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极端天气事件和天气气候一体化预报

技术的现状及展望
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中国科学院大气物理研究所，北京１０００２９

提　要：极端天气事件对社会经济发展有重要的影响，极端天气的发生往往是大气环流形态与大尺度气候背景态叠加作用

的结果，体现了天气和气候的统一性。文章从天气、气候的内在联系出发，分析了极端天气事件预报面临的困难和挑战，讨论

了天气气候一体化模式、多圈层耦合同化和集合技术、基于深度学习和人工智能（ＡＩ）的同化概率预报技术给极端天气预报带

来的机遇，指出了天气、气候学科融合和天气气候一体化预报业务建立的重要意义。
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引　言

极端天气事件无疑是当今天气预报业务中最为

关心的问题，如何提高极端天气事件的预报能力也

是气象科研的焦点问题。与此同时，对气候异常的

监测预测，是气候业务的基本工作。人们在气象预

测预报业务中可以注意到，不少极端天气事件的发

　 国家重点研发计划（２０２３ＹＦＣ３００７７００）资助
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生往往都有特殊的气候背景。对极端天气事件的研

究和归因分析启示我们，如果追寻极端天气事件的

源头，将其时间线延长到气候范围的时效，有利于更

好地发现极端天气发生的关键信号，从而提高极端

天气事件的预报能力。但遗憾的是，由于长期以来

形成的业务分工，我们习惯把天气预报和气候预测

分成了两个领域，这种分割也许正成为阻碍极端天

气预报能力提高的重要因素之一。而事实上，天气

和气候无论在科研上还是在技术上，都已经为天气

气候业务的一体化奠定了基础。打破天气气候的时

间隔断，发展天气气候一体化的业务，很有可能是突

破极端天气事件预报瓶颈的重要途径。

１　极端天气：天气中的气候意义

极端天气（ｅｘｔｒｅｍｅｗｅａｔｈｅｒ）是相对罕见的、且

对人类社会和生态系统产生破坏的天气现象的统

称。在全球气候变暖的背景下，极端天气事件频繁

发生，给社会经济的发展带来极大的影响。据世界

气象组织统计，２１世纪以来，全球各种极端事件造

成的损失较过去增加了一倍以上（Ｅｃｋｓｔｅｉｎｅｔａｌ，

２０２１）。与１９８０—１９９９年相比，２０００—２０１９年的极

端温度事件从１３０次增加到４３２次，洪涝事件从

１３８９次增加到３２５４次，极端风暴事件从１４５７起增

加到２０４３起［ＣｅｎｔｒｅｆｏｒＲｅｓｅａｒｃｈｏｎｔｈｅＥｐｉｄｅｍｉｏｌｏｇｙ

ｏｆＤｉｓａｓｔｅｒｓ（ＣＲＥＤ）ａｎｄＵｎｉｔｅｄＮａｔｉｏｎｓＯｆｆｉｃｅｆｏｒ

ＤｉｓａｓｔｅｒＲｉｓｋＲｅｄｕｃｔｉｏｎ（ＵＮＤＲＲ），２０２０］。各种

极端天气气候事件给社会经济活动和居民生命财产

安全造成了极大的影响。根据大部分数值模式和理

论对未来气候的预估结果，未来全球的极端高温天

气会越来越普遍，降水的分布在时间和空间上会变

得更加不均匀，同时复合型极端事件（ＭａｓｓｏｎＤｅｌ

ｍｏｔｔｅｅｔａｌ，２０２３）的影响将会急剧增强，极端天气

事件正在成为人类社会面临的重大挑战，对极端天

气的预报成为当今世界最为关注的科学问题之一。

自２０世纪中叶以来，天气预报能力得到了长足

的提高。尤其是２０世纪７０年代以后基于卫星探测

技术建立的全球天、地、空观测体系，以及不断提升

的全球数值预报技术，显著提高了天气预报水平，天

气预报的可用时效（以大气５００ｈＰａ位势高度异常

相关系数计量）平均每 １０ 年提高 １ 天 （图 １；

Ｒｉｔｃｈｉｅ，２０２４）。进入２１世纪后，天气预报数值模式

在３天内的天气预报准确性可达９０％以上，５天内

的预测精度也达到８０％以上，短期天气预报已经成

为人们日常活动的可靠参考。尽管如此，定量天气

预报仍然存在较大的困难，尤其是强对流、强转折性

天气、强降水过程等极端天气的预报技巧仍然较低。

世界气象组织的世界气候计划（ＷｏｒｌｄＣｌｉｍａｔｅＲｅ

ｓｅａｒｃｈＰｒｏｇｒａｍｍｅ，ＷＣＲＰ）将极端事件的预测预报

作为大气科学亟需解决的科学问题。

注：实线为北半球，虚线为南半球。

图１　不同时期数值模式的预报技巧（Ｒｉｔｃｈｉｅ，２０２４）

Ｆｉｇ．１　Ｅｖｏｌｕｔｉｏｎｏｆｎｕｍｅｒｉｃａｌｗｅａｔｈｅｒｐｒｅｄｉｃｔｉｏｎ

ｓｋｉｌｌｏｖｅｒｄｉｆｆｅｒｅｎｔｐｅｒｉｏｄｓ（ｃｉｔｅｄｆｒｏｍＲｉｔｃｈｉｅ，２０２４）
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　　长期以来，因为天气和气候关注时效长度不同，

