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陈明轩，宋林烨，杨璐，等，２０２５．“百米级、分钟级”短时临近预报技术的进展与展望———以睿思（ＲＩＳＥ）发展路径为例［Ｊ］．气
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“百米级、分钟级”短时临近预报技术的进展与展望

———以睿思（犚犐犛犈）发展路径为例
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提　要：本文介绍了针对北京２０２２年冬奥会气象服务研发的“百米级、分钟级”多源数据快速融合预报系统———睿思

（ＲＩＳＥ），并重点描述了在“后冬奥”时代，通过发展、集成一系列关键技术以及应用机器学习和深度学习等方法，实现了在“百

米级、分钟级”技术框架内的强降水和雷暴大风的精细化短时临近预报、对流初生临近预报等功能。新发展、集成的技术方法

包括：格点降水融合分析偏差订正、降水机器学习短时临近预报、阵风（雷暴大风）动力统计及深度学习短时临近预报、融合卫

星监测和风暴追踪的对流初生临近预报、多源多尺度数值预报集成等。通过检验评估表明，睿思系统中集成的新技术方法对

提升汛期降水和雷暴大风的预报精细度和准确率具有优势，特别是在０～６ｈ的短时临近时段内预报效果最为显著。最后，探

讨了“百米级、分钟级”预报技术未来发展面临的挑战与可能路径。
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引　言

“百米级、分钟级”天气预报是指空间分辨率达

到百米尺度、时间更新频次或预报间隔达到分钟尺

度的格点天气预报，提出这一客观预报概念主要是

源于２０２２年北京冬奥会气象服务保障需求。因此，

研发“百米级、分钟级”天气预报技术的初衷也是为

了支撑北京冬奥会复杂山地环境下的精细化天气预

报服务，主要包括多源数据快速融合降尺度预报技

术、大涡模拟降尺度预报技术两大类（Ｃｈｅｎｅｔａｌ，

２０１８；２０２５；陈明轩等，２０２４；宋林烨等，２０２５ｂ；金荣

花等，２０２５）。

多源数据快速融合降尺度预报技术相当于数值

预报的后处理技术，通过千米尺度数值预报的时空

降尺度和多源数据的实时快速融合，将传统的“千米

级、小时级”数值预报降尺度到“百米级、分钟级”预

报。此项技术的优势是可以实现多源数据的有效应

用和千米尺度数值预报的有效降尺度，在确保格点

预报时空分辨率显著提高的同时预报准确率也得到

明显改善，而且计算范围大、占用计算资源少，业务

适用性强，应用场景广阔。国际上已有的研究和应

用已经表明，多源观测与数值模式的集成及降尺度

预报技术，可以明显提升天气预报的时空精度

（Ａｔｅｎｃｉａｅｔａｌ，２０１０；Ｈａｉｄｅｎｅｔａｌ，２０１１；Ｈｗａｎｇ

ｅｔａｌ，２０１５；Ｋｉｋｔｅｖｅｔａｌ，２０１７；Ｋｏｔｓｕｋｉｅｔａｌ，２０１９）。

为满足北京冬奥会天气预报需求，在北京“睿图”模

式体系下研发了“百米级、分钟级”多源数据快速融合

预报系统———睿图睿思（ＲａｐｉｄＲｅｆｒｅｓｈＩｎｔｅｇｒａｔｅｄ

ＳｅａｍｌｅｓｓＥｎｓｅｍｂｌｅ，ＲＩＳＥ；以下简称睿思系统），其实

现了覆盖整个京津冀及周边地区４６万ｋｍ２、５００ｍ分

辨率、１０ｍｉｎ更新的０～２４ｈ格点预报，以及覆盖京

津冀西北部山区１万ｋｍ２ 和整个北京地区及周边

３．６万ｋｍ２、１００ｍ分辨率、１０ｍｉｎ更新的０～２４ｈ格

点预报，成为国际上“百米级、分钟级”天气预报技术

的典型代表（Ｃｈｅｎｅｔａｌ，２０２５；宋林烨等，２０２５ｂ）。

大涡模拟降尺度预报技术是在千米尺度数值预

报作为背景场的基础上，通过数值模式大涡模拟设

置进行降尺度预报，重点是实现大气边界层过程的

“显式”描述并尽可能规避模式“灰区”等的负面影

响，使得数值预报时空分辨率和预报准确率得到有

效提升，实现数值模式预报从“千米级”到“百米级”

的跨越（Ｌｉｕｅｔａｌ，２０１１；Ｈａｕｐｔｅｔａｌ，２０１９；刘郁珏

等，２０２３）。大涡模拟能够有效解析山区等复杂环境

下的边界层大气小尺度湍流和热动力特征，具有良

好的应用前景（Ｍｏｅｎｇｅｔａｌ，２００７；Ｈａｌｄｅｔａｌ，２０１９；

Ｌｉｕｅｔａｌ，２０２０；Ｐｉｎｔｏｅｔａｌ，２０２１）。但大涡模拟占用

的计算资源较大，目前有效的模拟范围也较小（一般

在１０ｋｍ×１０ｋｍ范围左右）。为满足北京冬奥会

天气预报需求，在北京“睿图”模式体系下发展了“百

米级”大涡模拟降尺度预报系统，实现了覆盖冬奥会

６个赛场各１００ｋｍ２ 范围、６７ｍ分辨率的０～２４０ｈ

格点预报，成为国际上长时效实时大涡模拟成功应

用的典型案例（Ｃｈｅｎｅｔａｌ，２０２５；宋林烨等，２０２５ｂ）。

目前，我们正基于大涡模拟降尺度预报技术，发展一

套龙卷可分辨尺度的短时临近集合数值预报系统。
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该系统集成了集合四维变分同化、涡旋追踪和嵌套

