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深度学习在数字智能天气预报中的应用
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提　要：近年来，数字智能天气预报业务快速发展，其传统技术方法在非线性误差订正、时空降尺度、多源数据融合等方面存

在局限。深度学习技术凭借非线性拟合和模式识别能力逐步被引入数字智能预报流程。本文阐述了深度学习技术在数值模

式偏差订正、高分辨率降尺度、多源异构数据融合、灾害性天气预报（以台风为例）和数据驱动天气预报五个方面的代表性技

术成果。研究表明：深度学习模型可显著提高预报精度，包括学习预报与观测之间复杂的非线性关系以校正系统偏差，利用

生成对抗网络细化降水结构以提升强降水预报技巧，融合雷达、卫星和模式数据以延长强对流临近预报时效，以及构建数据

驱动模型实现以秒级速度产生与数值模式相当精度的预报。例如，“风雷”模型示范了生成式方法在强对流短时临近预报中

的优势（对≥５０ｄＢｚ回波命中率提高约３０％），“风清”模型实现了１５ｄ全球预报业务准入和应用。深度学习的引入正推动智

能预报产品在时空分辨率、不确定度定量化等方面取得进展。与此同时，文章也指出当前深度学习应用在样本体量、可解释

性、极端事件预报、跨尺度一致性和计算成本等方面仍面临挑战，在未来研究中需要予以关注和改进。展望未来，应加强大样

本／再预报资料建设，融合物理先验约束以提高模型可解释性与稳定性，针对极端天气引入尾部加权训练等技术以增强预报

可靠度，设计跨尺度协同的模型框架以确保不同时间和空间尺度预报的一致性，并优化模型训练和推理的效率以满足业务时

效要求。深度学习与数值模式的有机结合、优势互补，将成为推动数字智能预报进一步发展的重要方向。

关键词：深度学习，数字智能预报，偏差订正，降尺度，多源数据融合，台风预报，数据驱动预报
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引　言

近年来，卫星、雷达与地面站网等气象观测手段

不断完善，同时多中心、多尺度与集合数值模式业务

化快速迭代，使预报业务可获得覆盖多时空尺度的

海量气象数据信息。与之对应，社会公众、防灾减

灾、能源交通、重大活动等应用场景，对分钟到月尺

度，从局地到区域乃至全球的一体化数字化预报提

出了更高的时空分辨率，一致性与不确定性表征等

要求。传统预报业务链条中，数值模式原始结果与

用户可直接使用的数字预报产品之间存在着“最后

一公里”的质量与形态差距。数字智能预报（以统计

后处理为核心）正是面向该差距的重要一环，即通过

对多源模式与观测信息进行偏差订正、时间插值、空

间降尺度、多源信息集成、不确定性定量化及灾害性

天气信息提取等综合处理，形成统一、完整、高精度

的数字化预报产品，从而在预报制作与应用需求之

间建立稳定的桥梁（Ｃｒａｖｅｎｅｔａｌ，２０２０；Ｒｏｂｅｒｔｓｅｔ

ａｌ，２０２３；Ｖａｎｎｉｔｓｅｍｅｔａｌ，２０２１）。

国际上，已有多个国家气象部门形成系统化的

数字智能预报业务框架。例如，美国 ＮＢＭ（Ｎａｔｉｏｎ

ａｌＢｌｅｎｄｏｆＭｏｄｅｌｓ）以多模式融合与统计订正为主

线（Ｈａｍｉｌｌｅｔａｌ，２０１７；ＨａｍｉｌｌａｎｄＳｃｈｅｕｅｒｅｒ，２０１８；

Ｃｒａｖｅｎｅｔａｌ，２０２０）；英国ＩＭＰＲＯＶＥＲ（Ｉｎｔｅｇｒａｔｅｄ

ＭｏｄｅｌＰｏｓｔＰｒｏｃｅｓｓｉｎｇａｎｄＶＥＲｉｆｉｃａｔｉｏｎ）构建了模

块化的概率后处理流程（Ｒｏｂｅｒｔｓｅｔａｌ，２０２３；Ｇｎｅｉｔｉｎｇ

ｅｔａｌ，２００５）；澳大利亚 ＡＤＦＤ （ＡｕｓｔｒａｌｉａｎＤｉｇｉｔａｌ

ＦｏｒｅｃａｓｔＤａｔａｂａｓｅ）和奥地利 ＳＡＰＨＩＲ （Ｓｅａｍｌｅｓｓ

ＰｒｏｂａｂｉｌｉｓｔｉｃＡｎａｌｙｓｉｓａｎｄＰｒｅｄｉｃｔｉｏｎｉｎＨｉｇｈＲｅｓ

ｏｌｕｔｉｏｎ）（Ｂｒｉｄｇｅ，２０１５；Ｄａｂｅｒｎｉｇｅｔａｌ，２０１７；２０２０）

则分别侧重于客观共识预报和高分辨率概率产品的

生成。这些体系共同推动了预报产品向高精度、概

率化和无缝隙方向发展。我国自２０１４年起系统推

进无缝隙精细化网格预报技术研发与业务建设，形

成了覆盖多尺度与多要素的智能化指导产品体系，

为后续以统计后处理为核心的数字智能预报体系奠

定了基础（金荣花等，２０１９）。总体看，业务主流统计

后处理技术包括传统模式输出统计订正（ＭＯＳ）

（ＧｌａｈｎａｎｄＬｏｗｒｙ，１９７２）、集 合 订 正 （Ｇｎｅｉｔｉｎｇ

ｅｔａｌ，２００５）、Ｋａｌｍａｎ 滤波 时 变 订 正 （Ｈｏｍｌｅｉｄ，

１９９５）与分布映射／频率匹配等方法（Ｃａｎｎｏｎｅｔａｌ，

２０１５；ＨａｍｉｌｌａｎｄＳｃｈｅｕｅｒｅｒ，２０１８）。这些方法在大

样本跨域泛化、强非线性误差订正、千米级空间降尺

度与多源异构资料协同等方面仍面临能力与效率的

局限（Ｖａｎｎｉｔｓｅｍｅｔａｌ，２０２１；ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，２０２２；

杨绚等，２０２２）。

在此背景下，深度学习技术被逐步引入统计后

处理与智能网格预报流程。其优势主要体现在：一

是能够学习预报与观测之间的非线性映射，例如采

用分布回归或分位回归方式直接学习，从而改进概

率刻画与极端尾部校准（ＲａｓｐａｎｄＬｅｒｃｈ，２０１８；

ＨｅｓｓａｎｄＢｏｅｒｓ，２０２２）；二是利用卷积与生成式模

型实现从粗分辨率到细分辨率的空间超分辨率／降
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尺度，增强地形与下垫面强约束区域的空间细节还