常常会被认为是两个相对独立的次级学科及业务领

域。气候关心的是气象要素在给定时间和空间范围

内的平均值，以及该平均值与历史多年平均观测值

的偏差是多少；而天气预报关心的则是一次具体的

气象现象发生过程。造成这一区分的根源来自我们

在求解大气流体力学方程时做了不同的简化：天气

预报简化为求解初值问题，而将气候预测简化为外

源强迫约束下的边界条件问题。此外，由于大气流

体的混沌性会迅速放大初始场测量中固有的不确定

性，直到确定性预报与现实气候演变轨迹完全脱离。

因此，将天气预报和气候预测根据预报时效分为两

个不同的技术路线成为必然的选择。大气系统演变

的混沌性使得预报随着时效的延长最终只剩下概率

性信息。在实践上，这一现象迫使我们不断收集观

测数据（同化），以更新对天气状态的估计和预报（天

气预报）；同时进行多样本模拟，在观测或预测到的

外强迫条件下对可能的大气状态范围进行充分采样

（集合预报和气候预测）。这一现象为研究预报大气

系统小概率极端事件给出了两条截然不同的方向：

一是建立基于对大气演变过程及其各种影响因子相

互作用下的、过程层面的预报模型；二是建立基于对

气候系统演变中相似概率特性、系统层面的预报模

型。

　　事实上，在极端天气事件的诊断和预报中，我们

是把一次具体的极端气象事件过程放到过往的历史

记录及其平均中去比较，从而评估其极端性。因此，

对一个极端天气过程的考察，完全与气候业务的视

角类似，需要知道过去有气象记录以来此类事件的

平均状态和特征，以及本次事件与同类事件多年平

均的偏差。简单地说，研究极端天气事件就是用气

候的视野去探究天气过程。因此我们可以认为，极

端天气的预报就是具有气候意义的天气预报。同

时，极端天气本身也是气候监测的重要内容，因为极

端天气频率、强度和时空尺度的演变也在塑造气候

的性质，并表征了气候状态的变化特征。

２　极端天气气候事件预报面临的挑战

极端天气气候过程虽然是小概率发生的事件，

但由于其是对气候平均态的严重偏离，对社会经济

造成影响和损失巨大，因而广受关注。我们至今还

不能对大多数极端天气气候事件做出完全及时、准

确、高精度的预报，因此，有效预报极端天气气候事

件是目前气象学科和气象行业面临的重大挑战。

２．１　多圈层因子和多时间尺度的共同影响

极端天气气候事件的预报困难源自多个方面。

首先，气候系统是包含大气、海洋、冰雪、陆地、生态

等多圈层的复杂系统，每一个大气状态都是多圈层

相互作用的结果。尽管我们可以把一次极端天气事

件归结为某种大气环流型配置下大气运动的结果，

但异常大气环流型的形成不仅涉及大气内部各种时

间尺度的内部变率，还涉及海洋、冰雪、陆面等多圈

层外强迫因子的影响。因此，一个极端天气过程的

发生，不仅仅取决于大气初始状态和大气自身的演

变过程，还会受海洋、冰雪、陆面等多圈层状态及其

异常的影响，而这些异常通常具有不同的时间尺度

特征。更为重要的是，极端天气事件是小概率事件，

极端天气事件及其气候背景的样本较少，被观测记

录到的就更为稀少，从概率统计难以得到其发生演

变的先验特征和规律描述。因而，对极端天气事件

发生机制的研究，以及极端事件的预报都十分困难。

其次，极端天气气候事件往往是多种要素和多

时空尺度异常相互叠加组合的结果，包括大气系统

自身变率信号，也包括ＥＮＳＯ型海温等其他气候系

统的自然演变，还包括全球变暖长时间趋势的影响。

在全球气候变暖的背景下，异常海温、青藏高原热力

状态、北极海冰、平流层极涡等气候系统不同圈层关

键指标都出现了不同于过去的异常变化。因此，以

过去历史数据统计建立的因果关系可能失效，以数

值模式为基础的动力预报方法在对热浪、热带气旋

等极端事件的预测中也面临着新考验（杜钧等，

２０１４，Ｓｕｋｏｖｉｃｈｅｔａｌ，２０１４；朱跃建等，２０２５）。例如，

超强ＥｌＮｉ珘ｎｏ事件的发生频率在增加，极端ＥｌＮｉ珘ｎｏ

事件增加了５０％，其中主要是中部型ＥｌＮｉ珘ｎｏ事件

增加显著（Ｃａｉｅｔａｌ，２０１４；２０１８）。这些气候背景的

变化对极端降水、极端高温事件的时空变化特征都

有明显的影响。近年来的分析研究表明，北极海冰

快速减少通过影响海气相互作用，助推了高温和风

暴等极端事件的频繁发生（Ｋｕｇｅｔａｌ，２０１５；Ｏｖｅｒｌａｎｄ

ｅｔａｌ，２０１６）；而北极极涡分裂和偏移，常常导致北半

球中高纬度地区的极端冷事件的发生（Ｍｉｔｃｈｅｌｌ

ｅｔａｌ，２０１３）。北大西洋涛动（ＮｏｒｔｈＡｔｌａｎｔｉｃｏｓｃｉｌ

ｌａｔｉｏｎ，ＮＡＯ）等气候模态可通过改变急流位置影响

欧洲寒潮的发生概率（Ｆｅｒｒａｎｔｉｅｔａｌ，２０１８），这些现
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象反映了天气气候的跨尺度反馈机制。分析还表