大涡模拟降尺度技术，重点通过龙卷涡旋特征追踪

和次百米级大涡模拟，以实现龙卷结构和关键特征

的“显式”数值预报（即直接解析龙卷涡旋而非依赖

参数化方法）。该系统的技术细节与验证结果将在

另外的论文中详细阐述。

本文仅以睿思系统为例，介绍基于多源数据快

速融合的“百米级、分钟级”天气预报技术的发展现

状及挑战，重点介绍在“后冬奥”时代，通过关键技术

改进和人工智能（ＡＩ）等新方法的应用，如何在冬奥

会“百米级、分钟级”天气预报技术框架内实现强对

流天气的精细化短时临近预报。而关于睿思系统的

基本架构及主要模块本文仅作简要介绍，其详细信

息及其在冬奥会期间的应用情况，可参见陈明轩等

（２０２４）、Ｃｈｅｎｅｔａｌ（２０２５）、宋林烨等（２０２５ｂ）等相关

文献。全文所用时间为北京时。

１　技术集成和系统架构

由“百米级、分钟级”融合预报技术集成发展的

睿思系统，其软件架构及实时运行流程如图１所示，

主要包括输入层、代码层、输出层和应用层。输入层

是整个系统的多源数据基础，包括自动气象观测站

（ＡＷＳ）和天气雷达观测、数值模式预报和临近预报

数据。静态数据包括地形高度、地表类型和站表信

息，其中地形高度采用美国航天飞机雷达地形测量

任务获取的３０ｍ分辨率地形高程数据（ＳＲＴＭ３０ｍ；

Ｆａｒｒｅｔａｌ，２００７）。系统在８ｍｉｎ截断的墙钟时间

内，可实时接收京津冀地区超过３０００个 ＡＷＳ观

测，其中北京市近年来新建ＡＷＳ快速增加，从冬奥

会期间近５００个站到目前可接收近８００个站。自

２０２４年底开始，睿思系统将原来基于固定犣犚 关系

图１　睿思系统软件架构及实时运行流程示意图（调整自Ｃｈｅｎｅｔａｌ，２０２５）

Ｆｉｇ．１　Ｓｃｈｅｍａｔｉｃｄｉａｇｒａｍｏｆｔｈｅｓｏｆｔｗａｒｅａｒｃｈｉｔｅｃｔｕｒｅａｎｄｒｅａｌｔｉｍｅｒｕｎ

ｏｆＲＩＳＥｓｙｓｔｅｍ（ａｄａｐｔｅｄｆｒｏｍＣｈｅｎｅｔａｌ，２０２５）

５３４１　第１１期　 　　 陈明轩等：“百米级、分钟级”短时临近预报技术的进展与展望———以睿思（ＲＩＳＥ）发展路径为例 　　　　



算法的京津冀雷达组网定量降水估测（ｑｕａｎｔｉｔａｔｉｖｅ

ｐｒｅｃｉｐｉｔａｔｉｏｎｅｓｔｉｍａｔｉｏｎ，ＱＰＥ）产品 （陈明轩等，

２０１０）输入，升级为包含了京津冀９部Ｓ波段、１部

Ｃ波段雷达和北京地区１１部Ｘ波段雷达组网的双

偏振参量瓦片分区ＱＰＥ产品，该产品具有更高的精

度（马建立等，２０１９；李佳慧等，２０２５）。采用睿思系

统高时空分辨率降水融合分析方案（宋林烨等，

２０２５ｂ），对ＡＷＳ降水观测与睿思融合分析场的对

比结果表明，使用升级后的雷达ＱＰＥ产品，使得二

者在降水强度量级和空间分布格局上呈现更好的一

致性（图２），尤其在北京以外西北部（京津冀西北

部）ＡＷＳ稀疏分布区域（图２ａ），睿思基于固定犣犚

关系ＱＰＥ的融合分析场存在明显的系统性降水高

估现象（图２ｂ紫色虚线框），而双偏振参量瓦片分区

ＱＰＥ的融合分析场则抑制了虚假降水信号的持续

残留（图２ｃ紫色虚线框）；并且改进后的融合分析场

（图２ｃ）有效抑制了北京西部区域的降水高估偏差

（紫色实线框标示区域），其降水量级与 ＡＷＳ观测

相吻合，提升了睿思系统降水融合分析的准确性。

输入的数值预报背景场采用的是ＣＭＡＢＪ模式（睿

图短期数值预报系统）３ｋｍ分辨率数据（何静等，

２０１９；陈敏等，２０２３；王在文等，２０２３），另外ＣＭＡ

ＭＥＳＯ中尺度模式或ＥＣＭＷＦ全球模式预报数据

也可作为背景场输入（宋林烨等，２０２５ａ）。临近预报

数据由睿图临近数值预报系统提供，该系统在一个

云尺度模式框架下通过多普勒雷达和地面自动站资

料快速更新四维变分同化，生成逐１０ｍｉｎ更新的三

维大气分析和０～２ｈ临近预报数据（Ｓｕｎａｎｄ

Ｃｒｏｏｋ，１９９７；陈明轩等，２０１１；２０１６ａ；２０１６ｂ；刘莲

等，２０１６；刘瑞婷等，２０２１）。另外，在睿思系统中，通

过数值预报背景场降尺度和地形高差订正，以及地

面ＡＷＳ观测和上述临近预报等数据的距离权重融

合，可以实现温度、湿度、风场的高分辨率三维分析

（宋林烨等，２０２５ａ；２０２５ｂ；Ｃｈｅｎｅｔａｌ，２０２５）。

　　代码层包含数据预处理、融合计算（核心代码

层）、后处理。稠密地面ＡＷＳ观测网及其质量对高

分辨率格点融合分析和预报有重要影响（Ｓｏｎｇ

ｅｔａｌ，２０２３），因此在睿思系统设计中，考虑了对实时

获取的ＡＷＳ观测进行到报统计，以监控地面观测

数据的及时性和稳定性。后处理除了用于检验、绘

图外，还可用于集成近期发展的一系列 ＡＩ后处理

预报订正模型（Ｓｏｎｇｅｔａｌ，２０２０；杨璐等，２０２１；张延

彪等，２０２２；曹伟华等，２０２２；徐景峰等，２０２３；Ｘｉｅ

ｅｔａｌ，２０２５）。核心代码层采用模块化设计，目前由

阵风、平均风、温湿、降水和降水相态等模块组成

（图１），各模块采用不同的融合策略及预报订正算

法（程丛兰等，２０１３；２０１９；Ｓｏｎｇｅｔａｌ，２０１９；２０２３；吴

剑坤等，２０１９；宋林烨等，２０１９；杨璐等，２０１９；２０２２；

２０２３；陈康凯等，２０２０；Ｙａｎｇｅｔａｌ，２０２１；２０２４；徐景

峰等，２０２５）。针对冬奥精细化天气预报及睿思系统

的详细技术路线可参考Ｃｈｅｎｅｔａｌ（２０２５）和宋林烨

等（２０２５ｂ），此处不再赘述。

注：紫色虚线框所示为系统性降水高估区域，紫色实线框所示为北京西部降水高估区域。

图２　２０２４年７月２４日１９：００的１ｈ累计降水量

（ａ）自动站观测降水量，（ｂ）以固定犣犚 关系ＱＰＥ为背景场的睿思系统融合分析场，

（ｃ）以双偏振参量瓦片分区ＱＰＥ为背景场的睿思系统融合分析场

Ｆｉｇ．２　１ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎａｔ１９：００ＢＴ２４Ｊｕｌｙ２０２４

（ａ）ｏｂｓｅｒｖｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｆｒｏｍＡＷＳｓ，（ｂ）ＲＩＳＥｓｙｓｔｅｍｆｕｓｉｏｎａｎａｌｙｓｉｓｕｓｉｎｇｔｈｅｆｉｘｅｄ犣犚ｒｅｌａｔｉｏｎｓｈｉｐｂａｓｅｄＱＰＥ

ａｓｔｈｅｂａｃｋｇｒｏｕｎｄｆｉｅｌｄ，ａｎｄ（ｃ）ＲＩＳＥｓｙｓｔｅｍｆｕｓｉｏｎａｎａｌｙｓｉｓｕｓｉｎｇｔｉｌｅｂａｓｅｄｐａｒｔｉｔｉｏｎｉｎｇＱＰＥａｓｔｈｅｂａｃｋｇｒｏｕｎｄｆｉｅｌｄ
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　　通过“分钟级”快速更新无缝隙融合计算，最终

在输出层生成ＮｅｔＣＤＦ格式的各气象要素０～２４ｈ

格点分析和预报数据产品。此外，输出层还可以通

过二次处理生成定制数据和图片产品，满足不同用

户需求。睿思系统每１０ｍｉｎ启动一次，产品最晚滞

后墙钟时间１９ｍｉｎ（图１）。北京冬奥会期间，应用

层主要通过冬奥业务平台和手机ＡＰＰ提供给预报

员、决策部门等使用，另外还将数据产品实时推送到

ＳＭＡＲＴ２０２２ＦＤＰ平台进行第三方检验（陈明轩

等，２０２４）。“后冬奥”时代，应用层除了日常气象业

务和国家重大活动服务保障外，还进一步扩展到民

航、水文、电力等交叉行业。

　　在北京冬奥会结束之前，实时运行的睿思系统

包括两套：覆盖京津冀地区的睿思５００ｍ分辨率系

统和覆盖冬奥山地赛区的睿思１００ｍ分辨率系统；

“后冬奥”时代，进一步通过系统算法升级和增加并

行计算功能等，形成了新的覆盖北京地区的睿思

１００ｍ分辨率系统，并于２０２３年汛期实时业务上

线，参数配置详见表１。近几年，睿思系统先后在杭

州亚运会、哈尔滨亚冬会等国家重大活动气象保障

及多个地区的气象、电力等行业中推广应用。为了

克服计算环境差异带来的问题，已经实现了睿思系

统的容器镜像安装方式，这也是目前国际上天气预

报业务系统布署的一大趋势，有助于系统的快速部

署和便捷运维（Ｃｈｅｎｇｅｔａｌ，２０２２；Ｋｎｅｐｐｅｒｅｔａｌ，

２０２３；Ｍａｒｔｉｎｅｔａｌ，２０２４）。

此外需指出，睿思系统的“百米级、分钟级”融合

预报技术路线不仅适用于冬季，也适用于各个季节

的精细化天气预报以及新能源气象服务，但仍需开

展进一步的研究和改进。下文将重点介绍在“后冬

奥”时代，如何通过发展、集成关键技术以及应用ＡＩ

等新方法，实现在“百米级、分钟级”技术框架内的强

对流天气精细化短时临近预报等功能。

２　新技术发展和集成

２．１　格点降水融合分析偏差订正技术

雷达定量降水估测（ＱＰＥ）是睿思系统降水融

合预报的重要数据源之一。然而，由于雷达探测本

身特性及地物杂波、虚假回波、ＱＰＥ计算等多种因

素影响，虽然在生成ＱＰＥ之前已经开展了一系列雷

达数据质量控制处理和算法优化，但数据依然会存

在一定误差（Ｓｃｈｒｔｅｒｅｔａｌ，２０１１；Ｚｈａｎｇｅｔａｌ，２０２０；

Ｒｙｚｈｋｏｖｅｔａｌ，２０２２）。因此，在将雷达ＱＰＥ与其他

数据源进行融合之前，需对其进行二次误差订正，其

中一种常见的做法是Ｑｍａｔｃｈｉｎｇ方法（Ｓｏｎｇｅｔａｌ，

２０２１）。该方法是通过比较雷达ＱＰＥ和地面 ＡＷＳ

观测降水的概率分布函数，将一种数据源视为正确

的，从而对另一种数据源进行校正（Ｒａｂｉｅｉａｎｄ

Ｈａｂｅｒｌａｎｄｔ，２０１５）。主要包括以下两个步骤：首先，

对ＡＷＳ观测的１ｈ降水量及其对应的ＱＰＥ数据进

行概率分布拟合，以建立两者的统计关系。其次，利

用ＡＷＳ数据的累积分布函数（ＣＤＦ）的逆函数，从

ＡＷＳ数据的ＣＤＦ中估计ＱＰＥ数据（即需要校正的

数据源）的分位数。在假设 ＡＷＳ能够提供准确降

水信息的前提下，由 ＡＷＳ数据确定的降水分布与

从ＱＰＥ数据获得的降水分布应当是基本一致的。

基于此假设，Ｑｍａｔｃｈｉｎｇ方法的 ＱＰＥ数据校正方

法可以表示为：

犙
２ （犻，犼，狋）＝犉

－１
ＡＷＳ，狋｛犉ｒａｄ，狋［犙（犻，犼，狋）］｝ （１）

式中：犙
２ （犻，犼，狋）是原始犙（犻，犼，狋）在网格单元（犻，犼）

和时间狋处的校正值，犉ｒａｄ，狋是时间狋的雷达数据

犙（犻，犼，狋）估计的ＣＤＦ，而犉
－１
ＡＷＳ，狋是时间狋的ＡＷＳ降

表１　实时运行的两套睿思系统参数配置

犜犪犫犾犲１　犘犪狉犪犿犲狋犲狉犮狅狀犳犻犵狌狉犪狋犻狅狀狅犳狋犺犲狋狑狅狉犲犪犾狋犻犿犲狉狌狀狀犻狀犵犚犐犛犈狊狔狊狋犲犿狊

参数 睿思５００ｍ分辨率系统 睿思１００ｍ分辨率系统

区域范围 京津冀区域 北京地区

网格点（东西×南北） １５２１个×１２２１个 １９０１个×１９０１个

水平分辨率 ５００ｍ １００ｍ

西南角经纬度设置 ３５．９°Ｎ、１１３．２°Ｅ ３９．４°Ｎ、１１５．４°Ｅ

东北角经纬度设置 ４２．７°Ｎ、１２０．２°Ｅ ４１．０°Ｎ、１１７．５°Ｅ

投影方式设置 兰勃特 兰勃特

投影参考经纬度 ３３°Ｎ、４３°Ｎ，１１６．５°Ｅ ３９°Ｎ、４１°Ｎ，１１６．５°Ｅ

实时业务运行时间 ２０１９年汛期至今 ２０２３年汛期至今
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水逆ＣＤＦ，它将通过犉ｒａｄ，狋估计的分位数转换回校正