原（Ｖａｎｄａｌｅｔａｌ，２０１７；Ｓｔｅｎｇｅｌｅｔａｌ，２０２０；Ｌｅｉｎｏｎｅｎ

ｅｔａｌ，２０２１；ＰｒｉｃｅａｎｄＲａｓｐ，２０２２）；三是融合多源雷

达／卫星／站网资料与模式引导，提升灾害性天气的

识别与短时临近概率预报能力（Ｓｎｄｅｒｂｙｅｔａｌ，

２０２０；Ｅｓｐｅｈｏｌｔｅｔａｌ，２０２２；Ｇｅｎｇｅｔａｌ，２０２１；Ｌｉｕ

ｅｔａｌ，２０２４；周康辉等，２０２１）；四是引入数据直接驱

动预报框架，如近年来以图网络与三维卷积为代表

的数据驱动中长期预报模型显示出与传统数值天气

预报（ＮＷＰ）竞争的基线能力，为模式、后处理、融合

的新型协同流程提供了新的基础条件（Ｐａｔｈａｋ

ｅｔａｌ，２０２２；Ｂｉｅｔａｌ，２０２３；Ｃｈｅｎｅｔａｌ，２０２３ａ；Ｌａｍ

ｅｔａｌ，２０２３；Ｌａｎｇｅｔａｌ，２０２４）。国内已有研究系统

综述梳理了深度学习在智能网格预报中的应用进

展、关键问题与评估基准（杨绚等，２０２２；代刊等，

２０１８），为业务化引入提供了参考。

２０２４年我国国家气象中心发布的“智能数字天

气预报系统Ｖ２．０”在原有基础上进行了升级，全球

产品空间分辨率由１０ｋｍ提升至５ｋｍ、中国区域产

品分辨率由５ｋｍ提升至１ｋｍ，时间分辨率方面实

现３小时内逐１０分钟更新、３６小时内逐１小时更

新，构建了０～１５ｄ新一代无缝隙智能数字预报指

导产品体系（金荣花等，２０２５）。这一系统既是传统

统计后处理的延伸，又为深度学习技术提供了更大

的发挥空间。本文将以数字智能预报业务的实际需

求为导向，重点讨论深度学习技术在五个方面的代

表性实践与问题：（１）数值模式预报偏差的订正，（２）

从中或粗分辨率到１ｋｍ级的空间降尺度，（３）多源

异构气象数据的联合表征与融合，（４）灾害性天气监

测、预报、预警中的信息智能提取，（５）数据驱动的天

气预报模型带来的新途径。文末将围绕样本体量与

再预报构建、可解释性与物理一致性约束、极端事件

与分布尾部的稳健性、跨时空尺度的一致性与计算

成本等核心挑战提出讨论。

１　数值模式预报的偏差订正应用

数值天气预报的预报误差具有明显的系统性与

随机性，其根源可归结为三类：一是初始场的不确定

性，受限于观测误差、资料稀疏与分析同化方法，导

致对真实大气状态的刻画偏离；二是模式本身的表

述误差，包括有限网格分辨率引起的离散化误差与

次网格物理过程（对流、湍流、边界层、云微物理等）

参数化的不完备与不稳定；三是外边界与下垫面强

迫 （海温、土壤湿度、植被与地形等）的系统偏差与

时变漂移。这些因素叠加，使模式直接输出在多时

效、跨区域上呈现稳定的、随机的偏差形态，不经统

计后处理将直接削弱绝对量的可用性与极端事件的

可检出性（Ｖａｎｎｉｔｓｅｍｅｔａｌ，２０２１；ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，

２０２２；朱跃建等，２０２５）。因此，面向业务的客观偏差

订正不仅是“最后一公里”的技术环节，更是保证无

缝一体化数字预报稳定性的必要条件（Ｃｒａｖｅｎ

ｅｔａｌ，２０２０；Ｒｏｂｅｒｔｓｅｔａｌ，２０２３）。

深度学习为偏差订正提供了有别于传统线性统

计和经验方法的新路径。首先，深度学习可学习预

报与观测之间的非线性映射，突破线性回归、集合订

正等方法对分布形态与连接函数的假设（Ｒａｓｐａｎｄ

Ｌｅｒｃｈ，２０１８；Ｈａｎｅｔａｌ，２０２１）。其次，卷积神经网

络、Ｔｒａｎｓｆｏｒｍｅｒ和图神经网络等网络结构能够显

式利用空间邻近性和跨变量耦合信息，输出空间连

贯、物理一致的订正场，避免逐点订正导致的碎片化

与失 相 干 （Ｒｏｎｎｅｂｅｒｇｅｒｅｔａｌ，２０１５；Ｂｏｕａｌｌèｇｕｅ

ｅｔａｌ，２０２４；Ｗｕｅｔａｌ，２０２４）。第三，深度学习天然适

配多源高维输入，可同时摄取格点预报、地形静态因

子、再分析场以及卫星／雷达导出量等，在高维特征

空间中自动提取最能解释偏差的表征；配合迁移或

在线学习，可随模式升级或气候态缓变自适应更新

偏差模型 （ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，２０２２；Ｙａｎｇｅｔａｌ，

２０２３）。最后，训练完成后的深度学习模型推理成本

低、吞吐量高，可在大范围、短更新周期下稳定运行，

满足业务时效要求（Ｐａｔｈａｋｅｔａｌ，２０２２；Ｂｉｅｔａｌ，

２０２３）。这些优势表明，深度学习是将非线性、时空

一致、多源融合、高效推理统一到一个偏差订正框架

的有力手段。

近年的代表性研究在多种神经网络范式中验证

了上述观点，这些研究往往基于特定业务目标选择

合适的网络结构。以卷积神经网络（ＣＮＮ）为例，其

核心优势在于通过卷积核有效捕捉数据的空间局部

相关性，这使其特别适用于订正具有空间连续性的

气象场。Ｈａｎｅｔａｌ（２０２１）采 用 ＵＮｅｔ结 构对

ＥＣＭＷＦ多要素场进行“图像到图像”式订正，系统

降低了温度、湿度和１０ｍ风的均方根误差（ＲＭＳＥ）

和平均绝对误差（ＭＡＥ），并显著改进传统方法难以

处理的风向偏差，显示ＣＮＮ能从邻域与多变量耦

合中学习非线性误差模式。针对极端降水订正这一

目标，ＨｅｓｓａｎｄＢｏｅｒｓ（２０２２）通过对损失函数的尾
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部加权，使２４ｈ暴雨量级分布与观测更一致，极端

