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Abstract: As an emerging form of new quality productive forces, the development of low-altitude economy
relies heavily on flight operations within non-controlled airspace categories, such as Class G and Class W.
This airspace predominantly resides in the lower atmospheric boundary layer, an area highly prones to avi-
ation hazardous weather phenomena like turbulence and wind shear. Meteorological conditions, together
with communication, navigation, and surveillance systems, constitute the critical foundational support for
the high-quality development of the low-altitude economy. However, there remains a severe deficiency in
the high spatiotemporal resolution monitoring and early warning capabilities for aviation hazardous weather
within this airspace, posing significant challenges to achieving efficient and safe low-altitude flight opera-
tions. To address this, this paper systematically reviews domestic and international research progresses in
low-altitude economy meteorology and analyzes the key core challenges currently faced in key scientific and
technological domains, including coherent structures in boundary layer turbulence, low-altitude wind
shear, monitoring and early warning of turbulence and microbursts, and large eddy simulation. Further-
more, this paper explores several frontier scientific and technological issues in low-altitude meteorology,
which include new theoretical frameworks for near-neutral boundary layer turbulence, moist boundary lay-
er processes, development of intelligent meteorological sensing equipment for low-altitude aircraft safety,
early warning powered by artificial intelligence for low-altitude aviation hazardous weather, development of
intelligent computational fluid dynamics models, and the synergistic optimization of low-altitude meteoro-
logical condition and unmanned aerial vehicle path planning. Overall, this study aims to deepen the under-
standing of the underlying mechanisms governing the interaction between low-altitude aviation hazardous
weather and aircraft, and seeks to provide theoretical foundations and technical pathways for enhancing
high-precision intelligent sensing, as well as rapid forecasting and early warning capabilities for low-alti-
tude aviation hazardous weather. Ultimately. this work endeavors to deliver crucial meteorological science
and technology support for the safety and sustainable development of the low-altitude economy.

Key words: low-altitude economy meteorology, atmospheric boundary layer, wind shear, turbulence,

microburst, large eddy simulation
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Schematic diagram of basic classification of national airspace

(cited from Civil Aviation Administration of China, 2023)
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Fig. 2 Schematic diagram of the integrated development framework for meteorology-

communication-navigation-surveillance affecting low-altitude flight safety
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Fig. 3 Theory. technology and application framework for research

progress in low-altitude economy meteorology
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1996) . BEA& BOAR KR, i M KAL) B S i U e
F G ML T 3K 2 W A5 B Tz W S A i it 4 ) 4
T R W % 2R B4 JR (Cornman et al, 19955
2004 ; Cornman, 2016) . b 11 W 00 7 1 75 32 0 22 3%
#)75 1% (Chang et al,2010) . # % 5 ik (Oude Nijhuis
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(2025) 8 2 Ho B 36 [ JUAF P 28 KU -5 20000 i 3t < 18
A5 o A5 T 2 BT B I S D) A A R AE . 96 LR
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et al, 1995 FF7E B B Jm R . BT i 2 Ol A #4324
BF5% (Roberts and Wilson, 1989 ; Wolfson, 1990) &
B, ) Y SO0 S RS BT 2 S S ko 23 )
IS B I X 2 A G N G Al T R 4 B
TDWR i B 5% 460 hy 25 & 2 o KRR 48 )i A (Evans
and Bernella, 1994) , H A1 57 £ H %% 5 1 AL 45 .
S T XL 00 R 50 {1 0 A TR ) K HR L S BT T R £k
M2 B Bl A R 2 T B P R A% O B IR R
6] T T8 M 3 5 BE (Wolfson et al 1995),
2000—2010 4, TDWR {5 5 &b # # 57 4/} 78 4k
S, B T H A bt | R A J0C B R T R A R R R A TR
25 B 9 FE AR (7] J31 (Cho, 2005 5 Cho and Chornoboy,
2005) . WOLTERH AR R LI T TR i %
A % Wi ( Hannon , 2004 ; Keohan et al,2006) ,
J5 25 T J i XU 107 % ™ T OO L AP O - s
-V PR 745 22 A4S R BRI 351 H (Solari et al, 20125
Gunter and Schroeder, 2015; Repetto et al, 2017;
Solari,2020) . #F— 2 J& 7T i R EE . X
1M TDWR 55 306 7 3% 59 B[] 07 0 AT T8 s A & &b
(Kim and Matsui,2017) 8 70 AR R FEH A
B2 1R AL T RE T 4 T