后的ＱＰＥ值犙
２ （犻，犼，狋）。犉ＡＷＳ，狋、犉ｒａｄ，狋和犉

－１
ＡＷＳ，狋的估

计值分别为犉
　　

〈

ＡＷＳ，狋、犉
　　

〈

ｒａｄ，狋和犉
　　

〈

－１
ＡＷＳ，狋，这些估计值由历

史ＡＷＳ观测和ＱＰＥ数据的拟合得到（Ｍｉｃｈｅｌａｎｇｅｌｉ

ｅｔａｌ，２００９）。

Ｓｏｎｇｅｔａｌ（２０２１）的研究表明，Ｑｍａｔｃｈｉｎｇ方

法能显著提升中国南方地区雷达ＱＰＥ的准确性，使

其与 ＡＷＳ降水观测更加吻合（图３），在雷达 ＱＰＥ

融合应用中极具潜力。也可以看出，该方法可显著

降低雷达ＱＰＥ误差，并优于气候学尺度误差约束的

定量气候校准方法（Ｓｃａｌｉｎｇ方法；宋林烨等，２０１９）。

采用Ｑｍａｔｃｈｉｎｇ方法校正后，ＱＰＥ均方根误差更

小，相关系数更高，更接近ＡＷＳ观测降雨值（图３）。

　　在京津冀区域雷达ＱＰＥ中，采用Ｑｍａｔｃｈｉｎｇ方

法同样具有很好的订正效果。如图４给出的２０２１年

夏季个例，该方法对雷达ＱＰＥ的高估具有显著抑制

作用（图４ａ～４ｃ），在采用Ｑｍａｔｃｈｉｎｇ方法订正之前，

雷达ＱＰＥ具有明显正偏差，而订正后的ＱＰＥ系统性

偏差接近于零，与观测基本一致（图４ｅ，４ｆ）。

２．２　降水机器学习短时临近预报技术

目前，基于机器学习的温度、湿度、风气象要素

的预报方法不断涌现（ＲａｓｐａｎｄＬｅｒｃｈ，２０１８；张延

彪等，２０２２；韩念霏等，２０２２；徐景峰等，２０２３；ＹａｎｇＸ

ｅｔａｌ，２０２３；Ｌｉｕｅｔａｌ，２０２４；２０２５；Ｚｈａｎｇｅｔａｌ，

２０２４）。但是对于降水预报，由于小时到分钟时间尺

度的降水空间分布极不均匀，并且时间连续性低，样

本量晴天多于雨天，小雨多于暴雨，因此基于机器学

习的“百米级、分钟级”降水短时临近预报难度较大，

前人研究大多集中在日、月、季时间尺度和千米级以

上空间尺度（Ｗａｎｇｅｔａｌ，２０２１；Ｊｉｎｅｔａｌ，２０２２；谢舜

等，２０２２；邓居昌等，２０２２；Ｙｕｅｔａｌ，２０２３）。我们在

睿思系统“百米级、分钟级”框架下开展了降水机器

学习短时临近预报技术研发和测试应用。

图３　２０２０年８月２０日１５：００（ａ）ＡＷＳ观测和（ｂ～ｄ）不同订正方法

的１ｈ累计降水量（调整自Ｓｏｎｇｅｔａｌ，２０２１）

Ｆｉｇ．３　Ｃｏｍｐａｒｉｓｏｎｏｆａｐｒｅｃｉｐｉｔａｔｉｏｎｃａｓｅｆｒｏｍ（ａ）ＡＷＳｏｂｓｅｒｖａｔｉｏｎｓａｎｄ

（ｂ－ｄ）１ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｕｓｉｎｇｄｉｆｆｅｒｅｎｔｃｏｒｒｅｃｔｅｄｍｅｔｈｏｄｓａｔ

１５：００ＢＴ２０Ａｕｇｕｓｔ２０２０（ａｄａｐｔｅｄｆｒｏｍＳｏｎｇｅｔａｌ，２０２１）
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图４　Ｑｍａｔｃｈｉｎｇ方法在京津冀地区雷达ＱＰＥ中的试验表现

（ａ）订正前的ＱＰＥ分布，（ｂ）Ｑｍａｔｃｈｉｎｇ方法订正后的ＱＰＥ分布，（ｃ）ＡＷＳ观测降水量分布，

（ｄ）降水频率分布，（ｅ）订正前后ＱＰＥ与ＡＷＳ观测偏差，（ｆ）订正前后ＱＰＥ与ＡＷＳ观测散点图

Ｆｉｇ．４　ＰｅｒｆｏｒｍａｎｃｅｏｆＱｍａｔｃｈｉｎｇｃｏｒｒｅｃｔｉｏｎｉｎｒａｄａｒＱＰＥｏｖｅｒｔｈｅＢｅｉｊｉｎｇＴｉａｎｊｉｎＨｅｂｅｉＲｅｇｉｏｎ

（ａ）ＱＰＥｄｉｓｔｒｉｂｕｔｉｏｎｂｅｆｏｒｅＱｍａｔｃｈｉｎｇｃｏｒｒｅｃｔｉｏｎ，（ｂ）ＱＰＥｄｉｓｔｒｉｂｕｔｉｏｎａｆｔｅｒＱｍａｔｃｈｉｎｇｃｏｒｒｅｃｔｉｏｎ，

（ｃ）ｐｒｅｃｉｐｉｔａｔｉｏｎｄｉｓｔｒｉｂｕｔｉｏｎｆｒｏｍＡＷＳ，（ｄ）ｐｒｅｃｉｐｉｔａｔｉｏｎｆｒｅｑｕｅｎｃｙｄｉｓｔｒｉｂｕｔｉｏｎ，

（ｅ）Ｂｉａｓａｎｄ（ｆ）ｒａｔｉｏｃｏｍｐａｒｉｓｏｎｏｆＡＷＳｗｉｔｈｎｏｃｏｒｒｅｃｔｅｄＱＰＥａｎｄｐｏｓｔｃｏｒｒｅｃｔｅｄＱＰＥ

　　在高时空分辨率格点降水预报方面，Ｓｏｎｇｅｔａｌ

（２０２０）采用１ｋｍ分辨率逐小时格点降水、对流潜

势和雷达探测等数据，构建了基于机器学习算法的

降水临近预报模型，提升了降水临近外推预报效果，

也优于统计平流订正预报模型，改善了局地强降水

的漏报。曹伟华等（２０２２）采用睿思系统逐１０ｍｉｎ

降水分析场，应用深度学习网络模型ＲａｉｎＮｅｔ（图５）

开展了京津冀高时空分辨率降水滚动式临近预报研

究。从２０２０年６—９月的１ｈ降水临近预报结果与

基于传统交叉相关算法（ＴＲＥＣ）的外推预报结果相

比可见，ＲａｉｎＮｅｔ对降水的临近预报性能整体明显

优于ＴＲＥＣ（图６）。

　　降水的４～６ｈ短时预报一直是业务难点。测

试发现，直接应用ＸＧＢｏｏｓｔ等机器学习算法无法得

到较理想的预报性能，但通过不同降水量等级归类

和分段式的机器学习订正思路，可以有效提升站点

降水的４～６ｈ预报准确率。采用睿思系统高分辨

率降水数据及地面风速、温度、露点温度、相对湿度

等，Ｘｉｅｅｔａｌ（２０２５）通过将降水样本分成无雨、小

雨、中雨、大雨、暴雨等级别，并通过先分类—再回归

的两段式方法，以多个分类预报子模型和回归预报

子模型构建了ＳＣＲＸＧＢｏｏｓｔ机器学习模型。结果

表明，ＳＣＲＸＧＢｏｏｓｔ模型不仅可以提高睿思系统外

推和数值模式融合的４～６ｈ站点降水预报准确率，

而且也优于常见的频率匹配订正法及最优ＴＳ评分

订正法的结果（表２）。

２．３　阵风（雷暴大风）动力统计及深度学习短时临

近预报技术

　　雷暴大风是主要的致灾强对流天气类型之一，
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注：左侧和右侧实心黑框分别为输入层和输出层，空心黑框为卷积输出层。

图５　深度学习网络模型ＲａｉｎＮｅｔ结构图（引自曹伟华等，２０２２）

Ｆｉｇ．５　ＩｌｌｕｓｔｒａｔｉｏｎｏｆｔｈｅＲａｉｎＮｅｔｄｅｅｐｌｅａｒｎｉｎｇａｒｃｈｉｔｅｃｔｕｒｅ（ｃｉｔｅｄｆｒｏｍＣａｏｅｔａｌ，２０２２）

图６　２０２０年６—９月１ｈ累计降水量

（ａ）相关系数和（ｂ）平均绝对误差随预报时效的变化

Ｆｉｇ．６　Ｖａｒｉａｔｉｏｎｓｏｆ（ａ）ｃｏｒｒｅｌａｔｉｏｎｃｏｅｆｆｉｃｉｅｎｔａｎｄ（ｂ）ｍｅａｎａｂｓｏｌｕｔｅｅｒｒｏｒｓｗｉｔｈｆｏｒｅｃａｓｔｌｅａｄｔｉｍｅ

ｆｏｒ１ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｆｒｏｍＪｕｎｅｔｏＳｅｐｔｅｍｂｅｒ２０２０

表２　２０２３年７—９月独立验证数据集的４～６犺降水预报平均犜犛评分

犜犪犫犾犲２　犜犺犲犪狏犲狉犪犵犲犜犛狊犮狅狉犲狊狅犳４－６犺狆狉犲犮犻狆犻狋犪狋犻狅狀犳狅狉犲犮犪狊狋犳狉狅犿狋犺犲犻狀犱犲狆犲狀犱犲狀狋

狏犪犾犻犱犪狋犻狅狀犱犪狋犪狊犲狋犳狉狅犿犑狌犾狔狋狅犛犲狆狋犲犿犫犲狉２０２３

检验阈值 ０．２ｍｍ·ｈ－１ １ｍｍ·ｈ－１ ５ｍｍ·ｈ－１ １０ｍｍ·ｈ－１ ２０ｍｍ·ｈ－１

睿思系统 ０．４２９ ０．３１４ ０．１７２ ０．０９９ ０．０３７

频率匹配订正 ０．４４１ ０．３１４ ０．１８１ ０．１１１ ０．０４３

最优ＴＳ评分订正 ０．４４０ ０．３２２ ０．１８１ ０．１０８ ０．０４２

ＳＣＲＸＧＢｏｏｓｔ模型 ０．４９３ ０．３７７ ０．２１２ ０．１３５ ０．０４３
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而且形成机理复杂、预报难度极大（崔新艳等，

