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Abstract: This study presents the development and implementation of the Rapid-Refresh Integrated Seam-
less Ensemble (RISE) forecasting system, an innovative multi-source data fusion system designed to pro-
vide “100-meter-scale, minute-level-update” weather forecasts. It was originally created to support meteor-
ological services during the Beijing 2022 Olympic and Paralympic Winter Games. Here, this article demon-
strates the significant improvements over several years after the games in short-time forecasting and now-
casting capabilities, which have been achieved through the integration of key technologies and the applica-
tion of machine learning and deep learning methods within the high-resolution forecasting framework of the

RISE system. The system’s novel key features are reflected in the refined short-time forecasting and
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nowcasting for heavy precipitation and thunderstorm gale, as well as in the nowcasting for the initiation of
severe convection. The technologies integrated into the RISE system include: a bias-corrected, high-reso-
lution gridded precipitation analysis scheme, the machine learning-based gridded precipitation short-time
forecasting and nowcasting algorithms, a novel dynamic-statistical ensemble method for gust prediction
using multi-source data fusion, an interpretable deep learning model for nowcasting convectively high
winds or thunderstorm gale, a nowcasting method for convective initiation that integrates satellite observa-
tions and storm tracking, and an integration scheme for multiple numerical models. Then, comprehensive
verification analyses confirm that these methodologies have significantly enhanced the forecast accuracy for
precipitation and thunderstorm gale, particularly for the 0—6 h short-time forecasting and nowcasting dur-
ing flood seasons. Finally, this study concludes with a critical discussion of existing challenges and poten-
tial future directions for “100-meter-scale, minute-level-update” weather forecasting.

Key words: “100-meter-scale, minute-level-update”, Rapid-Refresh Integrated Seamless Ensemble (RISE)
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Fig. 1 Schematic diagram of the software architecture and real-time run
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Fig.2 1 h accumulated precipitation at 19:00 BT 24 July 2024

(a) observed precipitation from AWSs, (b) RISE system fusion analysis using the fixed Z-R relationship-based QPE

as the background field, and (¢) RISE system fusion analysis using tile-based partitioning QPE as the background field
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28 I 500 m 4r R RS I 100 m 4P HER RS
X 35k 3 Pl SR X B Jb 5t X
9 K% 85 (AR 7 X R D 1521 X 1221 4 1901 4~ X 1901 4
IR R 500 m 100 m
ViR G s 35.9°N,113. 2°E 39.4°N,115.4°E
KRtz d ik s 42.7°N.,120. 2°E 41.0°N,117. 5°E
BNk E 2Pt =Lk
¥ SHERAE 33°N.43°N,116. 5°E 39°N.41°N,116. 5°E

SN Al 55 38 A7 10 1]

2019 4E TR 2 4

2023 4E Y 2= 4




1438 A

% 951 %

K3 CDF B3 3 Foag. il 119 20437 8500 46 101 A% IE
JG ) QPEAH Q. (isjst) o Faws.~Fra. Al Faws. f A
FHES IR F aws.o s F o FUE s, 53X 8648 Tt
HAWS S A1 QPE 4 (19 481 & 15 2] (Michelangeli
et al,2009) .,

Song et al(2021) Hy#F 5% K W], Q matching J7
PR E R T E R O X TR 35 QPE [ ERGTE .
H 5 AWS AWM S vy & (& 3) 168 ik QPE
G R A B . Wl LA O T B
FEARTE 5 QPE 322 I T RO 3R 22 29 11
TE B SEAG ME D ¥k (Scaling 7 s RAMMESE . 2019) ,
KA Q-matching J5 4 I J5 - QPE ¥y i 25
AN AR R BOE L BT AWS WL R TR A (R 3D,

FE RV FL X TR 8 QPE A, ok A Q- matching J7
PR ARG ITIEROCR . W 4 45 1/ 2021 4
A 2% 05 % 5 5 QPE W Al B AT B3 ikl
YER (Il 4a~40) . £k | Q-matching 73517 IE Z A7 »

108 109 110 111 112 113°E

3 (©) U F IR QPE |
n® Y\ A

24

23

ik QPE AW BIE w2, 1T 1IE 5 1 QPE R4tk
IRZ R T 5 MM A — 2 (F de. 4D,

2.2 BERNERFSERIGERREA

HAp, L2 T i B R AR ER
A AR 5 = S T3 B (Rasp and Lerch, 2018 ; 9k ZE
55,2022 1 S TR 4. 2022 1 16 25, 2023 ; Yang X
et al, 2023; Liu et al, 2024; 2025; Zhang et al,
2024) o ABJEXT TR K TR o R /0N B 3 43 s i) R
JE B B 7K 25 8] 43 A B AN ¥ 57, O HL ) 3% S PEAIG A
ARG R Z TR /N2 T2, B L2
TIORGOS R I 30T 90 M B A K
AABESE R Z 8 H A ZRi ) R AR 9L
2SR (Wang et al,2021;]in et al,2022; 5%
2 2022; BB %, 2022; Yu et al,2023), FRA17E
FRRG A ARY P HELL T IT R T R K AL
2 > S I I 30T TR A A A & R 3