事件的预报技巧得到实质提升，体现出“面向业务目

标的损失定制”对尾部分布校准的关键作用。在

Ｔｒａｎｓｆｏｒｍｅｒ方面，其自注意力机制擅长建模长距

离依赖关系，因此被用于处理大范围、全局性的集合

预报校正问题。Ｂｏｕａｌｌèｇｕｅｅｔａｌ（２０２４）提出层次化

集合Ｔｒａｎｓｆｏｒｍｅｒ（ＰｏＥＴ），对集合成员逐一纠偏，

同时保持成员间的空间相关性，使全球２ｍ气温的

连续分级概率评分（ＣＲＰＳ）显著提升，为概率校正提

供了新途径。在图神经网络（ＧＮＮ）方面，其优势在

于能灵活处理不规则的站点数据和复杂的地理邻接

关系，这使其在地形影响显著的区域表现突出。Ｗｕ

ｅｔａｌ（２０２４）通过因子ＧＮＮ与分层空间ＧＮＮ自适

应建模局地多要素相关和动态空间依赖，在真实数

据集中相对最佳基线风速 ＲＭＳＥ 平均降低约

４．８％，证明在不规则邻接和地形复杂区域背景下，

图结构对于学习误差偏差模式的有效性。综合而

言，深度学习模型凭借目标导向的网络结构设计与

损失函数定制，兼顾总体误差收敛与尾部校准，正在

将确定性偏差订正与概率可靠性逐步统一（Ｒａｓｐ

ａｎｄＬｅｒｃｈ，２０１８；ＨｅｓｓａｎｄＢｏｅｒｓ，２０２２；Ｂｏｕａｌｌèｇｕｅ

ｅｔａｌ，２０２４）。

在国家级智能数字预报业务实践中，Ｙａｎｇｅｔａｌ

（２０２３）构建了基于ＵＮｅｔ的１０ｍ阵风偏差订正模

型，并提出包含漏报率（ＭＲ）约束的 ＭＡＥ＿ＭＲ损

失函数，缓解因强风样本稀缺、误差分布偏态所导致

的欠校正或负校正难点。与ＥＣＭＷＦＨＲＥＳ原始预

报相比，引入ＭＲ约束的ＵＮｅｔ模型在２４～１６８ｈ各

预报时效上的风速ＭＡＥ平均降低了２２．８％；在≥６

级大风情形下预报准确率提升了６．４％，即使在５～

６级风速区间仍保持显著增益，明显优于采用传统

损失函数（如 ＭＡＥ、均方误差 ＭＳＥ、加权平均绝对

误差 ＷＭＡＥ）的同构神经网络和随机森林、卡尔曼

滤波等方法（杨绚等，２０２２；孙全德等，２０１９；Ｈｏｍｌｅｉｄ，

１９９５）。验证结果显示（图１），融合 ＭＲ指标约束

后，模型的空报率和漏报率组合最优：引入具有明确

业务意义的诊断量 ＭＲ，能够“拉升”强风段的订正

强度，同时维持整体误差的系统收敛。这项研究表

明，将物理量诊断指标融入损失函数，是面向极端事

件和关键阈值的有效路径；配合多源因子融合和时

空结构约束的网络设计，可兼顾方法的普适性与业

务实用性。

　　综上所述，深度学习偏差订正的关键在于以业

务目标为牵引。通过网络结构选择（如 ＣＮＮ／

Ｔｒａｎｓｆｏｒｍｅｒ／ＧＮＮ）、损失函数定制（尾部加权、阈

值／比率类指标）、约束融合（守恒和物理一致性）以

及自适应策略（迁移／在线学习），在多时效、跨区域、

跨要素上实现误差收敛、尾部校准、空间一致、概率

可靠统一，从而在单一框架下同时服务于确定性预

报和概率预报业务需求（ＲａｓｐａｎｄＬｅｒｃｈ，２０１８；Ｈｅｓｓ

ａｎｄＢｏｅｒｓ，２０２２；Ｂｏｕａｌｌèｇｕｅｅｔａｌ，２０２４；Ｖａｎｎｉｔｓｅｍ

ｅｔａｌ，２０２１）。

２　从粗分辨率到高分辨率的降尺度应

用

　　从粗分辨率到高分辨率网格降尺度的核心目标

是在保持物理一致性与统计稳定性的前提下，将数值

模式预报在１０１ｋｍ量级上的场形态转换为１００ｋｍ

量级甚至更小量级的细致结构，并尽可能提升极端

事件和局地地形效应的刻画能力（Ｃａｎｎｏｎｅｔａｌ，

２０１５；Ｖａｎｄａｌｅｔａｌ，２０１７；Ｓｔｅｎｇｅｌｅｔａｌ，２０２０）。传统

的双线性插值或基于分布映射的统计订正方法可在

均值偏差上取得一定改进，但在重建空间细节、再现

降水的间歇性和极端尾部特征方面存在先天不足，

且难以在大区域上保持协同一致的空间相关性

（Ｃａｎｎｏｎｅｔａｌ，２０１５；Ｂａ珘ｎｏＭｅｄｉｎａｅｔａｌ，２０２０；Ｌｅｇａｓａ

ｅｔａｌ，２０２３）。近年来，深度学习将计算机视觉中的

超分辨率和生成技术引入气象降尺度，在校正与细

化这两类目标上均显示出显著优势，成为连接粗分

辨率动力信息与高分辨率地面约束的关键纽带

（Ｖａｎｄａｌｅｔａｌ，２０１７；Ｌｅｉｎｏｎｅｎｅｔａｌ，２０２１；Ｐｒｉｃｅａｎｄ

Ｒａｓｐ，２０２２）。

深度学习降尺度通常以卷积神经网络为骨干，

通过端到端的映射学习高、低分辨率场之间的非线

性关系；若同时需要生成细节又保持整体分布特性，

则可引入生成对抗网络（ＧＡＮ）、感知损失和极端偏

差权重等策略，在不牺牲整体误差的前提下显著提

高图像纹理细节和极端值的可分辨性（Ｌｅｉｎｏｎｅｎ

ｅｔａｌ，２０２１；Ｓｔｅｎｇｅｌｅｔａｌ，２０２０；ＰｒｉｃｅａｎｄＲａｓｐ，

２０２２）。相比以 ＭＳＥ／ＭＡＥ优化为主的回归型降尺

度，生成式模型在还原降水空间结构、时空不连续性

和高频谱能量方面更接近观测，尤其适合处理降水

这类高度非高斯分布的变量；但ＧＡＮ也更容易出

现伪影、分布错配和训练不稳定等问题，需要施加适

当的物理约束并建立健全的评估体系（Ｌｅｉｎｏｎｅｎ
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图１　ＥＣＭＷＦＨＲＥＳ模式预报（蓝色）与采用不同损失函数的订正预报（橙色、绿色）结果

比较：２４～１６８ｈ时效的１０ｍ阵风预报（符号）空报率与漏报率

Ｆｉｇ．１　Ｃｏｍｐａｒｉｓｏｎｏｆｆａｌｓｅａｌａｒｍｒａｔｉｏａｎｄｍｉｓｓｒａｔｉｏｏｆ１０ｍｇｕｓｔｆｏｒｅｃａｓｔｓｗｉｔｈ２４－１６８ｈｌｅａｄｔｉｍｅ

ｆｒｏｍｔｈｅｏｒｉｇｉｎａｌＥＣＭＷＦＨＲＥＳｆｏｒｅｃａｓｔ（ｂｌｕｅ），ｔｈｅＵＮｅｔｃｏｒｒｅｃｔｅｄｆｏｒｅｃａｓｔｗｉｔｈ

ＭＡＥｌｏｓｓ（ｏｒａｎｇｅ）ａｎｄｔｈｅＵＮｅｔｃｏｒｒｅｃｔｅｄｆｏｒｅｃａｓｔｗｉｔｈＭＡＥ＿ＭＲｌｏｓｓ（ｇｒｅｅｎ）

ｅｔａｌ，２０２１；Ｈａｒｒｉｓｅｔａｌ，２０２２；ＷａｎｇＦｅｔａｌ，２０２３）。

针对空间降尺度领域，近年的深度学习应用研究工

作可概括为三类：（１）以深度统计降尺度技术

（ＤｅｅｐＳＤ）为代表的ＣＮＮ超分辨，强调从粗网格到

细网格的直接映射，在再现降水极端值和空间结构

方面相较线性／广义线性模型具有优势（Ｖａｎｄａｌ

ｅｔａｌ，２０１７；Ｂａ珘ｎｏＭｅｄｉｎａｅｔａｌ，２０２０）；（２）对抗式超

分辨，将ＧＡＮ用于气候／天气场的细化和精细结构

重建，显著提升预报高频功率谱、空间连通性和降水

间歇性等特征的描述能力（Ｌｅｉｎｏｎｅｎｅｔａｌ，２０２１；

Ｓｔｅｎｇｅｌｅｔａｌ，２０２０；Ｈａｒｒｉｓｅｔａｌ，２０２２）；（３）偏差校

正细化一体化的生成式降尺度，例如 Ｃｏｒｒｅｃｔｏｒ

ＧＡＮ方法可对全球集合预报进行偏差订正并生成

较为可信的高分辨率降水集合预报，其极端阈值的

ＢｒｉｅｒＳｃｏｒｅ和可靠度已接近区域对流尺度模式的效

果（ＰｒｉｃｅａｎｄＲａｓｐ，２０２２；Ｌｅｉｎｏｎｅｎｅｔａｌ，２０２１）。又

如Ｈｅｓｓｅｔａｌ（２０２３）和 ＷａｎｇＦｅｔａｌ（２０２３）在小时

级降水场的超分辨率研究中引入定制损失、多任务

分类和物理协变量后均取得普遍增益。独立的评估

研究进一步指出，在完美预报框架下，ＣＮＮ 与后验

随机森林等方法在跨区域可迁移性和降水分布保持

方面各有优劣，提示业务上应采取方法组合结合多

区域再训练的策略（Ｂａ珘ｎｏＭｅｄｉｎａｅｔａｌ，２０２０；Ｌｅｇａｓａ

ｅｔａｌ，２０２３）。

在国家级数字智能预报业务中，已开展了基于

条件生成对抗网络（ＣｏｎｄｉｔｉｏｎａｌＧＡＮ）的１ｋｍ高分

辨率降水短时临近预报技术研发。该方法借鉴了

ＰｒｉｃｅａｎｄＲａｓｐ（２０２２）提出的ＣｏｒｒｅｃｔｏｒＧＡＮ架构：
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首先利用生成网络对数值模式的低分辨率降水预报

进行偏差校正和下采样细节重建，然后通过判别网

络评估生成降水的真实性，从而在对抗训练中逐步

提高降水细节的准确度。具体实现上，以模式低分

辨率降水预报为基础输入，融合多源大尺度气象要

素（如５００ｈＰａ高度场、湿度、风场等）作为条件约

束，以保证细尺度降水生成的物理一致性（Ｌｅｉｎｏｎｅｎ

ｅｔａｌ，２０２１；Ｈａｒｒｉｓｅｔａｌ，２０２２）。在损失函数方面，

引入了对极端降水偏差惩罚的自定义损失和感知损

失等，平衡生成图像的像素误差与整体结构合理性

（Ｈａｒｒｉｓｅｔａｌ，２０２２；ＷａｎｇＦｅｔａｌ，２０２３）。训练过程

中采用逐级递进策略：先训练偏差校正子网络，使其

学会将模式预报校正为平均更接近观测的场；再逐

步提高分辨率，训练细节生成子网络填充１ｋｍ格

点降水的空间细节。这种分步策略有效提升了模型

训练的稳定性，避免了一次性直接超分辨率带来

的发散问题（Ｌｅｉｎｏｎｅｎｅｔａｌ，２０２１）。个例检验表

明（图２），在２０２４年梅雨季的一次强降水过程中，

注：右上角数字为≥５０ｍｍ降水的ＴＳ评分。

图２　ＥＣＭＷＦ模式、ＣｏｒｒｅｃｔｏｒＧＡＮ降尺度产品的预报与实况对比：

２０２４年７月１日强降水过程的３ｈ累计降水量

Ｆｉｇ．２　ＣｏｍｐａｒｉｓｏｎｏｆＥＣＭＷＦｍｏｄｅｌｆｏｒｅｃａｓｔａｎｄＣｏｒｒｅｃｔｏｒＧＡＮｄｏｗｎｓｃａｌｅｄｆｏｒｅｃａｓｔｗｉｔｈ

ｏｂｓｅｒｖａｔｉｏｎ：３ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｄｕｒｉｎｇｔｈｅｈｅａｖｙｒａｉｎｆａｌｌｅｖｅｎｔｏｎ１Ｊｕｌｙ２０２４
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ＣｏｒｒｅｃｔｏｒＧＡＮ降尺度模型成功再现了许多局地降