２０２５）。针对京津冀地区雷暴大风精细化预报需求，

Ｙａｎｇｅｔａｌ（２０２４）首先基于京津冀长时间序列ＡＷＳ

观测和睿思系统高分辨率再分析资料，利用描述统

计和推断统计方法对不同海拔高度、不同季节、不同

风速和风向区间的阵风气候态分布特征和时空演变

规律进行分析，获取阵风在各要素不同区间的集中

趋势、离散程度和相关程度，并利用概率统计方法计

算阵风、阵风系数与各要素之间的概率统计关系

（Ｙａｎｇｅｔａｌ，２０２４），建立了阵风系数与稳定风速、风

向、地形高度各要素之间的关系模型。然后，将构建

的京津冀多维度阵风系数模型与阵风观测数据

（ＡＷＳ极大风观测）的融合订正（杨璐等，２０２３）、格

点偏差订正（杨璐等，２０２２）等模式后处理订正技术

进行集成耦合，建立了基于多源数据动力统计协同

融合的阵风预报流程（图７），在睿思系统中实现了

阵风（雷暴大风）的“百米级、分钟级”客观预报。

　　如前所述，基于机器学习和深度学习的短时临

近预报方法不断涌现（ＲａｓｐａｎｄＬｅｒｃｈ，２０１８；张延彪

等，２０２２；韩念霏等，２０２２；徐景峰等，２０２３；ＹａｎｇＸ

ｅｔａｌ，２０２３；Ｚｈａｎｇｅｔａｌ，２０２４；代刊等，２０２５）。但

是，基于深度学习的“百米级、分钟级”雷暴大风短时

临近预报研究并不多见。为更精准捕捉雷暴大风的

小尺度突发特性，Ｌｉｕｅｔａｌ（２０２４）综合运用京津冀

地区２０２１—２０２３年４—９月的多源多尺度数据（包

括雷达、闪电、地面ＡＷＳ风场、睿思分析和预报场、

数值模式热动力场等），构建了“百米级”雷暴大风深

度学习短时临近预报模型 ＴＧＴｒａｎｓＵｎｅｔ。首先，

通过对气象要素场进行时空图像序列重构，并引入

ＤｉｃｅＬｏｓｓ和ＦｏｃａｌＬｏｓｓ两种适用于二分类问题的

损失函数；在上采样部分，采用亚像素卷积与“协调

注意”模块组合，以增强深度神经网络的感知能力和

特征表示能力；然后，提出多尺度特征深度学习融合

模块，将雷暴大风的预报问题转化为深度学习中的

“图像到图像”转换问题，形成了雷暴大风短时临近

预报模型ＴＧＴｒａｎｓＵｎｅｔ，其技术框架如图８所示。

该模型能够提供京津冀区域雷暴大风的０～１２ｈ格

点分类预报（有无落区预报），更新频率为每小时

１次，空间分辨率为５００ｍ。针对深度学习模型可

解释性较差的问题，Ｌｉｕｅｔａｌ（２０２５）基于积分梯度

法（ＩｎｔｅｇｒａｔｅｄＧｒａｄｉｅｎｔ）、ＤｅｅｐＬＩＦＴ（ＤｅｅｐＬｅａｒｎ

ｉｎｇＩｍｐｏｒｔａｎｃｅＦｅａＴｕｒｅｓ）、ＳＨＡＰ（ＳｈａｐｌｅｙＡｄｄｉ

ｔｉｖｅｅｘＰｌａｎａｔｉｏｎｓ）三种不同的解释学习方法，对

ＴＧＴｒａｎｓＵｎｅｔ模型进行物理可解释性分析，以更

全面掌握每个输入特征（指标）在不同预报时效对雷

暴大风模型性能的贡献，逐步移除冗余或无关的特

征并简化模型，降低计算复杂性，防止过拟合，为雷

暴大风预报模型ＴＧＴｒａｎｓＵｎｅｔ的优化和改进提供

了强有力支持。目前，ＴＧＴｒａｎｓＵｎｅｔ模型已经被

集成进睿思系统，实现了实时应用。

２．４　融合卫星监测和风暴追踪的对流初生临近预

报技术

　　对流初生（ｃｏｎｖｅｃｔｉｖｅｉｎｉｔｉａｔｉｏｎ，ＣＩ）的机理极

其复杂，因此ＣＩ预报也是天气预报的国际难题之一

（崔新艳等，２０２１）。研究表明，使用卫星资料开展

ＣＩ临近预报具有明显优势（ＲｏｂｅｒｔｓａｎｄＲｕｔｌｅｄｇｅ，

２００３；Ｓｉｅｗｅｒｔｅｔａｌ，２０１０）。我们借鉴 Ｗａｌｋｅｒａｎｄ

Ｍｅｃｉｋａｌｓｋｉ（２０１１）和 Ｗａｌｋｅｒｅｔａｌ（２０１２）针对美国

ＧＯＥＳＲ卫星开发的多光谱通道ＣＩ临近预报方法，

图７　基于多源数据融合的动力统计协同阵风预报框架

Ｆｉｇ．７　Ｄｙｎａｍｉｃａｌｓｔａｔｉｓｔｉｃａｌｃｏｌｌａｂｏｒａｔｉｖｅｇｕｓｔｆｏｒｅｃａｓｔｉｎｇｆｒａｍｅｗｏｒｋｂａｓｅｄｏｎｍｕｌｔｉｓｏｕｒｃｅｄａｔａｆｕｓｉｏｎ
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图８　雷暴大风短时临近预报模型技术框架

Ｆｉｇ．８　ＴｅｃｈｎｉｃａｌｆｒａｍｅｗｏｒｋｏｆｔｈｕｎｄｅｒｓｔｏｒｍｇａｌｅｎｏｗｃａｓｔｉｎｇｍｏｄｅｌｉｎｔｈｅＲＩＳＥｓｙｓｔｅｍ

通过对ＦＹ４数据进行积云识别、追踪以及 ＣＩ诊

断，在睿思系统中实现了基于静止卫星资料的京津

冀地区ＣＩ临近预报（图９）。具体技术路线如下：

（１）积云识别。ＣＩ临近预报关注的是未来可能发展

为积雨云或雷暴的非成熟积云，可以通过积云掩膜

算法来获得（ＭｅｃｉｋａｌｓｋｉａｎｄＢｅｄｋａ，２００６；Ｗａｌｋｅｒ

ｅｔａｌ，２０１２）。业务上，为节省时间，可直接使用云类

型产品（Ｍｉｎｅｔａｌ，２０１７）作为ＣＩ临近预报算法的辅

助资料使用。（２）积云追踪。在得到非成熟积云后，

通过ＴＲＥＣ等算法开展积云追踪，从而可以得到亮

温和通道亮温差随时间的变化率。（３）ＣＩ临近预报

诊断。完成积云追踪之后，对研究区域的每一个像

素计算其ＣＩ临近预报的全部指标，当一定比例的指

标满足阈值时，就将这个像素标记为ＣＩ。

　　由于不同对流环境中ＣＩ相关的积云发展具有

明显地域特征差异，因此针对京津冀地区，需要构建

适应本地的ＣＩ临近预报指标并确定其阈值。目前

比较成熟的方法有主成分分析法（Ｍｅｃｉｋａｌｓｋｉｅｔａｌ，

２０１０）和箱线图统计分析法（ＺｈｕｇｅａｎｄＺｏｕ，２０１８）。

这里采取箱线图统计分析方法，选取２０１８—２０１９年

京津冀地区暖季８９个ＣＩ过程，就１６个候选ＣＩ临

近预报指标开展统计分析，最终得到有表征意义的

１２条ＣＩ判据（表３）。这里，ＣＩ真值是基于京津冀

雷达三维拼图数据，通过雷暴识别、追踪、分析和临

近预报算法（ＴＩＴＡＮ）（ＤｉｘｏｎａｎｄＷｉｅｎｅｒ，１９９３；李

五生等，２０１４；Ｗａｎｇｅｔａｌ，２０１４）来获取ＣＩ的实际

位置和出现时间（图９）。

图９　基于卫星观测的ＣＩ临近预报框架图

Ｆｉｇ．９　ＦｒａｍｅｗｏｒｋｄｉａｇｒａｍｏｆＣＩｎｏｗｃａｓｔｉｎｇ

ｂａｓｅｄｏｎｓａｔｅｌｌｉｔｅｏｂｓｅｒｖａｔｉｏｎｓ

　　选取２０２２年汛期（６月１日至９月１５日）北京

地区ＣＩ预报结果进行客观检验评估，主要采用命中

率（ＰＯＤ）、空报率（ＦＡＲ）、临界成功指数（ＣＳＩ，即

ＴＳ评分）、提前时间 （ＬＴ）等检验指标来评估

（表４）。２０２２年汛期共有６３ｄ对流日，预报命中６０

次（ＰＯＤ为０．９５２），空报２０次（ＦＡＲ为０．２５），漏报
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３次，ＣＳＩ为０．７２３，最短ＬＴ为８ｍｉｎ，最长ＬＴ为

８５ｍｉｎ，平均ＬＴ为４８ｍｉｎ。从不同月份来看，８月

和９ 月的 ＰＯＤ 最高 （１００％），但 ＦＡＲ 也 最高

（０．３３３）；ＣＳＩ则为６月最高（０．８３３），说明该方法对

２０２２年６月的ＣＩ预报效果最好。

表３　京津冀地区犆犐临近预报指标及其阈值

犜犪犫犾犲３　犖狅狑犮犪狊狋犻狀犵犻狀犱犻犮犪狋狅狉狊犪狀犱狋犺狉犲狊犺狅犾犱狊犳狅狉犆犐

犻狀狋犺犲犅犲犻犼犻狀犵犜犻犪狀犼犻狀犎犲犫犲犻犚犲犵犻狅狀

编号 ＣＩ临近预报指标 物理意义 阈值／℃

１ １０．８μｍ亮温 云层厚度 －２０～１１

２ ６．２－１０．８μｍ亮温差 云层厚度 －４３～－１５

３ ７．１－１０．８μｍ亮温差 云层厚度 －３１～－５

４ １３．５－１０．８μｍ亮温差 云层厚度 －２９～－１３

５ ６．２－７．１μｍ亮温差 云层厚度 －１２～－５

６ ８．５－１０．８μｍ亮温差 云顶冻结 －２～０

７ １２．０－１０．８μｍ亮温差 云顶冻结 －１～０

８ （８．５～１０．８）－（１０．８～１２．０）μｍ亮温差 云顶冻结 －３～０

９ １０．８μｍ亮温变化率 强上升气流 ＜－４

１０ ６．２－１０．８μｍ亮温差变化率 强上升气流 ＞４

１１ ７．１－１０．８μｍ亮温差变化率 强上升气流 ＞３

１２ １３．５－１０．８μｍ亮温差变化率 强上升气流 ＞２

　　　　　　　　　　　　　注：亮温差和变化率为１５ｍｉｎ间隔。

表４　２０２２年北京汛期犆犐预报评估结果

犜犪犫犾犲４　犈狏犪犾狌犪狋犻狅狀狅犳犆犐犳狅狉犲犮犪狊狋狊犱狌狉犻狀犵狋犺犲２０２２犳犾狅狅犱狊犲犪狊狅狀犻狀犅犲犻犼犻狀犵

月份 ＣＩ天数／ｄ 命中率（ＰＯＤ） 空报率（ＦＡＲ） 临界成功指数（ＣＳＩ） 平均提前时间（ＬＴ）／ｍｉｎ 最短ＬＴ／ｍｉｎ 最长ＬＴ／ｍｉｎ

６ ２２ ０．９０９ ０．０９１ ０．８３３ ４４ ２１ ６３

７ １９ ０．９４７ ０．２８０ ０．６９２ ４４ ２４ ６９

８ １８ １．００ ０．３３３ ０．６６７ ５１ ８ ６３

９ ４ １．００ ０．３３３ ０．６６７ ６８ ６０ ８５

２．５　多源多尺度数值预报集成技术

数值预报背景场是决定睿思系统实况分析和预

报性能的重要因子之一，通过应用多源数值预报背

景场融合技术，是改进睿思系统预报误差的一个有

效途径。Ｋａｎｎｅｔａｌ（２０１５）分别以４．８ｋｍ和２．５ｋｍ

分辨率的中尺度数值预报背景场进行观测资料融合

对比研究，结果表明１ｋｍ分辨率温度和风场格点

融合分析性能依赖于背景场。利用多家数值模式和

国家气象中心逐３ｈ网格降水预报指导产品，潘留

杰等（２０２１）提出了多模式和网格降水预报融合的降

水预报释用方法。宋林烨等（２０２５ａ）针对复杂山地

百米级温度与风场融合预报，对比分析了ＥＣＭＷＦ

ＩＦＳ全球模式和ＣＭＡＢＪ区域模式作为睿思背景场

的性能差异。结果表明，对于睿思系统１００ｍ分辨

率温度分析和预报，以ＥＣＭＷＦＩＦＳ模式为背景场

的结果整体优于以ＣＭＡＢＪ模式为背景场的结果，

但以ＣＭＡＢＪ模式为背景场的睿思１００ｍ分辨率

风场产品在精细结构刻画和局地极端大风预报方面

表现更优。此外，我国自主研发的ＣＭＡＭＥＳＯ模

式（薛纪善和陈德辉，２００８；沈学顺等，２０２０；２０２５）目

前也已经可以作为睿思系统的数值预报背景场，并

开展了雷暴大风的融合预报试验，将另文表述。

为改善睿思系统单一数值模式背景场的局限

性，并引入预报不确定性，综合考虑 ＣＭＡＢＪ、

ＣＭＡＭＥＳＯ和 ＥＣＭＷＦＩＦＳ三个模式的预报性

能，进一步研发了睿思系统的多模式背景场融合方

法。该方法分为两个主要步骤：首先，对各个不同来

源、不同时空分辨率的数值预报原始数据进行复杂

地形降尺度预处理，插值到睿思系统空间网格上（陈

康凯等，２０２０；宋林烨等，２０２５ａ），获取睿思系统背景

场所需的每个模式全部变量；然后，将多模式背景场

数据通过线性非等权重函数进行融合，形成一组新

的多模式融合背景场。睿思系统狋时刻起报的第犺

小时多模式融合背景场输入变量值ＮＷＰｖｒｉｓｅ的融合

算法如下：

ＮＷＰｖｒｉｓｅ（狋＋犺）＝∑
狀

犻＝１

［犳犻·ＮＷＰｖ犻（狋犻＋犺犻）］

犻＝１，…，狀 （２）

式中：ＮＷＰｖ犻（狋犻＋犺犻）表示第犻个模式狋犻时刻起报的
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第犺犻小时预报变量值，且对任意一个模式都需满足