明，全球变暖导致了西北太平洋、印度洋和西南太平

洋强热带气旋的发生频数和占比大幅增加（Ｗｅｂｓｔｅｒ

ｅｔａｌ，２００５）；南极海冰变化导致索马里急流从南半

球对北半球的物质输送增强，进而影响了中亚和东

亚的极端降水异常（Ｌｉｅｔａｌ，２０２３）。因此，全球气

候变暖和不同圈层的要素异常，对极端天气事件有

显著的影响。极端天气事件的预报必须要考虑气候

背景等多种因子的影响。

２．２　大气和外强迫异常的相互作用和大气的非线

性混沌效应

　　此外，在极端天气过程的演变过程中，大气异常

状态和海洋、冰雪、陆面等多圈层还存在相互作用。

例如，海洋热力状态对热带气旋活动具有重要的作

用，但热带气旋的活动对海面温度乃至次表层海温

也会产生影响。因此，在热带气旋的发生发展过程

中，海气系统具有耦合作用并对热带气旋的演变发

展具有重要影响。在区域干旱极端事件中，降水的

异常偏少会显著影响区域的蒸散发及土壤、植被等

陆面状况（ＬｉａｎｄＸｕｅ，２０１０；Ｔｅｕｌｉｎｇｅｔａｌ，２０１３），

而陆面状态对干旱事件过程中也会产生耦合反馈。

例如，土壤湿度的负异常使得陆面向大气的感热输

送显著增加，造成抬升凝结高度增加和大气湿静力

能降低，从而更加抑制对流降水的发生，加速干旱过

程的发展（Ｒｅｎｅｔａｌ，２０２１；ＷａｎｇａｎｄＹｕａｎ，２０２２）。

由于极端天气事件过程的这种多因子、多时空尺度

的相互作用和影响，系统且完整地揭示其演变机理

是亟待进一步深入的研究工作。

此外，由于大气气候系统是一个高维复杂的非

线性系统，从某一个大气状态的确定初值出发，大气

的演变随着时间的推移必然进入混沌状态。因此，

当预报时效延长到２周以后，确定性的要素预报、确

定时间和地点的事件过程预报变为不可达到的奢

望。在中长期预报中，目前的目标是对未来偏离长

期气候态的趋势做出预测判断，以取得基本可用的

预测效果。图２给出了不同时效预报的技巧变化与

初值和外强迫的影响程度。需要注意的是，图中所

指的天气预报、次季节预测和季节预测的预测目标

是不一样的。从图２可以看到，确定性的天气尺度

预报在时效超过２周以后技巧变得很差，在预报时

效２０天时已经完全丧失预报技巧；主要基于外强迫

因子对大气异常型约束和锁定的季节尺度预测的预

报目标为均值偏差，季节尺度预测在３～４个月内可

以达到有参考意义的中等技巧；而目标为天气事件

过程的次季节预测的技巧最差，其可预报性来源主

要为大气的一些低频振荡特性，技术上利用多成员

的集合预报来提高捕捉信息的成功率。但遗憾的

是，如热带大气季节内振荡（ＭａｄｄｅｎＪｕｌｉａｎｏｓｃｉｌｌａ

ｔｉｏｎ，ＭＪＯ）等大气内在的低频振荡往往在数值模式

中最难以再现，大多数数值模式都不能对其准确模

拟（Ｌｉｎｇｅｔａｌ，２０１７）。

图２　不同预报时效下的气象预报技巧示意图
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２．３　数值预报模式的不完备和局限性

众所周知，现代的天气预报的基础是数值模式

预报。２０世纪５０年代以后，数值模式预报技术得

到了迅速的发展。９０年代后期开始，数值预报在业

务上得到了广泛的认可和应用。目前数值模式对一

