 2 204 75 4 3RORIT DX A A4 oMl 55 1) R A AH G & 5
JSAS 0 A /I T] 43 B 48 22 ) 18 BCA 5 £ HCTE 43 -
T oK RUBE X U 2 48 14 fih i 5 166 738 220 11 7 THD A AE S R
AR . B RS BORE A/ T UL Ak T 3k P
A AR B2 TR 2 ) BRI T DUAE RAEAS | 42
~J TR 5L 2 A] B e S B S NWP AT B RE
i R A HE PR RO K Sl B R AR . I AR T TSR L I
AR T A KR I A i L 2 R Rl AN i
RILFETTHC A& 5EEHEAEF T, B RS
gt T — SR AR A B AL e i AR
Fo-Ja b B-Fl A7k 55 85 4 (Ravuri et al, 20215
Sgnderby et al, 2020; Espeholt et al, 2022; Pathak
et al, 2022; Bi et al, 2023; Lam et al, 2023; Lang
et al,2024),

5.1 HIREIXEAY5E X it I 1L TR AR BY

e 3T 4 7 % 2R 5k 0~3 b 0 B 7K [0 3 A= A L %
JEEANE A Hh ey ik s B 3 20 i A% G2 006 T SME 5
HH B AR AR A5 T PR AR e 2R A IR, PR )
JE i Iy 2 5k U % 4R AT 2K A ConvLSTM #8375
LSTM T2 25 4y v L AR B30 4 A 4 0 4 L A UK

25 T BB 6% [) B 2 A0E 2 (1] 45 g R B TR AR TS T
FE T 38 WY 5 A i 3 i 4 7K S 4E (Shi et al,
2015) . BfiJ - PredRNN K H kit it PredRNN++
T8 3 I 25 302 T IR JRE v 0 2 A IS 41
o) B T AT L W 2 AR T T O A E )
(Wang et al,2017;2018), T ) F2) 3 | JE NI A iz
Sy AR AL, TrajGRU 51 A B2 F#AE 7Y 38 X
771 MotionRNN 3@ i 8 204k 11 I 43 ik 5k i) 32 2y
HRBEE T T YA S AR ) — B (Yao
et al,2023; Wu et al,2021), 5 — &ML e — kM
Z A A U-Net SRR 2 RO 46 A7 R 28 B
I B VA HE T L R A ROk 220 B R A I 5 T
BRI R SR/ A Ok A — e TR A
TEE M, AR B4 (Ronneberger et al,
2015;Ravuri et al,2021;Tran and Song,2019),

— A E B REK AU, DeepMind
) DGMR ##I L) GAN g iZ.0 il 3 % 2] 7 38 17 41
R ABE 238 53 A1 R A IR K B 5 AL B 3R T T 0~
2 h AN [ iR RE I K S O N 0L I B T L 7R R FE
AR 35 v DG T O U A/ 4 0[] S0 o R R 2 ST R
(Ravuri et al,2021), DGMR /9 5% Dy 2 B , 2 [v] i
ARAT Y WA A0S AN B 2 i AR 3R A L o
[A] )9 5 E 3% 7 (Ravuri et al, 2021; Marrocu and
Massidda,2020) . 7% 4 &8 A&, — LX) i 98
i HH TR B R RUE SR T TS Y [) I o A i e {473 W]
P55+ A2 LG AT AR BAR P T AT 1w S i 2R —
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Fig.5 Rapid intensification (RD probability predicted by the model

based on LSTM compared to the observed RI
(a) Typhoon Yagi, (b) Typhoon Krathon

AT W) B2 I 0 W A R R AT AU 2k
(Marrocu and Massidda, 2020; Hess and Boers,
2022) ,
e % B Re 55 v Oy T B KA G
G R 1E NowcastNet HEAL LA b HF ] 1
7 AT I BB AL K75 7 (Zhang et al,2023; 7K
4F,2025), HilH GAN P Beai g A A, < R
RO DLAS 3 [ S 8 2% (VAR B2 {8 1 S 10— e 1) 25 He
Bl AR O, I 8 o RO NWP 2 43k 1) 37 455 37 4
g FA AN 50 ROBE ) AP HE A i B AT AR
B IRAN T AR B Bl T 1 R B 35 221 1 A
AR R, e Ao, KRR BRSSO T km g3 BE