狋犻＜狋和狋＋犺＝狋犻＋犺犻，犳犻 表示第犻个模式的权重系

数，且满足∑
狀

犻＝１

犳犻＝１。每个模式的最佳犳犻系数由历

史资料回算统计分析可以得到。未来，犳犻还可以设

计为包含时间和空间的函数，以更加精确地反映每

个模式在不同区域和不同时间的优势。需要指出，

此处模式个数狀＝３（即 ＣＭＡＢＪ、ＣＭＡＭＥＳＯ、

ＥＣＭＷＦＩＦＳ），当开发相应模式的睿思预处理模块

后狀可扩展。预报变量包含２ｍ温度、三维温度、

１０ｍ犝／犞 风、三维犝／犞 风、１ｈ累计降水量等２０

余种，以ＣＭＡＢＪ模式背景场为初始默认配置。由

于可能遇到某个数值模式预报数据缺失、不完整等

异常情况，睿思系统实时运行需要自动判断和融合

不同数值模式背景场以保证逐１０ｍｉｎ一次循环的

快速稳定运行。

通过开展以ＣＭＡＢＪ模式为背景场的睿思实

时业务系统与以多模式融合为背景场的睿思系统的

实时并行对比试验，可以分析多源数值预报集成方

法对“百米级、分钟级”产品预报误差的可能影响。

结果 表 明，当 ＣＭＡＢＪ、ＥＣＭＷＦＩＦＳ 和 ＣＭＡ

ＭＥＳＯ权重系数分别设置为０．４、０．４和０．２时，睿

思系统地面常规要素０～２４ｈ预报均方根误差均比

采用单一ＣＭＡＢＪ模式的实时业务产品有所降低，

其中２ｍ温度、相对湿度、１０ｍ平均风和阵风的误

差平均分别降低了１１．３％、１６．１％、２．４％和２．７％

（图１０）。温度和相对湿度７～２４ｈ均方根误差减

小幅度大于０～６ｈ；而风场的提升幅度较小，且前

６ｈ的误差减小幅度相对最大。需要指出，当继续

增大ＥＣＭＷＦＩＦＳ全球模式背景场的权重系数，较

大范围的京津冀区域平均风和阵风０～２４ｈ预报均

方根误差平均可降低约７％，但较粗分辨率的全球

模式会导致局地小尺度极端大风的精细化预报能力

受限。总之，基于多源模式融合背景场的睿思系统

通过集成不同模式的优势，既可以保持“百米级、分

钟级”预报产品的精细化程度，又可以进一步有效降

低２４ｈ内的融合预报误差。

３　实时应用检验评估

睿思系统在２０２２年北京冬奥会气象服务保障

中发挥了重要作用，实时应用检验评估结果可参考

陈明轩等（２０２４）、宋林烨等（２０２５ｂ）和 Ｃｈｅｎｅｔａｌ

（２０２５）。在后冬奥时代，睿思系统通过前述核心技

术改进和功能拓展，成功应用于２０２３年杭州亚运

会、２０２５年哈尔滨亚冬会等国家重大活动保障，相

注：实时并行测试时段为２０２３年７月１６日至１０月６日，右纵坐标对应的灰色柱状为多源模式相对于

单一模式实时产品的误差减小率，虚线表示０～２４ｈ平均的误差减小率。

图１０　睿思系统采用多源模式融合背景场及单一模式（ＣＭＡＢＪ）背景场的

（ａ）温度，（ｂ）相对湿度，（ｃ）１０ｍ平均风，（ｄ）阵风预报检验

Ｆｉｇ．１０　Ｃｏｍｐａｒａｔｉｖｅｔｅｓｔｓｏｆ（ａ）ｔｅｍｐｅｒａｔｕｒｅ，（ｂ）ｒｅｌａｔｉｖｅｈｕｍｉｄｉｔｙ，（ｃ）ａｖｅｒａｇｅｗｉｎｄａｔ１０ｍ，ａｎｄ

（ｄ）ｇｕｓｔｆｒｏｍｔｈｅＲＩＳＥｓｙｓｔｅｍｂａｓｅｄｏｎｍｕｌｔｉｓｏｕｒｃｅａｎｄｓｉｎｇｌｅ（ｒｅａｌｔｉｍｅｓｅｒｖｉｃｅ，

ＣＭＡＢＪ）ｍｏｄｅｌｂａｃｋｇｒｏｕｎｄｓｆｒｏｍ１６Ｊｕｌｙｔｏ６Ｏｃｔｏｂｅｒ２０２３
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关检验评估结果将在另文中给出。这里主要描述目

前睿思系统针对京津冀汛期降水和雷暴大风业务预

报的检验结果。

３．１　京津冀汛期降水预报检验

开展２０２１—２０２４年京津冀地区汛期（６月１日至

９月１５日）睿思系统降水预报产品的整体检验。基

于ＡＷＳ降水强度分级，给出睿思系统在０～２４ｈ预

报时效内的逐小时累计降水预报检验结果（图１１）。

整体而言，所有降水阈值和预报时效的ＴＳ评分均

表现良好，Ｂｉａｓ评分总体接近于１的最优值，且浮动

基本控制在０．５～１．５的可容忍阈值范围内（陈明轩

等，２０２４），但是２５ｍｍ·ｈ－１强降水的３～６ｈ预报

Ｂｉａｓ评分偏小。不同阈值及预报时效的ＴＳ和Ｂｉａｓ

评分存在一定差异。在０～２ｈ临近预报时效内，睿

思系统降水预报的Ｂｉａｓ接近１，ＴＳ达０．４～０．６，表

明预报与实况在强度及落区上高度吻合，睿思系统

的降水融合预报在临近时效内表现较好。在３～

６ｈ短时预报时效内，睿思系统降水预报由临近预

报降水和数值模式预报降水的权重融合方案得出，

ＴＳ评分随时效增长渐趋稳定，而不同降水强度预报

的Ｂｉａｓ评分表现出不同特征。微量降水（０．１ｍｍ·

ｈ－１）的Ｂｉａｓ评分有所空报，但Ｂｉａｓ未超过１．５；小

量级降水（１ｍｍ·ｈ－１）的Ｂｉａｓ评分接近最优值，略

有空报；大量级降水（５～１０ｍｍ·ｈ
－１）的Ｂｉａｓ评分

则在０．７～１．０，存在一定漏报情况；强降水（２５ｍｍ·

ｈ－１）因样本稀少，个别时次漏报较明显，Ｂｉａｓ评分

较小（大部分时次０．９左右，个别时次为０．３、０．４、

０．７）。对于７～２４ｈ预报时效，睿思系统降水预报

主要依赖数值模式预报结果，检验评分较为稳定，但

对于超过２５ｍｍ·ｈ－１的强降水存在一定漏报，也

反映了睿思所使用的数值模式对于降水７～２４ｈ预

报的误差问题。总体来看，睿思系统在０～２４ｈ对

降水结构与强度的预报具有良好的性能，类似的降

水预报融合技术是解决高分辨率定量降水无缝隙业

务预报的有效方案（程丛兰等，２０１３；２０１９）。当然从

Ｂｉａｓ评分检验也可以看出，对于降水的２～６ｈ融合

预报，睿思系统存在“小雨空报、大雨漏报”的问题，

还需要对融合预报方案进行改进或借鉴新的融合预

报技术（Ｈｗａｎｇｅｔａｌ，２０１５；Ｉｍｈｏｆｆｅｔａｌ，２０２３）。

　　以京津冀２０２３年“２３·７”特大暴雨过程为例

（符娇兰等，２０２３），进一步分析睿思系统的高时空分

辨率降水预报效果。２０２３年，受第５号台风“杜苏

芮”减弱后的热带低压与副热带高压外围暖湿气流

共同影响，河北、北京等地７月２９日至８月１日出

现暴雨到大暴雨，局地特大暴雨。京津冀共４１５４个

ＡＷＳ站，自７月２９日０８：００到８月１日２０：００累

计降水量≥５０ｍｍ的站有３３３２个，≥７０ｍｍ的站

有２９２４个，≥１００ｍｍ的站有２５１３个；累计降水量

最大值为１００３．４ｍｍ，出现在河北省邢台市临城

注：粗黑横实线指示Ｂｉａｓ最佳评分为１，粗黑横虚线指示Ｂｉａｓ可容忍评分区间为［０．５，１．５］。

图１１　２０２１—２０２４年汛期（６月１日至９月１５日）京津冀地区睿思系统０～２４ｈ预报

时效的逐小时累计降水预报ＴＳ评分和Ｂｉａｓ评分

Ｆｉｇ．１１　Ｈｏｕｒｌｙｐｒｅｃｉｐｉｔａｔｉｏｎｖｅｒｉｆｉｃａｔｉｏｎ（ＴＳｓｃｏｒｅａｎｄＢｉａｓｓｃｏｒｅ）ｏｆｔｈｅ０－２４ｈｆｕｓｅｄｐｒｅｃｉｐｉｔａｔｉｏｎ

ｆｏｒｅｃａｓｔｓｆｒｏｍｔｈｅＲＩＳＥｓｙｓｔｅｍｉｎｔｈｅＢｅｉｊｉｎｇＴｉａｎｊｉｎＨｅｂｅｉＲｅｇｉｏｎｄｕｒｉｎｇｔｈｅｆｌｏｏｄｓｅａｓｏｎ

（１Ｊｕｎｅｔｏ１５Ｓｅｐｔｅｍｂｅｒ）ｆｒｏｍ２０２１ｔｏ２０２４
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县；最大小时降水强度为１１４．２ｍｍ·ｈ－１，于７月