般气象要素的预报已经超过了人工预报技巧，数值

预报已经成为气象预报不可或缺的基础。但是，数

值预报模式对真实大气运动的描述仍然是近似和不

完备的。数值模式除了众多经验性指数不准确、物

理过程不清晰、参数化方案替代较多以外，我们在数

值模式预报中还默认了两个假定：第一，假定在短期

天气预报的时效内影响天气系统演变的主要是大气

的初始状态，大气系统以外的气候环境在短期时效

内是基本恒定或少有变化的；第二，假定在中长期预

报中，大气初始状态的扰动信息经过一段时间（１个

月）已经完全耗散，大气状态主要受到气候系统环境

的约束而确定。依据这两个假定，长期以来数值模

式预报对短期的天气预报和长期的气候预测采用了

两个不同策略。天气预报数值模式注重改善对初值

的同化来提升预报技巧（沈学顺等，２０２５），而中长期

的气候预测主要考虑用更多的气候系统分量模式耦

合来改进预测效果。但事实上，虽然在季节以下较

短的时间尺度内预测更多地受到初值的影响和控

制，而在季节以上较长的时间尺度上主要受到外强

迫源的约束和调控，但大气系统始终受到初始场和外

强迫的影响（如图３所示）。例如，热带太平洋海温等

关键气候特征出现异常（如ＥＮＳＯ）时，短时间尺度的

天气演变也必然受其影响，且往往容易导致极端天气

事件的出现（李崇银等，２０１９）。ＥＮＳＯ事件是否出

现，目前已经成为重大天气预报会商不可或缺的参

考。相反，季节以上的长时间预测也需要考虑初始场

以及初始场的同化问题，当然，这种初始同化是包括

了海洋、陆面和冰雪等气候系统各圈层的“同化”。

同时，即使预报系统的数值预报模式是完美模

式，同化数据的扩容、集合成员的增加和更多气候系

统分量模式的耦合，都需要大大增加模拟预测的算

力资源消耗。当我们用更准确的物理过程取代近似

的参数方案，用更精确的地形来替代粗略的近似地

形，就需要增加数值模式的分辨率，其代价是算力消

耗的指数增加，这显然会给高精度预报模式的业务

化和应用带来很大的压力和阻碍。

３　天气气候一体化预报技术

由于理论和技术的局限性，长期以来，天气和气

候在业务和科学界都被分割为两个不同的领域。但

由上可见，天气的演变受到多种气候背景的影响，尤

其是极端天气事件，其本身就蕴含着重要气候特征，

而气候态特征也会因高频出现的极端天气事件而改

变。气候系统的多尺度相互作用理论和现象表明，

短期天气波动（如极端降水）的统计特征塑造和构建

了长期尺度的气候态特征，而气候背景（如海温异

常）又调控着极端天气事件的发生频率和强度。目

前，天气预报技术已经不满足只考虑大气的初始状

态，海洋、陆面等下垫面的信息，乃至大气化学成分、

气溶胶的信息，越来越多地成为天气预报重要的依

据。同时，中长期的气候预测，正在把同化技术和观

测约束的方法用于改进气候预测的可用性。因此，

天气和气候两个学科的融合和一体化发展，是大气

科学学科发展的内在必然，也是满足极端天气事件

预报需求的有效途径。

图３　初值和外强迫对不同预报时效影响示意图
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３．１　天气气候一体化数值模式的发展