BT = TR (DEND #4325 8 5 1
DA AL 2 2% Hb T X35 B 7K T 35 19 ik & R 4 29 3et
(Zhang et al,2023), BT 2EZEMREIHAG R
SR ANIN G KB AT ALY 3 4 N 45 B 55
A E ) 0~3 /NI B 6 43 B T oK 9o PR R E A U
FIRE K T4 . AL T, XU 7R TR A 45 T4 s 44
19 TS P43 4 AL Tl 55 6 3 A0 ™ s 048 109 5
Ref K Tl 30k 1 AR5 52 00 A DG A B By o o X A [l
(=50 dB2) By iy 38 i 42 T (& 6) . X Ui W] LA [
PR CHE 3K B I S0 T 4T A5 7Y Ao A g B S 5 Cn
H A5 B0 AR B 2%, Al A% B8 U 3/ 33 52 1l 7 3 1]
e ) AR U IR AR R A A A Y B R L BRI
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Fig. 6 Threat score (TS) comparison for convective echo forecasts between

the Fenglei model and SWANS3. 0 optical flow extrapolation: verification of

nationwide 6 min precipitation forecast extrapolation in 2023

ek 3 91 4 ) A R0 3T 7R N U] S04 303 1) *“ E i
UK 5l 4 0 B A B B TE 0 2R BR BT B Bk
29 TR S J2 8 2 10 45 J7 T ATS 5 45 2% 9% 4k (Ravuri
et al,2021; Hess and Boers,2022) .

5.2 HEREHHEPHEKRMRER

12 0~15 d AR L B RUBE | B 9K gy A Y
B IE R T PR F2 4 M3 /T & J1 28 Transformer
A% TR0 P 2 ) 2 CGNIND Y

FourCastNet ¥ H & W B M H 17 5
Vision Transformer 25 &, ZEARIH & A FEH T
5L G R U 2 A A BR 24 h WAR L OIFRBLH E
J A B G BP GUHE B BE J) (Pathak et al, 2022).,
Pangu-Weather 3¢ FfJ 3D Swin-Transformer 347 &
B = 4 i) 25, B A 2 B R0 B R R G RN 25 R Ak
Patch #ix A M, 76 2 > 2K LS B ECMWE-
IFS By 4 1 8, I 0 35 G2 A 1 KR 4 043 BR
T ) A (Bi et al, 2023), & H K H VIR H B
“FuXi” 5 1 LAk Oy o i i fk 0~5.5~10 F
10~15 d FHAL, DIREMRIR 22 BB AL R 115 d
TR A2 7 4 3 s T A% G2 B 5 ¥ {H (Chen et al,
2023¢), b N AEICE % A “FengWu” 5 £ i
Tt Z AT G 0 R RN Il 0 I 2 R e 0 B O S
4 1R v 0 A AT AL e i 24 10. 75 d
(Chen et al,2023a;2023b),

1 GNN J7[a], UL GraphCast iy 4R 38 #y 155 51 %5
U)X A Bl Sk Ay LY 3 e i 3 A A A R A
YERT . FFR H B 1A 1 22 28 4 38 0 =X S Ok R 36
TR R M A0 L [R]ISRE 10 d 4 BR TR 60 H 33 ) s

G2 E Y (Lam et al,2023), ECMWEF # 1 i
NILERET R & g8 ATFS 3E— 5k FI“GNN i fith-
Swin-Transformer-GNN fif i) ” Z8 #) 52 P #5 R {5
B R BCRA AR B — 0P 1 8] B i 2 R T
T A% 3 I 45 4 T BREE (Lang et al,2024) , 1R
KR GraphDOP #8281 WL B 5K 77 5« DLAR %
TR I AR BB T B G 2 T /B 0
T St 7 B SBT3 A 3 BRI
IR 5 d RERTUR . R T [ AL A
Ty Z AN 265 = Fiil % (Alexe et al.2024),