３１日１１：００出现在北京市门头沟区定都阁。需要

指出的是，在类似于“２３·７”这样的持续性区域大暴

雨过程中，极端降水强度出现的时段、落区和强度是

预报的难点也是致灾的关键因子（荆浩等，２０２４）。

因此，这里分析此次大暴雨过程中最大小时降水强

度出现时段（７月３１日１１：００）的睿思系统１ｈ累计

降水格点预报效果。图１２ａ给出了７月３１日１１：００

睿思系统的１ｈ（１０：００—１１：００）累计降水格点融合

分析场，由地面ＡＷＳ降水量观测和雷达组网ＱＰＥ

融合得到。图１２ｂ～１２ｄ是睿思系统不同起报时刻

（提前１、３、６、１２和２４ｈ预报）对应的１ｈ（１０：００—

１１：００）累计降水格点预报结果。从提前１ｈ和提前

３ｈ的临近预报结果来看，预报的１ｈ累计降水的整

体雨带分布、小时降水强度和强降水落区均与实况

较为吻合；从提前６ｈ的短时预报结果来看，预报的

注：图ｂ～ｆ中圆点所示为天气雷达站点。

图１２　睿思系统对京津冀２０２３年“２３·７”特大暴雨过程１ｈ累计降水量（５００ｍ分辨率）

的预报性能对比（以７月３１日１０：００—１１：００为例）

（ａ）观测融合分析场，（ｂ～ｆ）不同起报时刻和预报时效的格点降水预报场：

（ｂ）１ｈ预报（３１日１０：００起报），（ｃ）３ｈ预报（３１日０８：００起报），（ｄ）６ｈ预报（３１日０５：００起报），

（ｅ）１２ｈ预报（３０日２３：００起报），（ｆ）２４ｈ预报（３０日１１：００起报）

Ｆｉｇ．１２　ＣｏｍｐａｒｉｓｏｎｏｆｔｈｅｆｏｒｅｃａｓｔｐｅｒｆｏｒｍａｎｃｅｏｆｔｈｅＲＩＳＥｓｙｓｔｅｍｆｏｒ１ｈａｃｃｕｍｕｌａｔｅｄｐｒｅｃｉｐｉｔａｔｉｏｎ（５００ｍ

ｒｅｓｏｌｕｔｉｏｎ）ｄｕｒｉｎｇｔｈｅＪｕｌｙ２０２３ｅｘｔｒｅｍｅｒａｉｎｆａｌｌｅｖｅｎｔｉｎｔｈｅＢｅｉｊｉｎｇＴｉａｎｊｉｎＨｅｂｅｉＲｅｇｉｏｎ

（ｔａｋｉｎｇｔｈｅｐｒｅｃｉｐｉｔａｔｉｏｎｄｕｒｉｎｇ１０：００－１１：００ＢＴ３１Ｊｕｌｙａｓａｎｅｘａｍｐｌｅ）

（ａ）ａｎａｌｙｓｉｓｏｆｏｂｓｅｒｖｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｆｕｓｉｏｎ，（ｂ－ｆ）ｇｒｉｄｄｅｄｐｒｅｃｉｐｉｔａｔｉｏｎｆｏｒｅｃａｓｔｓｗｉｔｈｄｉｆｆｅｒｅｎｔｌｅａｄｔｉｍｅ：

（ｂ）１ｈｆｏｒｅｃａｓｔ（ｉｎｉｔｉａｔｅｄａｔ１０：００ＢＴ３１Ｊｕｌｙ），（ｃ）３ｈｆｏｒｅｃａｓｔ（ｉｎｉｔｉａｔｅｄａｔ０８：００ＢＴ３１Ｊｕｌｙ），

（ｄ）６ｈｆｏｒｅｃａｓｔ（ｉｎｉｔｉａｔｅｄａｔ０５：００ＢＴ３１Ｊｕｌｙ），（ｅ）１２ｈｆｏｒｅｃａｓｔ（ｉｎｉｔｉａｔｅｄａｔ２３：００ＢＴ３０Ｊｕｌｙ），

（ｆ）２４ｈｆｏｒｅｃａｓｔ（ｉｎｉｔｉａｔｅｄａｔ１１：００ＢＴ３０Ｊｕｌｙ）
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１ｈ累计降水的整体雨带走势与实况接近，但小时

降水强度偏大，出现了多个４０ｍｍ·ｈ－１以上的局

地强降水中心；从提前１２ｈ和提前２４ｈ的预报结果

来看，也呈现类似特征，预报的１ｈ累计降水的雨带

走势与实况类似，但４０ｍｍ·ｈ－１以上和７０ｍｍ·ｈ－１

以上降水阈值和落区范围的预报偏大。当然，６ｈ之

后的降水预报，以数值模式降尺度预报和偏差订正为

主，这也间接印证了睿思系统采用的ＣＭＡＢＪ模式对

这次极端强降水的总体预报效果，与已有的分析结论

类似（张博等，２０２４；郭淳薇等，２０２５）。

３．２　京津冀雷暴大风预报检验

在睿思系统夏季雷暴大风的业务预报检验方

面，选取２０２４年京津冀地区基于多源数据动力统

计协同融合的逐小时阵风预报产品（睿思融合产

品），以及基于ＴＧＴｒａｎｓＵｎｅｔ模型的雷暴大风分类

预报产品（ＴＧＴｒａｎｓＵｎｅｔ产品），开展８级以上（风

速≥１７．２ｍ·ｓ
－１）典型雷暴大风过程（表５）的检验

评估。在客观检验中，所用的雷暴大风实况数据来

源于站点资料，通过综合 ＡＷＳ观测极大风资料以

及国家雷电探测系统闪电定位数据进行判断。具体

判识标准为：当检验站点周围半径５０ｋｍ范围内，

小时累计闪电次数≥２次，且该时次小时极大阵风

风速≥１７．２ｍ·ｓ
－１时，将其作为实况检验对象。本

次评估涉及京津冀地区１６６７个ＡＷＳ站点，在客观

检验评价指标方面采用ＴＳ和Ｂｉａｓ评分。

表５　２０２４年京津冀地区１０个雷暴大风个例

犜犪犫犾犲５　犜犲狀狋犺狌狀犱犲狉狊狋狅狉犿犵犪犾犲犮犪狊犲狊犻狀狋犺犲

犅犲犻犼犻狀犵犜犻犪狀犼犻狀犎犲犫犲犻犚犲犵犻狅狀犻狀２０２４

序号 日期（年月日） 序号 日期（年月日）

１ ２０２４５３０ ６ ２０２４７２２

２ ２０２４６１１ ７ ２０２４８３

３ ２０２４６１２ ８ ２０２４８４

４ ２０２４６１３ ９ ２０２４８９

５ ２０２４７２１ １０ ２０２４８１０

　　基于２０２４年京津冀地区１６６７个ＡＷＳ站观测

资料对雷暴大风个例的检验评分可见（图１３），ＴＧ

ＴｒａｎｓＵｎｅｔ产品在１ｈ预报时效ＴＳ评分达０．１４，但

随着预报时效的延长，ＴＳ评分呈现下降趋势。相比

之下，睿思融合产品在１ｈ预报时效的 ＴＳ评分略

低，为０．１１７，而在２～８ｈ的预报时效内，其ＴＳ评

分稳定在０．０７５～０．０８５，９～１２ｈ预报时效的ＴＳ评

分则在０．０４２～０．０５２波动。在Ｂｉａｓ评分方面，ＴＧ

ＴｒａｎｓＵｎｅｔ产品整体上高于睿思融合产品，特别是

在９ｈ之后，ＴＧＴｒａｎｓＵｎｅｔ产品的Ｂｉａｓ评分显著

上升，这表明其在雷暴大风预报中存在较多的空报

现象。相反，睿思融合产品在１～１２ｈ的预报时效

注：ＴＧ表示基于ＴＧＴｒａｎｓＵｎｅｔ雷暴大风短时临近预报模型的雷暴大风分类预报产品，

ＲＩＳＥ表示基于多源数据融合的动力统计协同阵风预报产品。

图１３　２０２４年京津冀雷暴大风（风速≥１７．２ｍ·ｓ－１）个例客观检验评分

Ｆｉｇ．１３　Ｏｂｊｅｃｔｉｖｅｖｅｒｉｆｉｃａｔｉｏｎｓｃｏｒｅｓｆｏｒｔｈｕｎｄｅｒｓｔｏｒｍｇａｌｅ（ｗｉｎｄｓｐｅｅｄ≥１７．２ｍ·ｓ
－１）

ｃａｓｅｓｉｎｔｈｅＢｅｉｊｉｎｇＴｉａｎｊｉｎＨｅｂｅｉＲｅｇｉｏｎｉｎ２０２４
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内Ｂｉａｓ评分都保持在１．５以下，尤其在１～５ｈ，Ｂｉａｓ

评分接近最优值１，这显示了睿思融合产品在雷暴

大风预报中的空报情况较少。总体来说，基于

ＴＧＴｒａｎｓＵｎｅｔ模型的雷暴大风分类预报产品，在

短时临近预报时效能较好地诊断雷暴大风；基于睿

思系统多源数据融合的动力统计协同阵风预报产

品，预报性能更稳定；在１２ｈ的短时预报时段内，二

者对于雷暴大风的预报均具有参考价值。

　　此外，对于具体个例，选取京津冀地区２０２４年

５月３０日的极端雷暴大风过程进行检验分析。受

冷锋东移南压影响，１２：００—１８：００华北北部等地出

现线状强风暴系统，并自西向东快速发展移动，系统

移速达７０ｋｍ·ｈ－１，北京、河北北部、天津等地出现

大范围混合型雷暴大风天气。图１４ａ，１４ｂ给出了

注：填色表示蒲福风级（８级对应的风速≥１７．２ｍ·ｓ－１），风矢为风场。

图１４　２０２４年５月３０日睿思系统基于多源数据动力统计协同融合阵风预报方法的北京地区（ａ）１５：００和

（ｂ）１６：００阵风格点分析场，以及１１：００起报的（ｃ）１５：００和（ｄ）１６：００阵风格点预报场

Ｆｉｇ．１４　Ｇｒｉｄｄｅｄｇｕｓｔａｎａｌｙｓｉｓａｔ（ａ）１５：００ＢＴａｎｄ（ｂ）１６：００ＢＴａｎｄｇｒｉｄｄｅｄｇｕｓｔｆｏｒｅｃａｓｔａｔ（ｃ）１５：００ＢＴ

ａｎｄ（ｄ）１６：００ＢＴｉｎｉｔｉａｔｅｄａｔ１１：００ＢＴｂａｓｅｄｏｎｔｈｅｄｙｎａｍｉｃａｌｓｔａｔｉｓｔｉｃａｌｃｏｌｌａｂｏｒａｔｉｖｅｍｅｔｈｏｄｗｉｔｈ