天气气候一体化数值模式的发展是近年来地球

系统科学领域的重要突破，其核心在于通过统一框

架实现天气尺度（小时至周）与气候尺度（月至百年）

的无缝模拟。这一发展正在深刻改变着传统观念中

天气与气候在科学研究和业务应用中分离的格局。

美国国家大气研究中心（ＮａｔｉｏｎａｌＣｅｎｔｅｒｆｏｒＡｔ

ｍｏｓｐｈｅｒｉｃＲｅｓｅａｒｃｈ，ＮＣＡＲ）的 ＭＰＡＳＡ （Ｔｈｅ

ＭｏｄｅｌｆｏｒＰｒｅｄｉｃｔｉｏｎＡｃｒｏｓｓＳｃａｌｅｓ）模式通过非结

构化网格实现千米级分辨率全球模拟（Ｓｋａｍａｒｏｃｋ

ｅｔａｌ，２００８；Ｂａｃｍｅｉｓｔｅｒ，２０１２）；中国气象局全球同化

预报系统（ＣＭＡＧＦＳ）（原 ＧＲＡＰＥＳＧＦＳ）采用自

适应网格加密技术，暴雨和台风预报体现了较好的

性能（宫宇等，２０１８；王新敏和栗晗，２０２０）。物理过

程和参数化方案可以通过尺度自适应实现天气气候

尺度的通用，在耦合信息处理技术的支持下，数值模

式预报系统可以实现大气海洋陆面快速高效的耦

合（Ｃｒａｉｇｅｔａｌ，２０１７）。

天气过程和气候演变是相互影响的同一个事物

的两个方面，天气和气候异常信号存在广泛的跨尺

度相互作用。天气气候一体化的数值模式能更好地

刻画不同尺度系统的相互影响，尤其有助于提高对

多尺度异常信号叠加下产生的极端天气事件的预报

能力。欧洲中期天气预报中心（ＥｕｒｏｐｅａｎＣｅｎｔｒｅ

ｆｏｒＭｅｄｉｕｍＲａｎｇｅ ＷｅａｔｈｅｒＦｏｒｅｃａｓｔｓ，ＥＣＭＷＦ）

的综合预报系统（ＩｎｔｅｇｒａｔｅｄＦｏｒｅｃａｓｔｉｎｇＳｙｓｔｅｍ，

ＩＦＳ）和 ＮＣＡＲ的通用地球模拟模式（Ｃｏｍｍｕｎｉｔｙ

ＥａｒｔｈＳｙｓｔｅｍ Ｍｏｄｅｌ，ＣＥＳＭ）等现代数值模式通过

提升分辨率（从百千米级到千米级）和耦合多圈层过

程（大气海洋陆面冰冻圈），已经逐步打破天气与

气候模式的界限。ＥＣＭＷＦ将季节预测系统（Ｓｅａ

ｓｏｎａｌＦｏｒｅｃａｓｔＳｙｓｔｅｍ，ＳＥＡＳ５）与天气预报系统

ＩＦＳ整合，使热带气旋生成位置预测提前量达２１天

（ＳｃｈｒｅｃｋⅢｅｔａｌ，２０２３）。ＩＦＳ模式凭借引入海洋

大气陆面双向耦合，有效延长了季节预测的时效，

而日本气象厅的新世代系统实现台风路径７２小时

预报误差降低，相对于上一代预报业务改进了

２０％。对２０２１年河南暴雨的数值模拟表明，传统数

值模式对最大降水低估达３６％，而一体化模式通过

３ｋｍ 嵌套准确捕捉中尺度对流系统（Ｓｕｎｅｔａｌ，

２０２４），从而改进了极端降水的模拟效果。

天气气候一体化模式代表当今数值预报技术发

展的前沿。从天气、气候数值模式根据各自的需求

分别发展，到融合为覆盖全尺度的天气气候一体化

数值模式，既是预报技术发展的必然之路，也是天气

气候预报业务服务的要求（中国气象局，２０２３）。

３．２　多圈层耦合同化和集合预报

数值模式是目前天气预报预测重要的技术基

础。图４给出了影响天气预报准确性的误差来源，

包含以下四个方面：（１）气候系统数值模式不同模块

图４　影响数值天气预报准确性的误差来源
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在初 始 场 不 协 调 的 初 始 化 冲 击 （ｉｎｉｔｉａｌｉｚａｔｉｏｎ