LS REMERSFIMNZRBFARIERE

iRz YD AL i 30 ARG 25 300 e A 6 K U Ak
b a0 10 96 T R R O IR s D) 2 R A
LA B 2 — I AL 2 2% H 5 Rl
FZA VI . 1T AR AR IE 2 O T BEX)
2 MOV AT RIS T B o (| 4. FAE
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20 {40 80 4E AL, Wilson et al (1984) i 3o £ 3% 8 &
IBWFFERICT o 2 0 19 X3 254 . PEAS HAE B3 R
AR TR N R . Boilley and Mahfouf(2013)
TE 75 [ B W 7 [ PR AL T e T AR Zs K K] A2
DG G ot R 4 AR 1 & KL AR 1 &
RO TR 3K . T 2009 4F 4 42 21 P9 o X V) A8 = 4
ot T RBOADZ AR WA . BN 2 el st
X AF 5E B 2 AR R . Chen et al (2017a;
2017b) &5 4 M A BHOE 7 ik F 325 m AR EHE . 19
7N TR 8 X A2 5 RURL ) 43 A 1 SR BK i B R AL B
X YIAEFEAE 1.5 h i Ja IR gEar 7 PMy Wk S
POC T IR M L) E R . Zhang et al(2019) 42
AT 1550 nm WOLTHR B W/ B R A T
W) e R B A AR T T AL IR A KU
SR W R S . AT AR (2022) &1 JE ML . R A
O T 38 R RUBR B0 43 B 1 U] AR 2k R 3 XL
AR 25 1) 3 B 45 0 R AE S T KU A% 3% 5 X 1) 58
AR SRR AR . R RS A (2020) 7EE 50 E AR E PR
B 11k B 2 R0 O 75 S G 28 XU A2 i) B
T X R R X ) 5 AR B AH AR L. R A
(2024) & F DU RIS RO 8 3k g ar 7 KU )48 X
] )48 5 RAFE R R R R T R E

JE X X) A% f) 52 )

it 9102 ELHE MG ZS A 28 RAT R 2 o) — B
. 26 BB E 2 m)FHBLEOWI B i 2 T KA
RSB AL IF 456 VR B 2 21 AR Ak T T A7, oy
AL AL IS A FE B AL T B SR S . SE IR
BTG LK ZEILT O Connor et al(2010) & H
(77 5 s N T HLIA AR 25 R A il T A O A 2 4
(I 1 B LT I 1 S N <0l < AT o
NCAR ) SCALES i 55 25 & J6 AL H% 2l #8 ==
O E R B B UE T 5T GPU |y Fast Eddy K
T L 2 ARG B Sk 3R T 300 A2 e I AR AR A TR
b AT DA TN S Rl E ) BT R el o
BB R PO 2 ko (R BE P9 B U XU RS S 0
2 [ 2 KA T2 I 3 A B ) FH I 4 1 it A 00 4
DRRHT T XTI 2 B i O R B A A A R T
LR AL T BB

B b3 gl b A1 AR 25 203 (low-level jet, fij #R
LLD & i & 5 20 0 I8 25 R0 A48 F I 28 i 0
(Abernethy, 2008) , 5l 3 5 5 J7 i AH B4 ™ A
e &k 201 7 (Hallgren et al, 2024) . 4% 51 & 78 3R 7
R A rp L) 4 e S I 77 2R ) 8 0 i o
IRz RATZ 2 L B . BEXT LL) (87 AR 2