ｍｕｌｔｉｓｏｕｒｃｅｄａｔａｆｕｓｉｏｎｉｎｔｈｅＲＩＳＥｓｙｓｔｅｍｆｏｒｔｈｅｃａｓｅｏｎ３０Ｍａｙ２０２４ｉｎＢｅｉｊｉｎｇＲｅｇｉｏｎ
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２０２４年５月３０日这次雷暴大风过程中睿思系统的

阵风格点分析场。此次天气过程的主要特点是系统

移动速度快，从１４：３０雷暴大风开始影响北京城区

到１６：３０过程消散，总时长２ｈ；影响范围大，从北京

西部山区自西北向东南移动，影响北京大部分地区；

风速强度大，北京地区２５２个 ＡＷＳ站极大风风速

≥１７．２ｍ·ｓ
－１，北京市丰台区千灵山达１３级、安河

桥达１２级。这场雷暴大风造成北京多处街道出现

严重树木倒伏状况。图１４ｃ，１４ｄ是睿思系统１１：００

起报的对应１５：００及１６：００时次的动力统计协同

阵风预报结果。从图中可以看出，睿思系统能够较

好地预报出雷暴的下山过程，但从时间上来看，雷暴

下山时间较实况略偏晚，但雷暴大风的预报强度与

实况比较吻合。由１１：００起报的未来４ｈ预报可

见，雷暴大风位置主要位于北京西部山区，而此时城

区实际已经出现雷暴大风，而１１：００起报的未来５ｈ

预报对北京城区的雷暴大风位置及强度与实况比较

吻合。

４　结论和讨论

论文对“百米级、分钟级”多源数据快速融合预

报系统“睿思”进行了介绍，重点描述了在“后冬奥”

时代，通过发展、集成一系列关键技术以及应用 ＡＩ

等新方法，实现了在“百米级、分钟级”技术框架内的

短时强降水和雷暴大风的精细化短时临近预报、对

流初生临近预报等功能。通过检验评估也表明，睿

思系统中集成的新技术方案对提升强降水和雷暴大

风等强对流天气预报精细度和准确率具有显著优

势，特别是在０～６ｈ的短时临近预报时效内。

当然，“百米级、分钟级”天气预报也面临巨大挑

战。目前，稠密的分钟级 ＡＷＳ观测资料是保障睿

思系统“百米级、分钟级”近地面融合分析和３ｈ内

预报准确性的关键因素，而可靠的数值预报背景场

对６ｈ以上预报准确率的提升尤为关键。已经发展

的多模式线性融合集成方法虽然可以降低２４ｈ内

常规要素的预报误差，但对降水融合预报效果甚微。

另外，目前主流的区域高分辨率快速更新循环数值

预报模式不同循环预报结果的差异，可能会对融合

预报产生负面影响。因此，多模式背景场融合策略

还应根据不同的天气类型进行动态融合或设置滑动

窗口期，并根据不同模式的预报误差特征引入不同

的降水预报订正，例如模式降水预报位相和强度校

准（程丛兰等，２０１３）、频率匹配降水预报订正（李俊

等，２０１４）、最优评分降水订正（吴启树等，２０１７）等，

或对多模式或多集合成员的定量降水预报进行统计

后处理（代刊等，２０１８）后再融合，以期进一步改进温

湿风尤其是夏季强降水的预报准确性。中国气象局

在千米尺度多源气象数据融合格点实况产品方面取

得了巨大进步（师春香等，２０１９），但是在“百米级、分

钟级”三维实况融合分析方面，依然面临多源多时空

尺度资料有效融合、复杂地形处理等难题。如何在

睿思系统中有效融合新型多源稠密观测资料（如塔

基观测、风温湿廓线观测、卫星探测等），并应用高精

度、高效率的数值模式降尺度技术（Ｒｅｙｎｏｌｄｓｅｔａｌ，

２０２３），也是提升睿思系统“百米级、分钟级”三维融

合分析场精度并实现０～１２ｈ短时临近时效内高时

空分辨率三维预报的关键所在。在睿思系统中，目

前的融合卫星监测和风暴追踪的ＣＩ临近预报技术

依然处于测试阶段，如何降低ＣＩ空报率、实现有效

“消空”也是业务应用的一大挑战。

基于对流可分辨尺度集合数值预报背景场的集

合短时临近预报是“百米级、分钟级”天气预报发展

的另一个趋势，已有研究也表明其具有显著优势

（Ｋｏｂｅｒｅｔａｌ，２０１２；ＹａｎｇＬｅｔａｌ，２０２３；Ｆｌｏｒａｅｔａｌ，

２０２５）。随着ＡＩ的不断发展，应用 ＡＩ等新技术实

现次千米尺度甚至“百米级、分钟级”天气预报也是

目前国际上发展的一大趋势（Ｆｌｏｒａｅｔａｌ，２０２５；

Ｚａｎｅｔｔａｅｔａｌ，２０２５）。但是，不论是ＡＩ释用技术还

是ＡＩ大模型，在强对流等中小尺度、快速演变天气

的精细化预报方面均面临诸多挑战。例如，如何有

效构建一个真正适用于 ＡＩ建模的“百米级、分钟

级”区域三维大气再分析数据集，如何实现面向低空

经济等新型应用场景的三维垂直加密精细化ＡＩ预

报，均是天气预报技术发展的当务之急。
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究进展［Ｊ］．气象，５１（７）：７７３７８８．ＣｕｉＸＹ，ＣｈｅｎＭＸ，ＱｉｎＲ，

ｅｔａｌ，２０２５．Ｒｅｓｅａｒｃｈａｄｖａｎｃｅｓｉｎｔｈｅｆｏｒｍａｔｉｏｎｍｅｃｈａｎｉｓｍｓａｎｄ

ｎｏｗｃａｓｔｉｎｇｏｆｔｈｕｎｄｅｒｓｔｏｒｍｇａｌｅｓ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，５１（７）：７７３

７８８（ｉｎＣｈｉｎｅｓｅ）．

代刊，杨绚，周康辉，等，２０２５．深度学习在数字智能天气预报中的应

用［Ｊ］．气象，５１（１１）：１４７７１４９４．ＤａｉＫ，ＹａｎｇＸ，ＺｈｏｕＫＨ，ｅｔａｌ，

２０２５．Ａｐｐｌｉｃａｔｉｏｎｏｆｄｅｅｐｌｅａｒｎｉｎｇｉｎｄｉｇｉｔａｌｉｎｔｅｌｌｉｇｅｎｔｗｅａｔｈｅｒ

ｆｏｒｅｃａｓｔｉｎｇ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，５１（１１）：１４７７１４９４（ｉｎＣｈｉｎｅｓｅ）．

代刊，朱跃建，毕宝贵，２０１８．集合模式定量降水预报的统计后处理技

术研究综述［Ｊ］．气象学报，７６（４）：４９３５１０．ＤａｉＫ，ＺｈｕＹＪ，ＢｉＢ

Ｇ，２０１８．Ｔｈｅｒｅｖｉｅｗｏｆｓｔａｔｉｓｔｉｃａｌｐｏｓｔｐｒｏｃｅｓｓｔｅｃｈｎｏｌｏｇｉｅｓｆｏｒ

ｑｕａｎｔｉｔａｔｉｖｅｐｒｅｃｉｐｉｔａｔｉｏｎｆｏｒｅｃａｓｔｏｆｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍ

［Ｊ］．ＡｃｔａＭｅｔｅｏｒＳｉｎ，７６（４）：４９３５１０（ｉｎＣｈｉｎｅｓｅ）．

邓居昌，覃卫坚，韦文山，２０２２．机器学习算法在气候模式降水预测中

的订正研究［Ｊ］．计算机与数字工程，５０（１１）：２４２８２４３４．ＤｅｎｇＪ

Ｃ，ＱｉｎＷＪ，ＷｅｉＷＳ，２０２２．Ｒｅｓｅａｒｃｈｏｎｃｏｒｒｅｃｔｉｏｎｏｆｍａｃｈｉｎｅ

ｌｅａｒｎｉｎｇａｌｇｏｒｉｔｈｍｓｉｎｃｌｉｍａｔｅｍｏｄｅｌｐｒｅｃｉｐｉｔａｔｉｏｎｐｒｅｄｉｃｔｉｏｎ［Ｊ］．

ＣｏｍｐｕｔＤｉｇｉｔＥｎｇ，５０（１１）：２４２８２４３４（ｉｎＣｈｉｎｅｓｅ）．

符娇兰，权婉晴，麦子，等，２０２３．“２３·７”华北特大暴雨过程雨强精细

化特征及动力和热力条件初探［Ｊ］．气象，４９（１２）：１４３５１４５０．Ｆｕ

ＪＬ，ＱｕａｎＷＱ，ＭａｉＺ，ｅｔａｌ，２０２３．Ｐｒｅｌｉｍｉｎａｒｙｓｔｕｄｙｏｎｔｈｅｒｅ

ｆｉｎｅｄｃｈａｒａｃｔｅｒｉｓｔｉｃｓｏｆｒａｉｎｆａｌｌｉｎｔｅｎｓｉｔｙａｎｄｄｙｎａｍｉｃａｎｄｔｈｅｒ

ｍｏｄｙｎａｍｉｃｃｏｎｄｉｔｉｏｎｓｉｎｔｈｅＪｕｌｙ２０２３ｓｅｖｅｒｅｔｏｒｒｅｎｔｉａｌｒａｉｎｉｎ

ＮｏｒｔｈＣｈｉｎａ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，４９（１２）：１４３５１４５０（ｉｎＣｈｉｎｅｓｅ）．