水极值中心和窄带状的降水结构，相比原始模式预

报有更高的命中率和更小的位置误差，更准确地再

现了强降水的落区与局地极值。该降尺度产品已在

国家气象中心定量降水预报业务中示范应用，证明

了深度学习降尺度方法在业务预报中的可行性和价

值：一方面大幅提高了短时临近降水预报的空间精

度和细节刻画能力，能够及时捕捉局地暴雨，提升对

流天气预警的提前量；另一方面，其高效计算特性满

足业务时效要求，可与现有数值模式预报无缝衔接，

作为后处理模块融入业务流程（Ｌｅｉｎｏｎｅｎｅｔａｌ，

２０２１；ＰｒｉｃｅａｎｄＲａｓｐ，２０２２）。

３　多源异构气象数据的融合应用

大气系统的复杂性决定了单一数据源往往难以

全面刻画天气过程，必须融合多源异构气象数据以

提升数字智能预报水平。一方面，传统数值预报模

式主要在初始化时通过同化观测资料生成初始场，

此后预报积分过程中不同来源的信息（如卫星、雷

达、地面站、飞机探测等数据）并未得到充分利用。

多源异构数据融合旨在预报阶段将观测、雷达、卫

星、模式输出等不同来源的数据有机结合，弥补单一

来源信息的不足，提高预报的准确性和稳健性。另

一方面，当前气象数据正以前所未有的速度增长，呈

现出海量、多样和高价值等大数据特征，这使得多源

异构数据融合的必要性和优势日益凸显（Ｏｖｅｒｐｅｃｋ

ｅｔａｌ，２０１１；沈学顺等，２０２０；２０２５）。通过有效的多源

异构数据融合，可以自动融合不同来源、不同性质、不

同时空分辨率的资料，提炼出最优的信息组合（周康

辉，２０２２），为精细化、精准化预报提供有力支撑。

引入深度学习为多源异构气象数据融合提供了

全新途径和强大工具。传统的数据融合方法一般分

为基于阶段（ｓｔａｇｅｂａｓｅｄ）、基于特征层（ｆｅａｔｕｒｅ

ｌｅｖｅｌ）和基于语义（ｓｅｍａｎｔｉｃｌｅｖｅｌ）的融合方法。气

象领域由于各类数据具有明确的物理含义，通常采

用基于语义的高层融合策略。相比以往依赖经验规

则或简单拼接的数据融合手段，深度学习能够自动

挖掘多源数据之间的复杂关联，大幅提高融合效率

和效果（ＴｒａｎａｎｄＳｏｎｇ，２０１９；Ｇｅｎｇｅｔａｌ，２０２１；Ｌｉｕ

ｅｔａｌ，２０２４）。首先，深度学习网络可以表征预报因

子与天气结果之间高度非线性的映射关系，克服传

统线性方法的局限，从而更好地整合如雷达强回波、

红外云顶亮温等异构特征，提高对极端天气信号的

提取能力（Ｓｎｄｅｒｂｙｅｔａｌ，２０２０；Ｅｓｐｅｈｏｌｔｅｔａｌ，

２０２２）。其次，深度神经网络通过多层卷积、循环单

元等结构，能够从海量多维数据中自动提取时空关

联特征，实现不同资料的融合表征。例如卷积神经

网络可以提炼雷达和卫星图像中的空间结构，循环

神经网络捕捉时间演变特征，组合形成对天气过程

完整的刻画（Ｓｈｉｅｔａｌ，２０１５；Ｗａｎｇｅｔａｌ，２０１７；

２０１８）。第三，深度学习模型对多模态输入具有良好

的适应性，能够将格点场、栅格图像、不规则站点观

测等不同形式的数据融入统一的模型框架中，并通

过自适应权重分配和特征学习，充分发挥各数据源

的互补优势（Ｇｅｎｇｅｔａｌ，２０２１；Ｌｉｕｅｔａｌ，２０２４；周康

辉等，２０２１）。总之，借助深度学习强大的特征提取

与模式识别能力，气象业务可以高效融合雷达、卫

星、地面观测以及数值模式等多源信息，实现比传统

方法更优的融合预报效果（Ｓｎｄｅｒｂｙｅｔａｌ，２０２０；

Ｇｅｎｇｅｔａｌ，２０２１；Ｅｓｐｅｈｏｌｔｅｔａｌ，２０２２；Ｌｉｕｅｔａｌ，

２０２４）。

在临近预报和短时预报领域，多源数据融合的

需求尤为迫切，各国开展了大量基于深度学习的探

索研究。其中，Ｇｏｏｇｌｅ的 ＭｅｔＮｅｔ系列工作突出展

示了多源融合资料提升降水预报技巧的潜力。

ＭｅｔＮｅｔ模型通过精心设计的深度神经网络，将静

止卫星云图、地面雷达回波、地面观测站以及地形等

多种数据作为输入，生成精细的逐分钟降水预报产

品（Ｓｎｄｅｒｂｙｅｔａｌ，２０２０；Ｅｓｐｅｈｏｌｔｅｔａｌ，２０２２）。相

较传统的光流外推临近预报和快速循环同化的数值

模式，ＭｅｔＮｅｔ系列显著延长了有效预报时效（最高

可达８～２４ｈ），并将预报的时间和空间分辨率分别

提高到２ｍｉｎ、１ｋｍ。研究表明，多源观测数据的引

入对提高１２ｈ以内的短时降水预报有全局性的正

面贡献，突破了过去依赖单一雷达外推方法预报时

效较短（仅１～２ｈ）的局限。除了降水预报，强对流

天气领域也取得进展。例如，Ｇｅｎｇｅｔａｌ（２０２１）构建

了融合多源时空数据的深度学习框架，用于云地闪

电的６ｈ预测，显著提高了闪电落区预报的时效和

准确率。Ｌｉｕｅｔａｌ（２０２４）利用雷达回波、闪电定位、

高分辨率模式等多种信息，实现了京津冀地区雷暴

大风的短时预报，有效提升了强对流大风的警戒能

力。这些研究成果表明，通过深度学习模型融合观

测和模式等异构数据，可以显著增强对强天气的预

测性能，为业务无缝预报提供有力支撑（周康辉等，

２０２５）。

面向业务应用，国家气象中心近年积极探索深
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度学习融合多源数据以改进不同时间尺度的强对流