TR ey ||Askervein HilGEH|[  Bolundik¥ COST-722 || Wikt ITCE-81
[3/5 1982—19834F 2007—20084 || 2001—20074F ke 19814£6—7 H
(Chu, 2024) (Taylor and Teunissen, 1987) | |(Bechmann et al,2009)| |(Jacobs et al,2007)| | (Banakh et al,2021) | | (Tsvang et al, 1985)
bR A E
&
i
s 2% RO SR
(KR : (Chen et al,2017a)
 ¥e
\ '’
AR k VR RIS
I A S
SCALTS T | (Chen et al,2017b)
201945 4
(NCAR)
T NP5 D
(Witte,2017)
BRBE RS [
(Ovola-Merced and 0 5 30
Rodriguez-Nazario,2025) m-s’!
Transformer il
L) N Hs U p =1

(Sarma et al,2024)

|

3 ey |52 2 Fani

TE SR AR 100 m M,

4 Ak [ S AR A5 T A R M 0 T4 P00 O e ) B A1 B 1 2 () A

Fig.4 Spatial distribution of global field scientific experiments on monitoring, forecasting,

and early warning for low-altitude flight hazardous weather
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WA 8 s T H I 25 () i 25 A8 fL ## 1E . Bonner
(L968)J T A7 A~ XUt B fis - 45 thy LL] = A
ENE =T, R R RE S, Whiteman
et al(1997) ] F A% 5 1L An7 T JH P 45 1) 8 25 000 F
FARTJE LLY (S0 R AE AL TR TR (4700
W5V LL] S R 2 5. Song et al (2005)
DU P 2 7 i s A 915-MH z XUBR R AN X 3L % B
AT B3 F 2 Bt p B 1a] LY BEAT WL, % 30
BIE] LI A B g A B, [l B0k s IX s i B
AMATE IS EE R, Du et al(2012) #] ] i
F18 DU £ B 38 0 4 BT A R A0 S AR A T LT R
f 27 R AL 45 75 LU 22t BAE A ) A /= . Wang
et al(2013) F1 Wei et al(2014) | F v [ 2= #5114 19
ZANIBLEIL RGNS T LL] B H A8 LA 255
ShAL W T O R X B Y R A R L R N T
A O P R BK A2 o AR AU XD o B (B H0URI R 43 A B¢
BHEA A TR X3 p LLT 8F 5% $2 43 7 20 4% 19 0 1
(Zhang et al, 2018; Kong et al, 2020; Lima et al,
2018;Ferguson,2022) ., {HAFEE M, &AW F
FAAL GERLA 2 > 5B 0] v [ 3 9 3t IX L) R 47 %
(] FU ) 20 e B 1 N L R CATD A5 B 7 32 ek 1)
W 1% J7 (Ding et al,2025),

NG| SR iR K (A N S K A I PN
AN BB T B OB ST R AR T KU e
PLURATHIZ M . Cybyk et al(2009) 7347 T A F2E <
X /NITE AHLEY T4, Galway et al(2011) # 57 T
W R R, MeGrath et al (2012) WY ABFFE T
WhE 5 CAT & B9 A B AE AL, Bottydn et al
(2015;2016) JF & 1 4T WRF B g6 A L% H]
RATHR R G AR TE T L3 F il R R 55 R 404k
Ko Kim(2015) M 1 X I 3% &R 48 Lk 1
H ik zs b sl M, T ARk, JC AHLAE I A2 U
Wik S B . Brosy et al(2017) i Fil % He 3
JC N HLI i AR ) 5 5 4, Witte et al(2017) fF
il 5 P i PRI TE AL 52 BT R R R O R
Cole and Wickenheiser(2018) £ H} 1Y) 22 H 4w BA 325 1l
HAR B3R T T R ANAE R AR AT b
[ Vel BE T

1.6 KRR R

KA PLAE Sy — oK B i i SRS 4 s, B
20 40 60 4E4C K i NCAR A9 Douglas Lilly 1 &K
DSk CIT BB AR R EE T H,