郭淳薇，仲跻芹，赵秀娟，等，２０２５．ＣＭＡＢＪ模式对“２３·７”极端强降

水过程预报性能分析［Ｊ］．气象学报，８３（２）：３０４３１９．ＧｕｏＣＷ，

ＺｈｏｎｇＪＱ，ＺｈａｏＸＪ，ｅｔａｌ，２０２５．ＥｖａｌｕａｔｉｎｇｔｈｅＣＭＡＢＪｍｏｄｅｌ

ｐｅｒｆｏｒｍａｎｃｅｉｎｐｒｅｄｉｃｔｉｎｇｔｈｅＪｕｌｙ２０２３ｅｘｔｒｅｍｅｈｅａｖｙｒａｉｎ

ｓｔｏｒｍｏｖｅｒＮｏｒｔｈＣｈｉｎａ［Ｊ］．ＡｃｔａＭｅｔｅｏｒＳｉｎ，８３（２）：３０４３１９（ｉｎ

Ｃｈｉｎｅｓｅ）．

韩念霏，杨璐，陈明轩，等，２０２２．京津冀站点风温湿要素的机器学习

订正方法［Ｊ］．应用气象学报，３３（４）：４８９５００．ＨａｎＮＦ，Ｙａｎｇ

Ｌ，ＣｈｅｎＭＸ，ｅｔａｌ，２０２２．Ｍａｃｈｉｎｅｌｅａｒｎｉｎｇｃｏｒｒｅｃｔｉｏｎｏｆｗｉｎｄ，

ｔｅｍｐｅｒａｔｕｒｅａｎｄｈｕｍｉｄｉｔｙｅｌｅｍｅｎｔｓｉｎＢｅｉｊｉｎｇＴｉａｎｊｉｎＨｅｂｅｉＲｅ

ｇｉｏｎ［Ｊ］．ＪＡｐｐｌＭｅｔｅｏｒＳｃｉ，３３（４）：４８９５００（ｉｎＣｈｉｎｅｓｅ）．

何静，陈敏，仲跻芹，等，２０１９．雷达反射率三维拼图观测资料在北方

区域数值模式预报系统中的同化应用研究［Ｊ］．气象学报，７７

（２）：２１０２３２．ＨｅＪ，ＣｈｅｎＭ，ＺｈｏｎｇＪＱ，ｅｔａｌ，２０１９．Ａｓｔｕｄｙｏｆ

ｔｈｒｅｅｄｉｍｅｎｓｉｏｎａｌｒａｄａｒｒｅｆｌｅｃｔｉｖｉｔｙｍｏｓａｉｃａｓｓｉｍｉｌａｔｉｏｎｉｎｔｈｅ

ｒｅｇｉｏｎａｌｆｏｒｅｃａｓｔｉｎｇｍｏｄｅｌｆｏｒＮｏｒｔｈＣｈｉｎａ［Ｊ］．Ａｃｔａ Ｍｅｔｅｏｒ

Ｓｉｎ，７７（２）：２１０２３２（ｉｎＣｈｉｎｅｓｅ）．
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金荣花，曹勇，赵瑞霞，等，２０２５．中央气象台智能数字天气预报业务

的技术进展［Ｊ］．气象，５１（１１）：１３２１１３３４．ＪｉｎＲＨ，ＣａｏＹ，Ｚｈａｏ

ＲＸ，ｅｔａｌ，２０２５．Ｔｅｃｈｎｏｌｏｇｉｃａｌａｄｖａｎｃｅｓｉｎｔｈｅｉｎｔｅｌｌｉｇｅｎｔｄｉｇｉｔａｌ

ｗｅａｔｈｅｒｆｏｒｅｃａｓｔｉｎｇｏｐｅｒａｔｉｏｎａｌｓｙｓｔｅｍｏｆＮａｔｉｏｎａｌＭｅｔｅｏｒｏｌｏｇｉ

ｃａｌＣｅｎｔｒｅ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，５１（１１）：１３２１１３３４（ｉｎＣｈｉｎｅｓｅ）．

荆浩，亢妍妍，吴宏议，等，２０２４．北京“２３·７”极端强降雨特征和成因

分析［Ｊ］．气象，５０（５）：６１６６２９．ＪｉｎｇＨ，ＫａｎｇＹＹ，ＷｕＨ Ｙ，

ｅｔａｌ，２０２４．ＣｈａｒａｃｔｅｒｉｓｔｉｃｓａｎｄｃａｕｓｅｓｏｆｔｈｅＪｕｌｙ２０２３ｅｘｔｒｅｍｅ

ｌｙｔｏｒｒｅｎｔｉａｌｒａｉｎｉｎＢｅｉｊｉｎｇ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，５０（５）：６１６６２９（ｉｎ

Ｃｈｉｎｅｓｅ）．

李佳慧，马建立，陈明轩，等，２０２５．基于瓦片分区的雷达动态定量降

水估测方法研究［Ｊ］．高原气象，４４（１）：１２２１３３．ＬｉＪＨ，ＭａＪＬ，

ＣｈｅｎＭＸ，ｅｔａｌ，２０２５．Ｒｅｓｅａｒｃｈｏｎｄｙｎａｍｉｃｑｕａｎｔｉｔａｔｉｖｅｐｒｅｃｉｐｉ

ｔａｔｉｏｎｅｓｔｉｍａｔｉｏｎｍｅｔｈｏｄｂａｓｅｄｏｎｔｉｌｅｐａｒｔｉｔｉｏｎｉｎｇｆｏｒｒａｄａｒ［Ｊ］．

ＰｌａｔｅａｕＭｅｔｅｏｒ，４４（１）：１２２１３３（ｉｎＣｈｉｎｅｓｅ）．

李俊，杜钧，陈超君，２０１４．降水偏差订正的频率（或面积）匹配方法介

绍和分析［Ｊ］．气象，４０（５）：５８０５８８．ＬｉＪ，ＤｕＪ，ＣｈｅｎＣＪ，２０１４．

Ｉｎｔｒｏｄｕｃｔｉｏｎａｎｄａｎａｌｙｓｉｓｔｏｆｒｅｑｕｅｎｃｙｏｒａｒｅａｍａｔｃｈｉｎｇｍｅｔｈｏｄ

ａｐｐｌｉｅｄｔｏｐｒｅｃｉｐｉｔａｔｉｏｎｆｏｒｅｃａｓｔｂｉａｓｃｏｒｒｅｃｔｉｏｎ［Ｊ］．Ｍｅｔｅｏｒ

Ｍｏｎ，４０（５）：５８０５８８（ｉｎＣｈｉｎｅｓｅ）．

李五生，王洪庆，王玉，等，２０１４．基于卫星资料的对流初生预报及效

果评估［Ｊ］．北京大学学报（自然科学版），５０（５）：８１９８２４．ＬｉＷ

Ｓ，ＷａｎｇＨＱ，ＷａｎｇＹ，ｅｔａｌ，２０１４．Ｃｏｎｖｅｃｔｉｖｅｉｎｉｔｉａｔｉｏｎｆｏｒｅｃａｓｔ

ｉｎｇａｎｄｓｔａｔｉｓｔｉｃａｌｅｖａｌｕａｔｉｏｎｂａｓｅｄｏｎｓａｔｅｌｌｉｔｅｄａｔａ［Ｊ］．ＡｃｔａＳｃｉ

ＮａｔＵｎｉｖＰｅｋｉｎｅｎｓｉｓ，５０（５）：８１９８２４（ｉｎＣｈｉｎｅｓｅ）．

刘莲，陈明轩，王迎春，２０１６．基于雷达资料四维变分同化及云模式的

中尺度对流系统数值临近预报试验［Ｊ］．气象学报，７４（２）：２１３

２２８．ＬｉｕＬ，ＣｈｅｎＭＸ，ＷａｎｇＹＣ，２０１６．Ｎｕｍｅｒｉｃａｌｎｏｗｃａｓｔｉｎｇ

ｅｘｐｅｒｉｍｅｎｔｓｆｏｒｔｈｅｓｉｍｕｌａｔｉｏｎｏｆａｍｅｓｏｓｃａｌｅｃｏｎｖｅｃｔｉｖｅｓｙｓｔｅｍ

ｕｓｉｎｇａｃｌｏｕｄｍｏｄｅｌａｎｄｒａｄａｒｄａｔａａｓｓｉｍｉｌａｔｉｏｎｗｉｔｈ４ＤＶａｒ［Ｊ］．

ＡｃｔａＭｅｔｅｏｒＳｉｎ，７４（２）：２１３２２８（ｉｎＣｈｉｎｅｓｅ）．

刘瑞婷，陈明轩，肖现，等，２０２１．雷达资料快速更新四维变分同化中

增加地面资料同化对强对流临近数值预报的影响［Ｊ］．气象学

报，７９（６）：９２１９４２．ＬｉｕＲＴ，ＣｈｅｎＭＸ，ＸｉａｏＸ，ｅｔａｌ，２０２１．Ｔｈｅ

ｉｍｐａｃｔｏｆａｓｓｉｍｉｌａｔｉｎｇｓｕｒｆａｃｅｏｂｓｅｒｖａｔｉｏｎｓｉｎｒａｐｉｄｒｅｆｒｅｓｈｆｏｕｒ

ｄｉｍｅｎｓｉｏｎａｌｖａｒｉａｔｉｏｎａｌｒａｄａｒｄａｔａａｓｓｉｍｉｌａｔｉｏｎｓｙｓｔｅｍｏｎｍｏｄｅｌ

ｂａｓｅｄｓｅｖｅｒｅｃｏｎｖｅｃｔｉｏｎｎｏｗｃａｓｔｉｎｇ［Ｊ］．Ａｃｔａ ＭｅｔｅｏｒＳｉｎ，７９

（６）：９２１９４２（ｉｎＣｈｉｎｅｓｅ）．

刘郁珏，苗世光，黄倩倩，等，２０２３．睿图大涡系统支撑北京冬奥会气

象服务保障的评估分析［Ｊ］．气象，４９（６）：７３３７４４．ＬｉｕＹＪ，Ｍｉａｏ

ＳＧ，ＨｕａｎｇＱＱ，ｅｔａｌ，２０２３．Ｅｖａｌｕａｔｉｏｎａｎｄａｎａｌｙｓｉｓｏｆｍｅｔｅｏｒ

ｏｌｏｇｉｃａｌｓｅｒｖｉｃｅｆｏｒＢｅｉｊｉｎｇＷｉｎｔｅｒＯｌｙｍｐｉｃＧａｍｅｓｓｕｐｐｏｒｔｅｄｂｙ

ＲＭＡＰＳＬＥＳｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍ［Ｊ］．ＭｅｔｅｏｒＭｏｎ，４９（６）：７３３

７４４（ｉｎＣｈｉｎｅｓｅ）．

马建立，陈明轩，李思腾，等，２０１９．线性规划在Ｘ波段双线偏振多普

勒天气雷达差分传播相移质量控制中的应用［Ｊ］．气象学报，７７

（３）：５１６５２８．ＭａＪＬ，ＣｈｅｎＭＸ，ＬｉＳＴ，ｅｔａｌ，２０１９．Ａｐｐｌｉｃａｔｉｏｎ

ｏｆｌｉｎｅａｒｐｒｏｇｒａｍｍｉｎｇｏｎｑｕａｌｉｔｙｃｏｎｔｒｏｌｏｆｄｉｆｆｅｒｅｎｔｉａｌｐｒｏｐａｇａ

ｔｉｏｎｐｈａｓｅｓｈｉｆｔｄａｔａｆｏｒＸｂａｎｄｄｕａｌｌｉｎｅａｒｐｏｌａｒｉｍｅｔｒｉｃＤｏｐｐｌｅｒ

ｗｅａｔｈｅｒｒａｄａｒ［Ｊ］．Ａｃｔａ ＭｅｔｅｏｒＳｉｎ，７７（３）：５１６５２８（ｉｎＣｈｉ

ｎｅｓｅ）．

潘留杰，薛春芳，张宏芳，等，２０２１．基于多模式和网格预报产品融合

的降水预报释用方法［Ｊ］．气象，４７（５）：５５０５６０．ＰａｎＬＪ，ＸｕｅＣ

Ｆ，ＺｈａｎｇＨＦ，ｅｔａｌ，２０２１．Ｉｎｔｅｒｐｒｅｔａｔｉｏｎｍｅｔｈｏｄｏｆｆｕｓｉｏｎｇｒｉｄ
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