ｓｈｏｃｋ）；（２）缺乏观测导致初始化不确定；（３）数值模

式不完备带来的误差；（４）样本不足和信息缺失导致

的预测结果的不全面。数值预报模式的改进和完善

一直是人们努力的方向。近年来，数值模式框架、物

理过程不断得到改进，模式系统也从单一的大气模

式，发展为海洋大气耦合模式，并进而向多圈层耦

合模式发展。与此同时，数值预报模式同化技术和

集合预报技术的发展，也在有效地解决上述（１）、（２）

和（４）环节带来的预报误差，并成为未来亟需关注和

发展的关键领域。

　　气候系统由五大圈层构成，天气气候的演变过

程与各圈层间的能量、动量和物质交换紧密关联。

例如，海洋表面温度影响大气环流，而积雪覆盖通过

反照率效应调节陆气相互作用。当我们假定在较短

的时间内大气的演变主要由大气自身的状态决定

时，可以把其他圈层状态固定为多年平均的恒定值，

其变化可忽略不计，通过大气要素的同化力求取得

模式大气状态和真实大气状态的一致。但事实上，

海洋表面的温度、陆面土壤的含水量、水和冰雪覆盖

状态在天气演变的过程中均在发生变化。因此，传

统单一的大气模式和同化难以捕捉跨圈层的反馈和

影响，而多圈层耦合模式（如ＣＥＳＭ、ＥＣＥａｒｔｈ）可

以通过对完整物理过程的刻画，有效改善气候和天

气的模拟能力，从而提高预测的准确性。

　　数值模式对初始条件的敏感性是误差主要来源

之一。根据Ｌｏｒｅｎｚ混沌理论，大气系统具有非线性

特征使得初始条件的微小误差会随积分时间呈指数

级增长。在过去数值预报技术发展的数十年内，人

们不遗余力地通过数据同化技术融合观测与数值模

式模拟来优化初始条件，有效地提升了天气预报的

技巧。随着人们对多圈层相互作用机理的认识，以

及对高质量预报结果需求的增加，针对多圈层系统

模式的耦合数据同化（ｃｏｕｐｌｅｄｄａｔａａｓｓｉｍｉｌａｔｉｏｎ，

ＣＤＡ）应运而生，以实现跨圈层变量的同步协调。

例如，大气海洋耦合模型中，海表通量的误差需要

在大气、海洋两个圈层中协同修正，避免“初始化冲

击”。研究表明，ＣＤＡ相比单圈层同化能显著改进

跨圈层变量的协调性，从而改善 ＭＪＯ等关键大气

系统的模拟（Ｚｈａｎｇｅｔａｌ，２０２１；Ｋｉｍｅｔａｌ，２０２１）。

如果进一步耦合同化土壤、植被、冰雪覆盖等更多跨

圈层的要素，很可能会更好地反映各圈层间能量、动

量和物质交换及其对天气演变过程的影响，从而不

断提高天气预报技巧，尤其是提高由多种异常强迫

影响导致的极端天气事件的预报能力，并大幅度提

高长时效。例如，ＥＣＭＷＦ的集成地球系统同化系

统（ＣＥＲＡ）利用集合卡尔曼滤波（ＥｎＫＦ）和四维变

分（４ＤＶａｒ），耦合同化大气、海洋和海冰状态，可以

将季节预测技巧提升约 ２０％ （Ｈｅｒｓｂａｃｈｅｔａｌ，

２０２０）。

此外，合理的初始扰动能够使数值模式展示出

天气演变的多种可能性。集合预报系统（ｅｎｓｅｍｂｌｅ

ｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍ）通过扰动初始条件或不同的模型

参数构建产生不同的预报结果，从而捕捉到天气演

变的各种可能性。如果集合预报的成员足够完备，

覆盖全部不确定性来源，就有可能得到大气演变的

所有潜在可能性和样本，从而揭示未来天气完整的

概率分布。目前全球各气象预报业务中心的集合预

报成员通常为５０～１００个，有限的集合预报成员难