554 48 (0 500 IR AR A R R R I A SR 1B
HOAZ 0 HE B T 0 A A SR ik AH G Bl AR ) 78 B Y TR
T e I 2 Al U5 v R AE RS ROBE RO . AR
T » 2 b 455 4D 368 5 SR 1 SRS 400 A9 0 At S B 1 X = 4
I 25 5 BB U 370 14 T 45 A T < T8 A R0 2 32 5 i U
B Be A% a1 O RO BE 8 JE [ B S o i A A S O 28 A
PRV M RUBE i Ji 35 4R T T i AR W B R Y
RN

Bl TS AILBOR 1Y & R R s AU 1) g 37 %
CNHRAR A 5 3 B2 90 i & 50 J S R URR B
TGRSR SR KT J] 0 300 5 25 A (5 K7 18 5 1k
B 15— O Bt Ui 1 A R S L Bl JS 3820 il A
S KIRAHZS L = W) B AR b 0 e T e
JZRN 4 2 W M oL #2 . Deardorff (1974) & 4 SC H
e 55 2o R A A 5 AR T Sommeria(1976) I T @1 1
Mg I AT ROBE = 9 B K i A0 0 52
Z MR F 5 #1 iF & % JH, Mason and Derbyshire
(1990) J7 I+ 2248 A 12 56 e 1 57 )23 1) i 497 R
AR, o (ELAS SCTE 19 A2 o 3T 4 ok R i 55 400348 9 17
TGS 2 N B i 45 A W 5 AR A
W IO S i e A B TR AR
AR $2 it T $ R 3 # (Dupont and Patton, 2012;
Patton et al,2016),

7 PO A R A5E H f8 A A iy 2 2 R TR AL A A%
Pk . £ Smagorinsky-Lilly #5705 B2 0 ) 4%
J 3 5 Bl A 4 AR BRI B AT R RO i S e R
BOSELB), Hrp B i A2 e R B0 N AR AR KR A ]
#F FI Smagorinsky % % B9 K % (Deardorff, 1972;
Smagorinsky,1963; Lilly, 1966) , Deardorff(1980)
fE A TKE J5 58 W) 58 il 14 3t 40 A JE 3 0 3 i
Yz VA B IF I 5 VI ARG B 2 e o 7 P A% R RE A5
U3 2SR A AL T E 2 N LA S B A ) [
PR R 15 2 45 R 0 0 3E T T RS 4 4 B R 3
(Sullivan et al,1994), H It H R £ T 5 2 2
158 5 i I GE VT AS Jot 1) 7 J - A% 48 . ) A% R RE A5 Y
AN 75 JERE i 1F 18] 2 HR L T 552 B A7 7E BE St 2 1w #5050 30
% . Mason and Thomson(1992) 3&F Leith(1990)
BEHLFIEHESL . ¥ I AE Smagorinsky #1815 A K [1)
U S B AL 25 50 1 M 2l 3% T RE = g R Y
YISRRAE . BB R HE— 25 1 M s R
AR 38 A 2 YR IR R S S Smagorinsky
B (Meneveau et al, 1996 ; Porté-Agel et al,2000;
Bou-Zeid et al,2005) , 8 & R H 30 & E A 5 % w Ik
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Hi ] BT 29 3 (Chow et al, 2005; Lu and Porté-
Agel,2010) . X HL AT 5T R B L 3h KA AE el 5
J& (Ludwig et al, 2009) fi1 JZ R = Tl i1 5% )2 (Shi
et al,2018) %5 52 e 7 b J B i 25 (0 %

B AR 328 Sy R B AL R R TE AT B 3
AE. f24ER CPU SR 7E b B 5 43 B 248 0K i 4 B 1)
HE AW . R T GPU M7t A AR B
I TIFACE, B, NCAR JF & 1) Fast Eddy
fACR ) CUDA R 5 19 GPU 284, SE3L 1 Hefe 4t
CPU #3X (4 WRE-LES) ¢ 1 £ LA b (% 31 50 o J
(Xu et al,2024) , [ REFEAL gy CPU B+ 70 2
— (Sauer and Munoz-Esparza, 2020; Munoz-Esparza
et al,2020a) . 7E 3 E GRS Fe T L 9718 7 R I
SR E Y E W el WRE U GPU A,
BIERF #2205 75 592 B RO 3 i X RUBE 10 Jo 4%
BRI o X SEF AR B AR T R LAY T 5
A i D T AR S TR PR S B T AT REME:

L7 WHHMRETEREDFEM R

Sl PR BE TR AR T 2 — iR A A A D £
AR T2 B T AREAO T B v S R Bl R R S A A
HA R SR N REA A, BiA %= 25 (n
6 NATLC 6 A 338 T 23 v Sl ) ey R i g o o Il i 3
M2 R L AR TIN5 H 48 D)L JE HR TR I
TPRIE Pl SR I DX e 45 T fE 5 B0 JR 1 KU
IR B 73 A1 o 100 T30 1 T 2 ML BE 65 £ 3L v 0
AT R R GAR R AR 2 2 TR I B 9 22 4 A
CE SR WS SEN P

e 58 3 G T AR ASE 2T 5 DL /1N Sy BT[] e L 72
TR B AR T as 47 Ak DL AR 25 5s AT 10K 40 4k
it 2R 3K 5 0 LR J B AR 2 0 AR s o b 2
WA O ) RAT R SR AT . A EEZ T ko RO T
UAA 3 2 DL L S5 T BE 6 4 $2 30T 5 4 (it
S A XU A R IO X R AR E R I 55
M o e ) ROBE 38 AR LR =L TORFEE A . 7EAR
73 AU SRR AR B4 RS R AE BN T AR
Jo AL Sk v 23 v £l TR A9 22 4 S AR s A
O H BT AL GG TR 1) 25 ) I ] 23 % AR A
(EREAPST PSS

THAL AR Ty 2 B0 HE B PR AEAR R B AR
TR BB 7 1 s RS AL H RT3 G
FE R TSR RAR ) 2 05 1 A 4 R P 3 FORR
BT 5 o BT 2 05 i e R A R R A I ]

I T R BB BRAR T S A B R EOR TR S bR
N3 T iz % F (Blocken, 2018), Toparlar
et al(2017) 48 H . @ik 96 Y6 1 3k 113 1320 37 14k H1 2 WF
UK T -3 07 25 AH H 32 RO 2 0 2 U0
J A RUBE 1) i it Ik 30 328 A~ R X LA U ) 48 7S i I
TE 3l FA R J5T 28 46 v i) BRAL AR BR ) T LA
TR 9l B4k by v /) (Tominaga and
Stathopoulos,2011) . AHELZ T . K #5240 J5 25 B
% 53 B RRBE it U 45 K 5 G 0 A S B SR S AL L H
e B R TS AR AR — o TR b 24 T R AR 52
N

WA o A% G i Il T ORI AR T A A 2
K JHHAE AL i B PR 3 B R s T RARE R
RAGHW LA T R A S R B H R
ASFRI) 53 A1, BRI A E N i TS 2 2 B o
ZUR s [ AR R A o DRGSR AR 19 00 s AR 3
A M LA A S I S 0k 3 5 N U Bl R AE
TEMCH 5T A BORUE TR AR g 2 e S b RO
RARE AT 5 I 2 e T 1) i 2 5 A
RS AR A Y Sh A R AL B3 A R A
SR LIRS 404k 3 2645 5L DS W T PR 05 1Y JR)
RONE . IXRREE Tk Ok 1AL SR I 1 AR R
PR 2 8 7 R0 Y S5 M A S H /. (Piroozmand
et al,2020; Yan et al,2020),

SRR BE TR RAR ) F BT BSOS
LT AT AR M 55 P24 1R A I R SCHE L
A 52 B 1 FH H AT T I 1 22 Bk AR 3T B 35 1 52 2%
PR ZE BN TR TR AR . AR OR BB SE T 18]
B ERR W SR 2 RO G HE 28 0 52 I AR 40 4
AR IR T Y e s A L LAHE S TR AR
FRGUE A O REA B #E IR IR AR 2355188
&P,

1.8 ZASKREENRECITHREMILR

it 5 I 2 22 T 1 RO e R IR s i A MK
To AL I BE 26 R T 2 v 58 3d AR 48 B R 0 3R T
o H AR AR B T PR B O AT A LRI A
R L REFE R ALY AT B . X BESR ER AR MR B
T 255 5 B AR I R S5 | B A5 B R
FAF BB AR ZHNRK SR T4 e 225
BN RAT R U s TR .