天气预报，并取得了一系列成果。

面向０～１ｈ尺度的临近预报，采取“多源观测

深度表征概率预报”的技术路线开展了Ｌｉｇｈｔｎｉｎｇ

Ｎｅｔ模型研发（Ｚｈｏｕｅｔａｌ，２０２０）。模型以多普勒雷

达组合反射率、静止卫星多通道红外亮温、地基闪电

密度等多源观测为核心输入，采用卷积编码和融合

注意力机制自动提取空间结构和时间演变特征，学

习对流云体与闪电活动之间的非线性映射关系，直

接产出１ｈ闪电发生概率。业务评估显示，卫星云

图的引入显著增强了对对流初生与快速发展阶段的

捕捉；相较于仅依赖雷达等单一观测源，融合方案在

闪电预报的命中率和空间定位一致性方面更优，能

更早识别潜在的强对流触发区（Ｚｈｏｕｅｔａｌ，２０２０；

Ｇｅｎｇｅｔａｌ，２０２１）。这一结果表明，在临近尺度上，

多源异构观测本身就包含对未来１ｈ天气演变的可

利用信息，深度学习可作为高效的信息压缩、解码

器，将分散的多源线索转化为时空一致的概率预报

产品，为后续短时到短期尺度的无缝衔接提供可靠

起点（Ｓｈｉｅｔａｌ，２０１５；Ｗａｎｇｅｔａｌ，２０１７）。

在０～６ｈ的短时预报尺度上，观测先验的精细

触发信号与模式场提供的动力、热力背景相结合尤

为关键。ＬｉｇｈｔｎｉｎｇＮｅｔＮＷＰ语义分割框架（周康

辉，２０２２；周康辉等，２０２１）将多源观测（闪电密度、雷

达拼图、静止卫星多通道）与ＣＭＡＭＥＳＯ模式预报

等共９类因子进行协同编码。通过将观测先验的精

细触发／组织信息与模式场的中小尺度动力环境相

结合，模型显著提升了０～６ｈ内闪电落区和强对流

落区预报的时空一致性和稳定性（周康辉等，２０２１）。

个例分析表明（图３），融合多源观测与模式的预报

能够比仅依赖中尺度模式的预报能更好地匹配实况

雷暴大风落区。批量检验结果也表明，融合方案在

提高ＰＯＤ、降低ＦＡＲ方面具有统计显著优势；对于

空间分散且瞬变的强对流现象（如短时强降水、雷暴

大风、冰雹），多源协同能够较好地缓解单一信息源

样本稀疏和噪声放大的问题，体现出短时尺度融合

的业务价值（Ｌｉｕｅｔａｌ，２０２４；Ｇｅｎｇｅｔａｌ，２０２１）。

　　对于６～７２ｈ的短期预报尺度，观测的直接先

验信息渐趋减弱，多模式、多尺度数值预报信息成为

主导。为此，国家气象中心提出了多尺度数值模式

深度融合模型（周康辉，２０２２），以ＥＣＭＷＦＨＲＥＳ

（天气尺度）与ＣＭＡＭＥＳＯ３ｋｍ（中尺度）为主要

信息源，采用双编码器、单解码器的结构针对不同尺

度特征进行定制化表征，并结合迁移学习缓解不同

季节／区域样本可得性不足的问题。模型在输出端

采用强对流类别概率等目标变量形式，直接服务预

警阈值和业务决策需求。批量检验显示（表１），融

合模型相较任何单一模式预报在ＰＯＤ、ＦＡＲ、ＥＴＳ、

ＴＳ等指标上均显著优于基线，跨尺度因子的精筛与

结构化融合是性能增益的关键。

表１　犈犆犕犠犉犎犚犈犛、犆犕犃犕犈犛犗与多尺度数值模式深度融合模型的效果比较：

２０２３年８月闪电预报的批量验证指标

犜犪犫犾犲１　犆狅犿狆犪狉犻狊狅狀狅犳狋犺犲狆犲狉犳狅狉犿犪狀犮犲狅犳狋犺犲犾犻犵犺狋狀犻狀犵犳狅狉犲犮犪狊狋狊犫狔犈犆犕犠犉犎犚犈犛犪狀犱犆犕犃犕犈犛犗犪狀犱

狋犺犲犿狌犾狋犻犿狅犱犲犾犮狉狅狊狊狊犮犪犾犲犻狀狋犲犵狉犪狋犲犱犾犻犵犺狋狀犻狀犵犳狅狉犲犮犪狊狋狊犻狀犃狌犵狌狊狋２０２３（犫犪狋犮犺狏犲狉犻犳犻犮犪狋犻狅狀犿犲狋狉犻犮狊）

模式（及预报因子） ＰＯＤ ＦＡＲ Ｂｉａｓ ＥＴＳ ＴＳ

ＥＣＭＷＦ（Ａ类） ０．３６４ ０．７０５ １．２３２ ０．１３４ ０．１９５

ＣＭＡＭＥＳＯ（Ａ类＋Ｂ类） ０．４４６ ０．７５１ １．７８８ ０．１１９ ０．１９０

ＥＣＭＷＦ＋ＣＭＡＭＥＳＯ

ＥＣＭＷＦ（Ａ类）＋

ＣＭＡＭＥＳＯ（Ａ类＋Ｂ类）
０．４４５ ０．６７８ １．３８３ ０．１６６ ０．２２９

ＥＣＭＷＦ（Ａ类）＋

ＣＭＡＭＥＳＯ（Ａ类）
０．４７２ ０．７４３ １．８３９ ０．１２７ ０．１９９

ＥＣＭＷＦ＋ＣＭＡＭＥＳＯ

最优预报因子选取
０．４３３ ０．６３０ ０．１６９ ０．１９１ ０．２４９

　　注：括号内标注为选取预报因子种类，其中Ａ类因子包括温度、气压、湿度、风，Ｂ类因子为云物理参数。

４　灾害性天气监测与预报应用（以台

风为例）

　　台风的监测与预报一直是天气预报中的难点，

其核心在于台风生成、路径和强度演变过程中多尺

度耦合的高度非线性特征。尤其是２４ｈ量级的快

速增强（ＲＩ）往往由台风内部对称性、海气热量交换

和环境垂直风切变等多因子共同触发，导致传统统

计方法和经验方法难以稳定捕捉前兆信号，数值模
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图３　（ａ１～ｆ１）ＣＭＡＭＥＳＯ模式预报与（ａ２～ｆ２）融合模式与多源观测数据的预报比较：２０２１年７月３０日１１时

起报的６ｈ预报时效雷暴大风的发生概率（填色）及相应时刻国家站观测实况（风羽）

Ｆｉｇ．３　Ｃｏｍｐａｒｉｓｏｎｏｆ（ａ１－ｆ１）ＣＭＡＭＥＳＯｍｏｄｅｌｆｏｒｅｃａｓｔａｎｄ（ａ２－ｆ２）ｆｕｓｉｏｎｍｏｄｅｌｆｏｒｅｃａｓｔｗｉｔｈｍｕｌｔｉｓｏｕｒｃｅ

ｏｂｓｅｒｖａｔｉｏｎｄａｔａ：ｔｈｅｏｃｃｕｒｒｅｎｃｅｐｒｏｂａｂｉｌｉｔｙ（ｃｏｌｏｒｅｄ）ｏｆｓｅｖｅｒｅｃｏｎｖｅｃｔｉｖｅｗｉｎｄｓｗｉｔｈ６ｈｌｅａｄｔｉｍｅｉｎｉｔｉａｔｅｄａｔ

１１：００ＢＴ３０Ｊｕｌｙ２０２１ａｎｄｔｈｅｏｂｓｅｒｖｅｄｗｉｎｄｓ（ｂａｒｂ）ａｔｔｈｅｎａｔｉｏｎａｌｍｅｔｅｏｒｏｌｏｇｉｃａｌｓｔａｔｉｏｎｓａｔｔｈｅｃｏｒｒｅｓｐｏｎｄｉｎｇｔｉｍｅ
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式在特定个例下也存在技巧波动。在此背景下，深