TN 55 AR R T7 1 E TR ORI
R 2B T IATE 7 4 BRI 3K 2l R AU A A5 A
W KAWL R BE R A TR B2 27 ) Bty b, X
5 2 ROE s [0 8 5% (Transitor B ¥ 2 RE
A AR 3R AR 4E B R S 5 7 IR AE 400 % R rh
Jit fIN RE i < PE A — SO A LA GR AR AT A
I S A H A B R HIORN 2o B2 T 3 55 1) (Chen
et al,2023c;Lang et al,2024), [RE}, “RX W74 H
TR Y 2 I RO B A SR L A 1
A7 o R B0 R S R AT AR . T ERAS K
WA BT R I I 25 R0 GPU 4 BER 3R 17315, <K
WAL 3 A AR K 15 dL & 6 h.25 km 4 BE
AL, 69 DRI R BRAR TR L IF 2l
FACHEAI . A0 R 7R 2024 SRR N liE 2R
A R v R TR A LRI R RS E 9 1] VLR Ml X
149 3 7K T 7 O DR 28 8 0 T, i ECMWE-TF'S #
EEVET R T TUR b B S 2 o I VA T
(K7,
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Fig. 7 Comparison of the (a, b) 36 h, (¢, d) 84 h and (e, ) 144 h forecasts for 24 h accumulated precipitation by

(a, ¢, e) FengQing model and (b, d, {) ECMWEF-IFS model during a torrential rain event in

the middle and lower reaches of the Yangtze River on 29 June 2024

6 ZgSitie

TR 2 > HORE e 3l [ P9 A7 iR R ARl
BORMR Z P Ji . o 2 8 55 DA 30 38 v 39 )
A W ROBE , 9 7F f 22 1T 1E (Rasp and Lerch,
2018;Han et al,2021) . J& N J& (Vandal et al,2017;
Leinonen et al,2021;Price and Rasp,2022) . Z i Fh
4 (Sgnderby et al,2020; Espeholt et al,2022) , %% %
PR IR CH O HESE 20225 B 37 1655, 2021 5 Zhou
et al,2022) AL 45 3K 3 H 4 (Pathak et al.2022; Bi
et al, 2023; Lam et al, 2023; Chen et al, 2023a;
2023b; 2023c;Lang et al,2024) ZE LRI G T

TR 51 G, ) o 22 T A A g 22 T
ok AR R TR A0 Ak i 7K S5 AL | Rl 22 R RN SE 4K I S
A 0 R RE A B T B TR BE ) . DL S
Jee H 5 B AR 5 BB 24 1 00 TR B 4 BR AT A A
S, BIRACRMESR BRI TR 2 IR — A
TRREHAR I W A B 5 o PR B e b
B Ol 55 SR — B R r TR TR A R
S5 Ak B -5 7 B ] 48 J7 28 (Craven et al, 20205
Roberts et al,2023; Vannitsem et al,2021),