To AL A H ) R B0 o A% Sl BIL e A e A2 ALK
T = HEAR S 25 0 4 E LT B FE A E AT dn R
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SRR T RS 0 AT AT B AR O R o 2
H ARG TR) 8T, RS KAT i 1] L RE J5TH AR S % 4 1
MBI . (AR AT RGP PR AR AL R H 2
AT AT T RO R RO R 5] A R
VD 4 JR B AR FLR 2 5 T 25 S8 B0 ) 00 A1 A
WIUE AT AT BEAR L %0 D) BE 2 IR W SRk PR R ) 5 &
I G AL 5 T RS TR U 6 1 5 | S e A ) A L E
— R RAT AR S R SR A A B RR R R
A7 5 ot A e U Dy $RAT 2 A AUER 4 B 3 R AT
S i BRI I35 L 3 7R RAT R R b HE AT ST
1) i 246 T UL PR O B 0 R B . BRI T 32 S
SRS BT N Bl 25 PR B rp %) B 5 R 0] R T L OB
BT 2R TR R T R 5 (0 Dijkstra)
0 3 A AR A T s M) S B 4 ey B G AR SR A 5
BT BEATLRAE 8 7 2 CANPRs 3 Jre BEATL B AR 30 s 48
PEL) U3 ek bR 285 2 1) i AL R A 3 AR A B UG B 72 5 I
K AMACTE NN T3k (SO s e k)
A A AR AR ST B AR I8 RO ) 3%k AROK R
(Debnath et al,2019; Liu et al,2023a;2023b) ., It
Hb A TR 4 JRy AR AR A A0 R R e 1) AT AT L o
— 20l 3 BT I A B A (A e P A R T 4 D 25
B % I8 AR S 2 B AR oAk Can i [a) i B L fE
BRARD 5 2 52 BN 51 S B B B B A Rl A Ak
(Chan et al,2025;Lu et al,2025;Zhou et al,2019) ,

Bt & TG N BLTE L b 38R | 36 i 9 3k 45 i FH 4 ¢
AR P S S U 5 1P 175 3 1) i R i U 4 X
RAT RN AR W IR AN T AL R
T 7 52 W 32 9 S T T B AR G AR BRI 22
e AU X ) S B A TR R R EUR I AT
TESIAE R 225 B0 I 7% 55 AU . i 40k WF 98 A1
C B 45 5 AR E R W AR LR 7 2%« i an . 7
3Ty A5 Ty T i WRE-CFD R RS #5400 5 R 42
o 3T R TR 0 o A L A XU B e SR A
AT H TC A HLAT R 8 B 0 R AT KU PR AG AT Y R
12 A, IF AR 4 AUBS: A 23 4] 73 2% TR X (Chrit and
Majdi, 2022 ;Giersch et al,2022;]Jiang et al,2024),
TE P& AR R 75 100 3 3 45 5 T XU 4 3 B R A )
SRS, FLR B R s I DX Y 42 JR) % 42 (Pensado
et al,2024) , DL R 51 A X K1) % S8 A HIL R A 19 5%
W] o 3 445 G XU In] 14 3 285 A2 1 S I 35 % T 2 5 A
m £ (Du et al,2024) ,

SR o B T X7 A 1) B A2 KL R AT T ik 1 22 )
PR . HE— Rk BE T B AR ) S B SR e

sl L 37 S5t T B I S 7 R ] 24 S R O RE
T H L B B AR R 22 (O 2 50 XL el B AR
LRSI B % (Hong et al,2023) , AR AR T
L AR BEAE T B X Sk CniE SR i L 3t
VO B Py B I s H = 2 AR b e A i
PR 5 REFE Y B AR R = 25 T AT 122 B Y
T P AR E L S L2 0 BEE T