度学习通过从海量卫星云图、环境场和历史个例中

自动提取判别性特征，能够弥补主观定强一致性不

足和线性校正能力有限等短板，为台风监测与预报

提供新的技术路径与业务衔接方式（Ｐｒａｄｈａｎｅｔａｌ，

２０１８；Ｈｉｇａｅｔａｌ，２０２１；Ｊｉａｎｇｅｔａｌ，２０２２；ＷａｎｇＬ

ｅｔａｌ，２０２３；钱奇峰等，２０２１）。

相较传统预报方法，深度学习在台风领域的适

用性主要体现在以下方面。（１）卷积神经网络

（ＣＮＮ）可自动学习卫星云图的形态学与纹理特征，

避免对Ｄｖｏｒａｋ技术等经验特征的过度依赖，在涡

旋定位和客观定强中已被证明有效（Ｐｒａｄｈａｎｅｔａｌ，

２０１８；Ｈｉｇａｅｔａｌ，２０２１；钱奇峰等，２０２１）；（２）循环神

经网络（ＲＮＮ／ＬＳＴＭ／ＧＲＵ）和三维卷积结构能够

建模台风强度和位置的时空依赖，适合处理台风生

命史序列与环境场的协同演变，有望提升短时段路

径和强度变化趋势的可预报性（ＷａｎｇＬｅｔａｌ，

２０２３；Ｊｉａｎｇｅｔａｌ，２０２２）；（３）生成式模型和注意力机

制有助于在样本不均衡情形下强化对极端和尾部过

程的表征，并通过融合多源资料提高对关键物理线

索的敏感性，从而改进ＲＩ等突发性过程的自动判

别（Ｊｉａｎｇｅｔａｌ，２０２２；Ｚｈｏｕｅｔａｌ，２０２２）。基于上述

优势，深度学习逐步形成了从监测、定强，到趋势判

别、路径／强度预报的闭环，在业务应用中与数值模

式输出及统计后处理实现互补与协同（钱奇峰等，

２０２１；吕心艳等，２０２２）。

　　围绕台风路径和强度这两个核心预报指标，近

年的实例研究显示出稳健成效，并在方法上提供了

有益启示。路径预报方面，ＷａｎｇＬｅｔａｌ（２０２３）使

用１９７９—２０２１年西北太平洋历史台风路径数据训

练ＲＮＮ／ＬＳＴＭ／ＧＲＵ，仅以历史位置序列为输入

即可实现６～７２ｈ的台风连续路径预报，其中６ｈ、

１２ｈ平均位置误差分别降至约１７ｋｍ、４４ｋｍ。强

度预报方面，Ｐｒａｄｈａｎｅｔａｌ（２０１８）首先使用ＣＮＮ对

飓风强度进行客观分类，证明了单纯基于红外云图

的“端到端”方法的有效性；进一步地，Ｈｉｇａｅｔａｌ

（２０２１）将领域知识先验引入ＶＧＧ１６网络，实现了

台风强度等级序列划分验证下的准确率显著提升。

面向多源多维环境场，Ｊｉａｎｇｅｔａｌ（２０２２）将三维环境

因子与台风内部结构联合输入，利用二维／三维卷积

和空间注意力模块构建时空回归网络，系统性提高

了台风强度的预报技巧。这些研究结果表明，结构

化地引入时空依赖和领域知识，是持续提升模型泛

化性能和稳健性的关键（Ｊｉａｎｇｅｔａｌ，２０２２；ＷａｎｇＬ

ｅｔａｌ，２０２３）。

　　对于台风生成识别和快速增强判别这两个难

点，深度学习也同样显示了其应用价值和未来前景。

生成识别方面，机器学习通过拟合大尺度动力环境

（如海表温度、湿度、低层涡度和垂直风切变等）与云

系组织度之间的非线性映射，可提升２４～４８ｈ内扰

动发展成台风的命中率和稳定性，相较于传统的阈

值指标类方法更具鲁棒性（Ｃｈｅｎｅｔａｌ，２０２０）。ＲＩ

判别方面，Ｚｈｏｕｅｔａｌ（２０２２）融合ＲｅｓＮｅｔ与时序结

构，结合台风生命史指示因子缓解样本不均衡和资

料缺测的干扰，显著提高了未来２４ｈ台风是否发生

ＲＩ的判别能力；此类模型往往输出连续的概率曲

线，既便于与业务阈值衔接，也利于人工干预和综合

研判（Ｚｈｏｕｅｔａｌ，２０２２）。总体而言，台风生成和ＲＩ

判别是传统业务中的薄弱环节，而“图像序列环

境”多模态深度学习为这两个环节提供了可操作方

案和实用的预警提前量（钱奇峰等，２０２１；吕心艳等，

２０２２）。

在国家级数字智能业务应用场景下，相关技术

的标准化、流程化很重要。国家气象中心已在台风

业务链条中引入深度学习模块，形成了涡旋识别、客

观定强、快速增强趋势判别的一体化流程，并与动力

模式、集合订正及主观研判融合应用。首先，基于目

标检测的深度学习模型（ＳＳＤ）对静止卫星红外云图

进行多尺度特征提取和候选框生成，能够在复杂背

景下稳定识别台风涡旋目标（吕心艳等，２０２２）。随

后，基于ＲｅｓＮｅｔ骨干的台风智能定强技术以迁移学

习耦合图像分类与相似样本检索双通道输出（图４），

独立年份样本测试结果理想（ＭＡＥ约为３．８ｍ·

ｓ－１，ＲＭＳＥ约为５．０ｍ·ｓ－１），满足业务中客观定

强的精度需求并具备跨阶段的适用性（钱奇峰等，

２０２１）。在强度突变预警层面，融合ＬＳＴＭ 的快速

增强趋势判别模型以台风生命史的云图序列和历史

强度为输入，输出未来２４ｈ是否发生ＲＩ的概率曲

线（图５），能够在台风实况强度突增前给出显著的

概率抬升信号（Ｚｈｏｕｅｔａｌ，２０２２）。通过将上述模块

植入统一的数字智能预报框架，并与集合订正、客观

一致性约束联合运行，业务上实现了对台风生命周

期关键节点的自动监测和辅助预报，显著减轻了预

报员的主观研判压力并提升了复杂个例的预报稳定

性（钱奇峰等，２０２１；吕心艳等，２０２２）。
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图４　基于目标检测的深度学习模型（ＳＳＤ）自动识别台风涡旋示例

Ｆｉｇ．４　Ｔｙｐｈｏｏｎｖｏｒｔｅｘａｕｔｏｄｅｔｅｃｔｉｏｎｂａｓｅｄｏｎ

ＳＳＤｏｂｊｅｃｔｄｅｔｅｃｔｉｏｎｍｅｔｈｏｄ

５　数据驱动的天气预报模型带来的新

途径

　　以偏微分方程为核心的传统数值天气预报模式

仍是当前全球和区域预报业务的基础，但其高计算

成本和网格／时间分辨率之间的权衡，使其在分钟

千米尺度对流系统的触发与演变刻画方面存在先天

不足。随着再分析资料、雷达／卫星观测和地面站网

的长期积累，深度学习模型可以在大样本上直接学

习预报与观测之间的映射，形成与 ＮＷＰ并行且能

够快速推理的数据驱动新途径。近年研究表明，此

类模型在推理效率、时效延伸、多源融合和极端事件

表征等方面已具备与传统模式竞争的潜力，为天气

预报提供了一条“第二路线”，有望重塑传统的“模

式后处理融合”业务链条 （Ｒａｖｕｒｉｅｔａｌ，２０２１；

Ｓｎｄｅｒｂｙｅｔａｌ，２０２０；Ｅｓｐｅｈｏｌｔｅｔａｌ，２０２２；Ｐａｔｈａｋ

ｅｔａｌ，２０２２；Ｂｉｅｔａｌ，２０２３；Ｌａｍｅｔａｌ，２０２３；Ｌａｎｇ

ｅｔａｌ，２０２４）。

５．１　数据驱动的强对流临近预报模型

临近预报需对未来０～３ｈ的降水回波生成、发

展和消散给出高时空分辨率刻画，传统光流外推易

出现形状保持而物理过程缺失的问题。深度学习首

先沿时空递归路线取得突破：ＣｏｎｖＬＳＴＭ 模型在

ＬＳＴＭ门控结构中以卷积运算替代全连接，使隐状

态更新能够同时表征空间结构和时间依赖，开启了

基于雷达回波序列的“端到端”降水外推（Ｓｈｉｅｔａｌ，

２０１５）。随后，ＰｒｅｄＲＮＮ及其改进版ＰｒｅｄＲＮＮ＋＋

通过时空记忆单元和梯度高速通道缓解长序列训练

中的梯度消散问题，显著提升了长期依赖建模能力

（Ｗａｎｇｅｔａｌ，２０１７；２０１８）。面向非匀速、非刚体运

动的回波变化，ＴｒａｊＧＲＵ引入隐层特征的“轨迹对

齐”，而 ＭｏｔｉｏｎＲＮＮ通过显式估计并分解瞬时运动

与长程趋势，提升了回波形变与位移的一致性（Ｙａｏ

ｅｔａｌ，２０２３；Ｗｕｅｔａｌ，２０２１）。另一条路线是一次性

多步生成：以ＵＮｅｔ为代表的多尺度卷积网络取消

逐时递归推演，直接输出未来多步的雷达回波场；配

合对抗式训练及感知／锐化损失，在一定程度上缓解

了均值回归、图像模糊现象（Ｒｏｎｎｅｂｅｒｇｅｒｅｔａｌ，

２０１５；Ｒａｖｕｒｉｅｔａｌ，２０２１；ＴｒａｎａｎｄＳｏｎｇ，２０１９）。

一个重要的进展来自生成式建模。ＤｅｅｐＭｉｎｄ

的ＤＧＭＲ模型以ＧＡＮ为核心，通过学习雷达序列

的概率分布来生成降水集合预报，显著提升了０～

２ｈ不同强度降水的主观和客观预报技巧，在大样

本检验中优于光流外推和同期确定性深度学习模型

（Ｒａｖｕｒｉｅｔａｌ，２０２１）。ＤＧＭＲ的成功表明，要同时

获得清晰细节和不确定度刻画，概率生成比确定性

回归更具潜力（Ｒａｖｕｒｉｅｔａｌ，２０２１；Ｍａｒｒｏｃｕａｎｄ

Ｍａｓｓｉｄｄａ，２０２０）。需要注意的是，一些对比研究也

指出深度模型在提升ＴＳ的同时，极端峰值仍可能

偏弱，生成图像有非自然平滑的倾向，显示需要进一
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注：红色横线为判别阈值线，横线之上的★判别为将发生ＲＩ。

图５　融合ＬＳＴＭ的快速增强趋势判别模型结果与实况的对比

（ａ）２４１１号台风“摩羯”，（ｂ）２４１８号台风“山陀儿”

Ｆｉｇ．５　Ｒａｐｉｄｉｎｔｅｎｓｉｆｉｃａｔｉｏｎ（ＲＩ）ｐｒｏｂａｂｉｌｉｔｙｐｒｅｄｉｃｔｅｄｂｙｔｈｅｍｏｄｅｌ

ｂａｓｅｄｏｎＬＳＴＭｃｏｍｐａｒｅｄｔｏｔｈｅｏｂｓｅｒｖｅｄＲＩ

（ａ）ＴｙｐｈｏｏｎＹａｇｉ，（ｂ）ＴｙｐｈｏｏｎＫｒａｔｈｏｎ

步引入物理约束并对稀有事件进行重加权训练

（Ｍａｒｒｏｃｕａｎｄ Ｍａｓｓｉｄｄａ，２０２０；ＨｅｓｓａｎｄＢｏｅｒｓ，

２０２２）。

在我国数字智能业务应用方面，国家气象中心

联合清华大学在ＮｏｗｃａｓｔＮｅｔ框架基础上研制了国

产ＡＩ临近预报模型“风雷”（Ｚｈａｎｇｅｔａｌ，２０２３；盛杰

等，２０２５）。与通用ＧＡＮ两阶段结构不同，“风雷”