SR o 2 7 R B2 25 ~J TR 50 R S04 10 1o T AT
Tl — R AP ER AR 0, (1) 4 A 55 0 Fn B 704 7%
BHI RIS R . T 2RI 5 75 20 i i )
€Y ER e S v S N Sl A U PURI
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P53 AT BORMRE XS #i 2D BR ) 7R RDZ AL RE Ty . 1R T
TE 3 A S S0 O AR A A ] A A 0 Y A
75 XA FEIGREA IR R DA ST 5 > 5T
B L T 455 B X B A7 =R R 19 2 2 BB /1 (Overpeck
et al,2011; Hamill and Scheuerer,2018; Vannitsem
et al,2021), (2) B85 B — Bk 5 ] i R
TR °7 > BRI Sy — T 30408 9K 8 O 125, G oA S AL 2
SEA%  HMELIR W) B 5 B — R B R T AT A DR R S R
EEAR T R 2 R g it e AL 375 2% (i MOS)
WIFIERE Ty FEALIE . 5 HE3A SR AlHE i) ) A i
P S B 55 S Y A4 B TS Y 1) 8 e A AL 55 10 ]
R RTE . s ALY R CAnsFE D AU
BT Ad i AT A W B LA (Hess and Boers, 20225
Lang et al, 2024; Schulz and Lerch,2022), ¥ & —
Tl 280 1 TE D Ak T B W L 24 S 2 [ L B A5 7E I 2k
RS CRE ) J2 1 I S AP AR A AN L I 10 2 i TR 11
Fa g PEFNIZALRE ST o [RIRE W] fR R LR (i 2
AR B T AN A ATE TR, HAE T2
Wr” A DA B 50 T e DR A Y R R
J PR AT DA Sy A O3 TR AT AT 45 AR o B
D 18 T A1 25 2R I 4R it — b ) DB A A DT AR AL AE
AT AF AT IR B R . (3 W i R AR A A R
PR TR AT S M o ER T S S AE D S B R o
FE AL/ S BB 25 B Al 16] T (AR 28 5 3O B g 95 J3E
(TIN5 o PR R X — [R) R SR T X e AR A
R AN 2 /400 2% VRO 1 0 5 A U AR R HOR
B AR S M s R AR G BUR P (Hess and Boers,
2022 ;Marrocu and Massidda,2020), (4) & R B i
1) — Bk . AN TR RUBE 0 T B 2 2] AR R e A% B A
T A B AR AR A E S A L. R
e ml iy 22 ROBE I & VI 25 3 2 AT 55 2% 2T HE B, af
A [ 1 Tr) R84 [ 1) 187 32 R 3 2o 3 (Pathak
et al,2022; Chen et al, 2023c; Lang et al, 2024),
GO TR A SRR AR 2 22 2 A 55
IO H s SR Y PR R . R AR A B Y B AR
P ABAE YN R B B 7 s R T Bt i U S
Oy PR AR n] G R BT AL R AR
SEHOR TR 4R AL RLRE i s 4 HE 5 9 A ] GPU/TPU
AIFAT I RAR TR R IR R I o > BT ALl
o A5 Y B T B4 3 L T G o A K 58 4
(Pathak et al, 2022; Bi et al, 2023; Lam et al,
2023),

JiE B R Ok L TR BB 2~ T BE 1 50 4 RE T L 5

HHEMAA ERRE SR M. (DR
A WO 2 4% 5 (8 A5 =X 4 2 ORORUBE 3l ) - fly
YW 3, 45 6 TR B 2 20 ) Jm Hb 4t 1 0 2 U5 B
HURE & R g BRARE AR - BOHE IR 3l B Rl TR IR
LB 512N 0 AR O B 4 IR R RS
(Price and Rasp,2022;Lam et al,2023), (2) 5
HOBHR T 5 W B Ay AR O R AR SY R 2R
R B R BT A | RB o < 1E S AR PR A5 R in e AT A R
PEMFSE (Lang et al, 2024 ; Schulz and Lerch,2022) .
(3) J A SC B R RN i 478 < BE X B PR L B K
SEEANLF TR BE 7 ) TR O SR 5 U7 i AR
2 T BT SR HT B (Zhou et al.2022; Liu et al.2024) ,
(D58 R AMLAC TR  FF ] 28 iy AT 5 )
IR R GE , SCHE AR O PR A AN R AT i St )
M 5 0] 21 (Craven et al, 2020; Roberts et al,
2023) . (5) ST IFTROVE AL B vl i B 8 — 1T A F &
55T OB BE A #E 2% 73 b 5 R 22 ki (Vannit-
sem et al,2021;Schulz and Lerch,2022),

L5 B RA TR A HORTE BT 8 RE Tl b iy
JO7 FH R R o B L A A B U 0 i 5 4
oo DU T 1l A A R0 RN R S TR 2 o) A Sk
— 25 G R AT, A B s THUARORS VB | E R N E
PEAF B4R TE B ALK~ 35 07 T R 5 RAEHT . R
SR )R RE T A AR 2 A B B 0 KK 4 B Bl e R
A BT BRI TR 2 o) 0 5 BB 0 N T R
R 20 9 T m) g A4 T A R ) R il 4 AL
B e BT | S I A ) JC AR R R RN 55
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