BT AR S AR MR S R B B [
F O OB B Bt B R o ROR 5 o — 25 4R i X3 T
R BE L R S AR AL BRI R BE TR A L B ik
— AR B R IR AT I VIR O B AR
PSR {4 7T 5 1 4y R4 3R

2 fR= BB AR R ] R

U I AR R [ N A2 AR AR 25 A B R UL
7 o U A SR e R AE T I RR
FHER F A AT T — 2R 87 R Ry SRR PR A% 0 B
PR PPk B i U AE R A LR L B E A
ARSI E R AR R 2 TR RO A
JEI A LA Lo AT R A A X <5 Bt 00 9145 T
PEAESCRREIRI A, AR SO A5 b 3 AT Dk AR JT R G
PRV B TR0 T AR A X B R R AR
SRR SRR T 1) AR S 2 PR AT RS R R
T2 (L BHIR A R BAR AR

2.1 EHBRRRRTER

FA4 Rk R R i AR OGS © RS B
HE J L X AL S TR X I R i 114 31 7 2 R B A UL
ARAFFE > BB . HI A R AR RS E FIE (— = /L) IR
AP T IR 25 80 % T R T 55 % 38 B4 o B L[] 11
AR HL] . JUIIE X R W S X AR, BRTE A
T RERS X 4F % (Aksamit et al,2024) 4T T
1% Gt i it AIE I A N7 A - A 0 52 SRR R
P A T e S S 7 R = = G TR i A L 7o [T
Liu and Stevens(2022) IR #HA T IEE &M Fi&EH
TREAS A PR B N G XU i i 5T ) )
I ) i Ar e ik X

SR it U 45 A0 308 8 e 7 1 AN XU D) A 3 W] 9K 5
SME LA B DX 3 AL — 538 0 i A PSS e . 3 P PR R
JEA Tt FE 5 0 FZE Z 8] H g )AL
T AEAE W A A . )40 = B I AR A A A B 3
YRS E 1 R 5 R i )2 Z TR B A A A B
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8300 PP PR B2 R AL 5 5 KU B )2 e O — i i R
U PRI SRR ATAE S 28 A E TR RS 1 ol B0 i
T 7S AL 3l SR 25T 21 234 X O 1 1 A
OO A |l R A il 1 R PIL R AT SR B
AN 5 RHE AT BT Hh P 2 52 KU £ BEAE AR
P PR S BACBARIE AT . DL RIS ip 25
HARN A TR S STER R AR A T L s
(R B N DR e o ST B = R B o
PR 2 IF LA g Rl 1) AF 52 5 R A 3 2 45 5B
IR AN R ZIEHRE.

22 BBOREWMELRE

8y SR NI S NG VA R 1 =5 73 7
MWW, DAEMA R Zmnitt s FERET T T
R VA X T 1K ) 1 4 i B )23 ek A L e AL
o PR B 55 S5 K EEY) I B )2 i Z B /D (LeMone
et al,2019), VB F 2 ME IR T 2 EHLH KA
W/ T2 S E TR I8 (10 g - kg KR
TR T 1.8 K AR IE8h) (B AKCRL 7 1) i 5
TER R HIZE RV R AR 1. Woh, 2K
IR THEESS S5 TR B R TR 2 F2 B 2 WL AIG
EREIME I ) IKIRAE LB A S f
WD RERE G 4. Fat B Rz AT
it U 45 KA A L HE S 5 VR G I I ik 2 N4 R L ) T 4
SR AT I BT i 2 A7 S TR I L AR S BT % K IR
AT AR R X I R G