以覆盖所有不确定性来源（Ｂｕｉｚｚａｅｔａｌ，２００５）。为

提高极端天气的命中率，集合预报未来需要向多圈

层初始场扰动扩展，覆盖多圈层系统中不确定性来

源。例如，在热带气旋的预报中，考虑海洋温度、海

洋温盐结构的扰动集合，从而覆盖其通过耦合作用

影响热带气旋路径的各种可能性。跨圈层扰动方法

已经在美国国家海洋大气局（ＮａｔｉｏｎａｌＯｃｅａｎｉｃａｎｄ

ＡｔｍｏｓｐｈｅｒｉｃＡｄｍｉｎｉｓｔｒａｔｉｏｎ，ＮＯＡＡ）得到尝试，其

采用随机物理倾向扰动（ｓｔｏｃｈａｓｔｉｃａｌｌｙｐｅｒｔｕｒｂｅｄ

ｐａｒａｍｅｔｅｒｉｚａｔｉｏｎｔｅｎｄｅｎｃｉｅｓ）技术，在耦合模型中同

时扰动大气和海洋参数，改进了ＥＮＳＯ预测效果

（Ｓｈｉｎｅｔａｌ，２０２１）。而第六次国际耦合模式比较计

划 （Ｃｏｕｐｌｅｄ Ｍｏｄｅｌ Ｉｎｔｅｒｃｏｍｐａｒｉｓｏｎ Ｐｒｏｊｅｃｔ，

ＣＭＩＰ６）结果分析也表明，多模式集合可降低单一

模型结构偏差，提升极端事件的预测可靠性。

耦合数据同化与集合预报相辅相成，两者结合

的协同效应可以更有效地提高预报的技巧。例如，

美国航空航天局（ＮａｔｉｏｎａｌＡｅｒｏｎａｕｔｉｃｓａｎｄＳｐａｃｅ

Ａｄｍｉｎｉｓｔｒａｔｉｏｎ，ＮＡＳＡ）的地球静止环境业务卫星

（ＧｅｏｓｔａｔｉｏｎａｒｙＯｐｅｒａｔｉｏｎａｌＥｎｖｉｒｏｎｍｅｎｔａｌＳａｔｅｌ

ｌｉｔｅ，ＧＥＯＳ）框架，用ＥｎＫＦ生成的集合初始场直接

驱动集合预报，并将在同化过程中更新的误差协方

差反馈至预报成员权重，形成动态不确定性传递循

环。这种协同效应可以使ＮＡＯ的周预测技巧显著

提高（Ｓｅｎａｎｅｔａｌ，２０２４；Ａｂｉｄｅｔａｌ，２０２３）。

多圈层耦合同化与集合预报很可能是未来改进

数值模式预报系统的重要途径，其发展将推动从天

９８３１　第１１期　　　　　　　　　　肖子牛等：极端天气事件和天气气候一体化预报技术的现状及展望　 　　　　　　　　　



气到气候尺度的预测能力跃升。但多圈层耦合模型

的高分辨率与多成员集合规模将消耗海量的超算资

源，造成巨额成本。深度学习（ｄｅｅｐｌｅａｒｎｉｎｇ）和人

工智能（ａｒｔｉｆｉｃｉａｌｉｎｔｅｌｌｉｇｅｎｃｅ，ＡＩ）技术的应用，例如

Ｔｒａｎｓｆｏｒｍｅｒ加速参数化模型、数据驱动Ｄｉｆｆｕｓｉｏｎ

模型，可能会在这一领域取得突破性的进展。

３．３　基于深度学习和犃犐预报技术的同化概率预报

　　从上述对天气气候演变的多因子驱动、非线性

演变和预报的不确定性特点分析，我们可以看到：尽

管可以通过完善数值模式，加强观测数据的多圈层

同化，以及利用多成员的集合预报来尽量减少预报

结果的不确定性，但随着预报时效的延长，预报结果

也只能是一个某个范围的概率分布。更为重要的

是，更复杂的模式、更完备的耦合同化和更多的集合

预报成员，将使传统的数值天气预报面临指数级增

加的计算成本。近年来，深度学习和 ＡＩ技术被广

泛应用于气象领域。与传统模式预测相比，其对算

力资源的要求大幅度降低。基于深度学习的概率同

化预测技术展现出了全新的路径和惊人的潜力。

数据同化的实质是通过融合观测数据与模型先

验信息，估计系统状态的概率分布的过程，深度学习

依据观测与状态间的复杂关系直接建模。例如，生

成对抗网络（ｇｅｎｅｒａｔｉｖｅａｄｖｅｒｓａｒｉａｌｎｅｔｗｏｒｋ，ＧＡＮ）

可生成更真实的集合成员，从而提升初始条件的不

确定 性 表 征 （Ｒａｖｕｒｉａｎｄ Ｖｉｎｙａｌｓ，２０２０；Ｒａｖｕｒｉ