模型以变分自编码器（ＶＡＥ）稳健的编码解码替换

部分生成模块，并将中尺度 ＮＷＰ提供的环境场作

为条件输入，与对流尺度的外推生成过程进行条件

耦合，弥补了纯数据驱动方法对大尺度环境刻画不

足的问题。在输入端，“风雷”模型引入１ｋｍ分辨

率的数字高程模型（ＤＥＭ）和海陆分布等静态因子，

以优化复杂地形区域降水回波的触发和组织过程

（Ｚｈａｎｇｅｔａｌ，２０２３）。基于全国多年份雷达组合反

射率序列的训练，“风雷”可在约３分钟内给出覆盖

全国的０～３小时、逐６分钟、千米级分辨率雷达拼

图降水预报。评估表明，“风雷”模型在各预报时效

的ＴＳ评分全面优于业务光流外推产品，预报的强

降水回波面积与实况的匹配度更高，对强对流回波

（≥５０ｄＢｚ）的命中率显著提升（图６）。这说明以国

内数据驱动临近预报模型并通过融合物理先验（如

地形信息）和生成式网络，能够更贴近真实地再现回

波的生成消散过程和结构细节。总体来看，强对流
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图６　“风雷”模型与ＳＷＡＮ３．０光流外推对≥５０ｄＢｚ对流回波的预报技巧ＴＳ评分比较：

２０２３年全国范围逐６分钟外推降水预报

Ｆｉｇ．６　Ｔｈｒｅａｔｓｃｏｒｅ（ＴＳ）ｃｏｍｐａｒｉｓｏｎｆｏｒｃｏｎｖｅｃｔｉｖｅｅｃｈｏｆｏｒｅｃａｓｔｓｂｅｔｗｅｅｎ

ｔｈｅＦｅｎｇｌｅｉｍｏｄｅｌａｎｄＳＷＡＮ３．０ｏｐｔｉｃａｌｆｌｏｗｅｘｔｒａｐｏｌａｔｉｏｎ：ｖｅｒｉｆｉｃａｔｉｏｎｏｆ

ｎａｔｉｏｎｗｉｄｅ６ｍｉｎｐｒｅｃｉｐｉｔａｔｉｏｎｆｏｒｅｃａｓｔｅｘｔｒａｐｏｌａｔｉｏｎｉｎ２０２３

临近预报的有效范式正在从“几何外推”迈向“数据

驱动的物理生成”，但在损失函数设计、物理一致性

约束和极端尾部刻画等方面仍需持续强化（Ｒａｖｕｒｉ

ｅｔａｌ，２０２１；ＨｅｓｓａｎｄＢｏｅｒｓ，２０２２）。

５．２　数据驱动的短中期全球预报模型

在０～１５ｄ的短期、中期尺度上，数据驱动模型

逐步形成了两大主线：频谱／注意力类Ｔｒａｎｓｆｏｒｍｅｒ

模型和图神经网络（ＧＮＮ）模型。

ＦｏｕｒＣａｓｔＮｅｔ将自适应傅里叶神经算子与

ＶｉｓｉｏｎＴｒａｎｓｆｏｒｍｅｒ结合，在低计算成本下实现了

与传统数值模式相当的全球２４ｈ预报，并展现出百

成员集合秒级推理的能力（Ｐａｔｈａｋｅｔａｌ，２０２２）。

ＰａｎｇｕＷｅａｔｈｅｒ采用３ＤＳｗｉｎＴｒａｎｓｆｏｒｍｅｒ并行建

模三维时空，配合多时效子模型串联和差异化

Ｐａｔｃｈ嵌入策略，在多个要素上实现对 ＥＣＭＷＦ

ＩＦＳ的全面超越，并显著缓解了长积分预报活跃度

衰减问题（Ｂｉｅｔａｌ，２０２３）。复旦大学团队提出的

“ＦｕＸｉ”模型以级联方式分别优化０～５、５～１０和

１０～１５ｄ子模型，以降低误差累积；在多要素上１５ｄ

预报技巧接近或优于传统集合均值（Ｃｈｅｎｅｔａｌ，

２０２３ｃ）。上海人工智能实验室的“ＦｅｎｇＷｕ”模型通

过多任务损失和“回放”训练策略抑制长时效漂移，

将全球中期预报的可用时效推进至约１０．７５ｄ

（Ｃｈｅｎｅｔａｌ，２０２３ａ；２０２３ｂ）。

在ＧＮＮ方向，以 ＧｒａｐｈＣａｓｔ为代表的模型将

规则网格映射为图节点，通过边连接建模空间相互

作用，并采用自回归的多步推演方式，兼顾大尺度环

流和局地细节，同时将１０ｄ全球预报的推理时间压

缩至分钟量级（Ｌａｍｅｔａｌ，２０２３）。ＥＣＭＷＦ推出的

人工智能预报系统 ＡＩＦＳ进一步采用“ＧＮＮ编码

ＳｗｉｎＴｒａｎｓｆｏｒｍｅｒＧＮＮ解码”架构实现跨尺度信

息的高效聚合，在保持物理一致性的同时显著提升

了细网格场的结构活跃度（Ｌａｎｇｅｔａｌ，２０２４）。值得

关注的是，ＧｒａｐｈＤＯＰ探索了观测直驱方式：以极轨

卫星垂直探测资料为骨干，联合多源地基／星载观测

并实施严格的质量控制，不依赖再分析场即可直接

学习并初始化５ｄ全球预报，展示了数据同化、模式

积分之外的第三种道路（Ａｌｅｘｅｅｔａｌ，２０２４）。

　　我国在业务化探索方面，国家气象中心联合清

华大学研发了“风清”全球数据驱动天气预报模型，

将大气物理约束深度融入深度学习架构中。“风清”

通过多尺度隐空间投影（Ｔｒａｎｓｉｔｏｒ模块）将多尺度

相互作用表述为低维隐状态转移，并在损失函数中

施加能量守恒等物理一致性约束，以缓解 ＡＩ模型

长时效预报中的能量耗散和过度平滑等问题（Ｃｈｅｎ

ｅｔａｌ，２０２３ｃ；Ｌａｎｇｅｔａｌ，２０２４）。同时，“风清”提出

了可扩展的多时效联合优化策略，在不显著增加显

存占用的情况下延伸可预报时长。基于ＥＲＡ５长

期再分析资料的训练和ＧＰＵ集群的并行计算，“风

清”可在约３分钟内生成１５ｄ、逐６ｈ、２５ｋｍ分辨

率，共６９个要素的全球格点预报产品，并已通过业

务化准入测试。个例显示，在２０２４年长江中下游暴

雨过程中，“风清”模型较早即可稳定指向江南地区

的降水雨带并保持至短期预报，而ＥＣＭＷＦＩＦＳ模

式需至较短预见期才逐步调整雨带位置至实况

（图７）。
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图７　（ａ，ｃ，ｅ）“风清”模型、（ｂ，ｄ，ｆ）ＥＣＭＷＦＩＦＳ模式不同时效的２４ｈ累计降水量预报

（填色）与观测实况（散点）：２０２４年６月２９日长江中下游暴雨过程

（ａ，ｂ）３６ｈ，（ｃ，ｄ）８４ｈ，（ｅ，ｆ）１４４ｈ

Ｆｉｇ．７　Ｃｏｍｐａｒｉｓｏｎｏｆｔｈｅ（ａ，ｂ）３６ｈ，（ｃ，ｄ）８４ｈａｎｄ（ｅ，ｆ）１４４ｈｆｏｒｅｃａｓｔｓｆｏｒ２４ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｂｙ

（ａ，ｃ，ｅ）ＦｅｎｇＱｉｎｇｍｏｄｅｌａｎｄ（ｂ，ｄ，ｆ）ＥＣＭＷＦＩＦＳｍｏｄｅｌｄｕｒｉｎｇａｔｏｒｒｅｎｔｉａｌｒａｉｎｅｖｅｎｔｉｎ

ｔｈｅｍｉｄｄｌｅａｎｄｌｏｗｅｒｒｅａｃｈｅｓｏｆｔｈｅＹａｎｇｔｚｅＲｉｖｅｒｏｎ２９Ｊｕｎｅ２０２４

６　结论与讨论

深度学习技术正推动国内外数字智能天气预报

技术体系快速发展。其应用已覆盖从临近到中期的

各个预报尺度，并在偏差订正（ＲａｓｐａｎｄＬｅｒｃｈ，

２０１８；Ｈａｎｅｔａｌ，２０２１）、降尺度（Ｖａｎｄａｌｅｔａｌ，２０１７；

Ｌｅｉｎｏｎｅｎｅｔａｌ，２０２１；ＰｒｉｃｅａｎｄＲａｓｐ，２０２２）、多源融

合（Ｓｎｄｅｒｂｙｅｔａｌ，２０２０；Ｅｓｐｅｈｏｌｔｅｔａｌ，２０２２）、灾害

性天气预报（吕心艳等，２０２２；钱奇峰等，２０２１；Ｚｈｏｕ

ｅｔａｌ，２０２２）和数据驱动预报（Ｐａｔｈａｋｅｔａｌ，２０２２；Ｂｉ

ｅｔａｌ，２０２３；Ｌａｍｅｔａｌ，２０２３；Ｃｈｅｎｅｔａｌ，２０２３ａ；

２０２３ｂ；２０２３ｃ；Ｌａｎｇｅｔａｌ，２０２４）等关键环节取得了

突破性成果。例如，利用神经网络校正模式偏差、通

过生成模型细化降水结构、融合多源数据延长临近

预报时效、构建智能模块提升台风预报能力，以及发

展出与数值模式性能相当的数据驱动全球预报模型

等。上述代表性案例表明，深度学习作为新一代人

工智能技术，正为建设无缝隙、高分辨率、智能化的

数字预报业务提供一套强有力的工具箱，预示着“模

式后处理融合”协同的新方式（Ｃｒａｖｅｎｅｔａｌ，２０２０；

Ｒｏｂｅｒｔｓｅｔａｌ，２０２３；Ｖａｎｎｉｔｓｅｍｅｔａｌ，２０２１）。

然而，当前深度学习在数字智能预报的应用仍

面临一系列挑战和瓶颈。（１）样本数据和再预报资

料的获取与利用。深度模型通常需要海量高质量训

练数据，但在某些区域或极端天气背景下的观测和
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再分析资料相对稀少，限制了模型泛化能力。亟需

通过构建长期再预报数据集、数据同化模拟观测等

方式扩充训练样本，并探索少样本或迁移学习等手

段以提升模型对稀有事件的学习能力（Ｏｖｅｒｐｅｃｋ

ｅｔａｌ，２０１１；ＨａｍｉｌｌａｎｄＳｃｈｅｕｅｒｅｒ，２０１８；Ｖａｎｎｉｔｓｅｍ

ｅｔａｌ，２０２１）。（２）模型的物理一致性与可解释性。

深度学习模型作为一种数据驱动方法，其内部机理

复杂，难以像物理方程一样提供清晰的因果解释。

但值得注意的是，传统的统计后处理方法（如 ＭＯＳ）

也并非基于物理机理。与其追求纯粹的物理可解释

性，更务实的路径是提升模型的鲁棒性和业务应用

中的可信度。因此引入物理约束（如守恒律）不仅是

为了使输出符合物理规律（ＨｅｓｓａｎｄＢｏｅｒｓ，２０２２；

Ｌａｎｇｅｔａｌ，２０２４；ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，２０２２），更是一

种有效的正则化手段，可以约束解空间，能够在训练

样本（特别是极端事件样本）不足时显著提升模型的

稳定性和泛化能力。同样，可解释性工具（如注意力

可视化）的主要价值，不仅在于解释，更在于“诊

断”———可以帮助算法开发者快速定位模型失效的

原因，也可以为预报员在面对 ＡＩ给出极端或反直

觉的预报结果时提供一种判断依据，从而在人机交

互中建立信任并辅助决策。（３）极端天气和分布尾

部的预报仍是难点。由于极端事件在历史数据中占

比较小，模型容易倾向于均值状态，导致对极端强度

的预报偏弱。解决这一问题需要采用针对尾部事件

的重加权训练／损失、数据增强与合成样本等技术，

提高模型对极端样本的敏感性（ＨｅｓｓａｎｄＢｏｅｒｓ，

２０２２；ＭａｒｒｏｃｕａｎｄＭａｓｓｉｄｄａ，２０２０）。（４）跨尺度预

报的一致性。不同尺度的深度学习模型可能各自优

化于本地目标，存在预报不连续、不协调的情况。未

来可构建多尺度联合训练或多任务学习框架，确保

不同时间尺度预报间的衔接和平滑过渡（Ｐａｔｈａｋ

ｅｔａｌ，２０２２；Ｃｈｅｎｅｔａｌ，２０２３ｃ；Ｌａｎｇｅｔａｌ，２０２４）。

（５）计算成本与效率。这依然是深度学习模型业务

应用中需要权衡的因素。虽然其推理阶段速度很

快，但在训练阶段通常需要大量计算资源，尤其是高

分辨率三维模型。可通过模型裁剪、量化、知识蒸馏

等技术压缩模型规模，加速推理；并利用ＧＰＵ／ＴＰＵ

和并行计算提升训练效率，探索连续学习更新机制，

使模型随新数据自适应而无需频繁地完全重训

（Ｐａｔｈａｋｅｔａｌ，２０２２；Ｂｉｅｔａｌ，２０２３；Ｌａｍ ｅｔａｌ，

２０２３）。

展望未来，深度学习赋能的数字智能预报应朝

着更融合、更智能、更可靠的方向演进。（１）深度融

合模式和观测：发挥数值模式提供大尺度动力平衡

场的优势，结合深度学习对局地细节和多源信息的

敏感性，发展“物理模型＋数据驱动”的融合预报体

系，如模式引导下的生成对抗网络和图神经融合

（ＰｒｉｃｅａｎｄＲａｓｐ，２０２２；Ｌａｍｅｔａｌ，２０２３）。（２）加强

理论指导与物理约束：构建融入分层保守量的约束

模块，确保质量、能量守恒等硬性条件；加强可解释

性研究（Ｌａｎｇｅｔａｌ，２０２４；ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，２０２２）。

（３）聚焦关键天气和极端事件：针对暴雨、热浪、台风

等建立专门的深度学习子模块，并与传统方法集成，

提升预警提前量（Ｚｈｏｕｅｔａｌ，２０２２；Ｌｉｕｅｔａｌ，２０２４）。

（４）完善智能人机交互预报：开发可交互的 ＡＩ辅助

决策系统，支持预报员理解和调整 ＡＩ输出，兼顾可

控性与可靠性（Ｃｒａｖｅｎｅｔａｌ，２０２０；Ｒｏｂｅｒｔｓｅｔａｌ，

２０２３）。（５）建立开放评估基准：推动统一评估平台

与开放数据集，推进公平对比与持续改进（Ｖａｎｎｉｔ

ｓｅｍｅｔａｌ，２０２１；ＳｃｈｕｌｚａｎｄＬｅｒｃｈ，２０２２）。

综上所述，深度学习技术在数字智能预报中的

应用前景广阔。随着观测资料和计算资源的持续增

长，以及更成熟的算法和技术实现，深度学习有望进

一步突破当前瓶颈，在提高预报精准度、丰富不确定

性信息和提升自动化水平等方面发挥更大作用。未

来的智能预报体系将是物理机理和数据驱动高度融

合的新型模式，深度学习将与数值模式、人工智慧和

专家经验共同构成气象预报领域的技术基础，提供

更高质量、更高时效的无缝智慧预报服务。
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ＺｈｏｕＧＢ，ＸｕＪ，ＱｉａｎＱＦ，ｅｔａｌ，２０２２．Ｄｉｓｃｒｉｍｉｎａｔｉｎｇｔｅｃｈｎｉｑｕｅｏｆｔｙ

ｐｈｏｏｎｒａｐｉｄｉｎｔｅｎｓｉｆｉｃａｔｉｏｎｔｒｅｎｄｂａｓｅｄｏｎａｒｔｉｆｉｃｉａｌｉｎｔｅｌｌｉｇｅｎｃｅ

［Ｊ］．Ａｔｍｏｓｐｈｅｒｅ，１３（３）：４４８．

ＺｈｏｕＫＨ，ＺｈｅｎｇＹＧ，ＤｏｎｇＷＳ，ｅｔａｌ，２０２０．Ａｄｅｅｐｌｅａｒｎｉｎｇｎｅｔ

ｗｏｒｋｆｏｒｃｌｏｕｄｔｏｇｒｏｕｎｄｌｉｇｈｔｎｉｎｇｎｏｗｃａｓｔｉｎｇｗｉｔｈｍｕｌｔｉｓｏｕｒｃｅ

ｄａｔａ［Ｊ］．ＪＡｔｍｏｓＯｃｅａｎＴｅｃｈｎｏｌ，３７（５）：９２７９４２．

（本文责编：戴洋）
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