Y () BAEIAQPE M ]
Y ~m 1
H " 5 . A
23

22

21

108 109 110 111 112 113°E

(@) Qmatching 5B E/QPE |

N
¥

23

22

21 B
108 109 110 111 112 113°E

0.1 1.5 5 10 15

20 25 30 35 40 mm

3 202048 H 20 H 15:00Ca) AWS WL F1 (b~ d) A [5]3T 1F 77 8=
1 1 h BitpEKE G E Song et al.2021)

Fig. 3 Comparison of a precipitation case from (a) AWS observations and

(b—d) 1 h accumulated precipitation using different corrected methods at

15:00 BT 20 August 2020 (adapted from Song et al, 2021)
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Fig. 4 Performance of Q-matching correction in radar QPE over the Beijing-Tianjin-Hebei Region

(a) QPE distribution before Q-matching correction, (b) QPE distribution after Q-matching correction,

(c) precipitation distribution from AWS, (d) precipitation frequency distribution,

(e) Bias and (f) ratio comparison of AWS with no-corrected QPE and post-corrected QPE
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Table 2 The average TS scores of 4—6 h precipitation forecast from the independent

validation dataset from July to September 2023

6 56 15 A 0.2 mm -« h™! 1 mme+h! 5mm-e h! 10 mm + h™! 20 mm =+ h™!
HHAG 0.429 0.314 0.172 0. 099 0. 037
RSN R A NI 0. 441 0.314 0.181 0.111 0.043
Bt TS #4317 1E 0. 440 0. 322 0.181 0.108 0. 042

SCR-XGBoost %7 0.493 0.377 0.212 0. 135 0. 043
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Fig. 7 Dynamical-statistical collaborative gust forecasting framework based on multi-source-data fusion
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Fig. 9 Framework diagram of CI nowcasting

based on satellite observations
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Table 3 Nowecasting indicators and thresholds for CI

in the Beijing-Tianjin-Hebei Region

£l CT Il 32 B4R 48 b LIEI=0d B {E/ C

1 10. 8 pm S BRI —20~11
2 6.2—10.8 pm 5% % 2R E —43~—15
3 7.1—10. 8 pm L3R 2% o 2R —31~—5
4 13.5—10. 8 pum FH ik 2 mIRIEE —29~—13
5 6.2—7.1 ym &2 BRI —12~—5
6 8.5—10.8 pm 43R % = R4S —2~0

7 12.0—10. 8 pm 55 2 Z T R 45 —1~0

8 (8.5~10.8)—(10.8~12.0) pm 5% B TRE —3~0

9 10. 8 pm SE B 5 5 b TR <—4
10 6.2—10.8 pm %R ZE LR L ol >4

11 .1—10. 8 pm F2 R 2 A L% i E TR >3

12 13.5—10.8 pm F: iR 2 LR AR >2

S0 22 FIZE AR 15 min [H) g .

R4 2022 FIFEAE CIBMRITEHLER
Table 4 Evaluation of CI forecasts during the 2022 flood season in Beijing

At CI K%/d R (POD) SR (FAR) IR RINFEE(CSD  FH 4R A (LT) /min - M LT/min - &K LT/min
6 22 0. 909 0.091 0.833 44 21 63
7 19 0. 947 0. 280 0. 692 44 24 69
8 18 1.00 0.333 0.667 51 8 63
9 4 1.00 0.333 0.667 68 60 85
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Fig. 10 Comparative tests of (a) temperature, (b) relative humidity, (c) average wind at 10 m, and

(d) gust from the RISE system based on multi-source and single (real-time service,

CMA-B]) model backgrounds from 16 July to 6 October 2023
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Fig. 11

Hourly precipitation verification (TS score and Bias score) of the 0—24 h fused precipitation

forecasts from the RISE system in the Beijing-Tianjin-Hebei Region during the flood season
(1 June to 15 September) from 2021 to 2024
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Fig. 12 Comparison of the forecast performance of the RISE system for 1 h accumulated precipitation (500 m

resolution) during the July 2023 extreme rainfall event in the Beijing-Tianjin-Hebei Region

(taking the precipitation during 10:00—11:00 BT 31 July as an example)

(a) analysis of observed precipitation fusion, (b—f) gridded precipitation forecasts with different lead time:
(b) 1 h forecast (initiated at 10:00 BT 31 July), (¢) 3 h forecast (initiated at 08:00 BT 31 July),
(d) 6 h forecast (initiated at 05:00 BT 31 July), (e) 12 h forecast (initiated at 23:00 BT 30 July),
(f) 24 h forecast (initiated at 11;00 BT 30 July)
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Fig. 13 Objective verification scores for thunderstorm gale (wind speed == 17.2 m * s™ ')

cases in the Beijing-Tianjin-Hebei Region in 2024
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Fig. 14 Gridded gust analysis at (a) 15:00 BT and (b) 16:00 BT and gridded gust forecast at (¢) 15:00 BT
and (d) 16:00 BT initiated at 11:00 BT based on the dynamical-statistical collaborative method with

multi-source-data fusion in the RISE system for the case on 30 May 2024 in Beijing Region
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