SR S W 320 5 22 B 5 4 100 T 0 U0 00 5 8 400 17 XL
HPRAR ., BT RBL R B RAES =% V)M
B, 2 2 R 2 J2 1 U )08 D0 i A 1 = 7 1 3 B )2
i L 3 PR A G B (5K 545, 2017) B M 3 R0 3 3
W 32 R LI 8 B L AN R AR U b )2 B (TR A 7
85,2014) TR A 2 F1 2 J2 19 i 0 e AF P Bk 2 5 3%
O8I - B3 T X DA A B 2 I T o A AR
ARAR FEAT TG 58 35 1 ) B RY By I W i A2
RS 0L 5 B e A IO DL 2R A S8 R Y o i R LR B
R 7K A5 238 DA i BT b RO BE X U 45 49 ( Atkinson
and Zhang,1996) , [ B 2 H it it OO0 H & = F A 5%
28 AL i D) R DR 57 A% 2 J2 2 1 ) 24 T A — ik
Tt DA BE /0N T B g 1) 25 [ B L Sk B A R AR
IR PR . BEAN, B TR A2 B DO A B
LG 10 P2 S8 7 B SRR H ST 78 T30 L2 i 3
W 2 L3 L2 v i 7 PR R K 5 ) 4 1 4T
R B bR R 7 2T KRR TR A (L3S — 27 R

TR K BEYIR GO M 1 T T AR TR G R
A, BT T A2 PR R 2 T B TR R
JZ 38 PR R 2 A RPE Al L X 5 98 3 B2 R e R
LT i AT K
VTR R o0 PE R R O R IB/ o | ik
B3 IR RN D s 23 v 0 3 DN 6 % TE A HILBIL 28 i Yk
RS R G R KT, D i i 52 WF 50T e T8
AR . XEEH R T I S AERE KA T i A
JZ i U A5 A B P R, R T A R i -
J2 H AT R A B A Chn e 45 5 F ) A PR AR D
BN K 1 52 H RIS SR B 2 A 200 i 3t 00
T B Qs A X A AE P I B AR A2 B KORL 5 T R I
A RE 7 AR AR A % 22 OO0 HoJ2 b 75 T B2 A LD | Fy
T E] 38 ) PR K BE ) 15 5 32 S ME DL 43 8 55 i O 1R
G BUE AL, JE H I i U T A B R s AR R
E R WE S 2 A2 i i i R — S i A i
W SWEIR G RS UR =S Uk RS A DR e £ e
JEFLZ L R B X o i P R R A AR Y
— &I % B #5 . W Eddy-Diffusivity Mass-Flux
(Siebesma et al, 2007) , Cloud Layers Unified By
Binormals(Golaz et al,2002) }% Unified Convection
Scheme(Park,2014) 4%, H 7 X £ — (&L 7 E 5 =
i 1152 AR U 3 B 2 e AR A ADL R I 4R
KB S (Lu et al, 2024 ; Park et al, 2024 ; Vraciu,
2024) ,

2.3 HAREMERZRE VITHSKBREBRAME
& R AN

HT T J0 N 25 B =5 A FLA TR R L B /N A9
WG/ W SRS ] 2 OO 28 TS | i 3L 45 U4
PR B SR S vy T A% G 2 A - i T 8 P9 A0 RS
5 A0 i RS R O A R AR O Oy A il
AL DX S5 5 24k M 2 B 5 o s SR 9 7 A 9 ML i 375
AT T 22 RO T e AR & L Bl e R T
DX 52 B 22 WAL 0 A 1Y S22 SRR AL AT ™ B A 1R 2R
FraesE k. AR H AT 3 FE G 25 G LI 19475 X
PASEEL G/ W AR A4S il 25 3k A 19 KB A2 | i 7 55 52 TR
RS QAT 2 A Y G R o D 77 7 08 220 A
R A 1] AL 45U St 1 ) v el 2 Al i 97 2 I 2 O
§HE 2 M I 25 23 A B R S BO0E TR s DDA i U
SFSM O AL AT 1 S B AR I R R A ) B
BIL 4T3 A 195 087

CRE TGN 25 B 0 =5 s 2 77 48 B T R E )

;
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(https: / www. miit. gov. cn/zcfg/jdejxl/art/2024/
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0 7 B £k

AR T
FARZCS RIS

R Rs A=

58 9=Y)

P& 5 kT gy 1403 P T8 REASE AL 9 A1 2 A8 R ) o O A
Fig. 5 Workflow of AGI-based monitoring and early warning for low-altitude flight

hazardous weather based on end-to-end general artificial intelligence models
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