ｅｔａｌ，２０２１）。还有一些研究使用深度神经网络

（ｄｅｅｐｎｅｕｒａｌｎｅｔｗｏｒｋ，ＤＮＮ）替代整个同化流程，提

出直接从观测数据推断系统状态的概率同化模型

（Ｂｏｎａｖｉｔａｅｔａｌ，２０２１）。理想概率预报旨在输出包

含全部可能性的未来状态的概率分布，而非单一确

定性结果。集合生成技术可以利用随机神经网络

（如 ＭＣＤｒｏｐｏｕｔ）或生成模型（如 ＧＡＮ、ＶＡＥ），生

成覆盖各种可能的多样化预报集合，并量化不确定

性（Ａｂｂａｓｉｅｔａｌ，２０２０）；通过时空序列建模，卷积长

短期记忆网络（ＣｏｎｖＬＳＴＭ）和Ｔｒａｎｓｆｏｒｍｅｒ模型能

捕捉到气象场的时空相关性，从而提升极端事件的

预测概率（Ｇａｒｇｅｔａｌ，２０２２）；此外，将具有物理意义

的约束嵌入模型，可以使预报结果更符合物理规律

（Ｇｕｌｉａｎｅｔａｌ，２０１９）。ＥＣＭＷＦ开发了基于深度学

习的概率预报系统，通过训练ＤＮＮ生成多个初始

扰动，显著降低集合预报的计算成本，同时保持与

ＥｎＫＦ相当的技巧（Ｈａｔｆｉｅｌｄｅｔａｌ，２０２１）。谷歌的

ＭｅｔＮｅｔ３使用Ｔｒａｎｓｆｏｒｍｅｒ预报未来２４小时降水

的空间概率分布，可以得到１ｋｍ高分辨率的预报

结果并优于传统数值模式预报性能（Ｓｎｄｅｒｂｙ

ｅｔａｌ，２０２０）

中国科学院大气物理研究所潘宝祥研究团队讨

论探索了一种基于无监督生成模型技术的同化概率

预报（ｇｅｎｅｒａｔｉｖｅａｓｓｉｍｉｌａｔｉｏｎａｎｄｐｒｅｄｉｃｔｉｏｎ，ＧＡＰ）

模型，为实现天气气候一体化预报提供了新思路。

ＧＡＰ模型首先需要构建天气气候的先验分布并给

出大气瞬时状态估计（图５），即通过使用无监督生

成模型扩散模型（ｄｉｆｆｕｓｉｏｎｍｏｄｅｌ）从气候再分析数

注：该方法利用概率扩散模型中的嵌入技术，通过预定义的正向高斯过程将目标气候变量的分布转化为

先验分布，即标准高斯分布；经过训练的反向高斯过程则将先验分布转化为目标气候变量

的分布，过程中对稀疏观测数据进行“修复”，以获得目标变量的空间模式估计。

图５　天气气候的先验分布构建和瞬时状态估计技术示意图（Ｃｈａｏｅｔａｌ，２０２５）

Ｆｉｇ．５　Ｓｃｈｅｍａｔｉｃｉｌｌｕｓｔｒａｔｉｏｎｏｆｐｒｉｏｒｄｉｓｔｒｉｂｕｔｉｏｎｃｏｎｓｔｒｕｃｔｉｏｎａｎｄｉｎｓｔａｎｔａｎｅｏｕｓｓｔａｔｅ

ｅｓｔｉｍａｔｉｏｎｔｅｃｈｎｉｑｕｅｓｉｎｗｅａｔｈｅｒａｎｄｃｌｉｍａｔｅ（ｃｉｔｅｄｆｒｏｍＣｈａｏｅｔａｌ，２０２５）
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据和数值模式模拟数据中学习气候分布，之后通过

将观测信息与学习到的先验概率分布相结合，得到

一个最优化的、概率意义上的覆盖所有可能的气象

状态估计（Ｃｈａｏｅｔａｌ，２０２５）。其生成式模型的强大

拟合能力突破了传统方法中误差表征受限于高斯假

设的局限，能够更准确地刻画复杂的误差结构和依

赖关系。

　　基于这一思路，可以建立新型的概率同化集合

预报系统以尽可能全面地捕获大气的所有状态。该

系统利用概率扩散模型，从高保真气候数据中学习

气候概率分布，从而得到气候态完全的概率分布。

在得到一个最优化的、概率意义上覆盖所有可能的

气象状态估计之后，通过预报模型将状态估计推演

到下一时间步骤，为下一轮同化提供预报场输入。

然后与下一时间步骤观测信息再进行同化融合，生

成同时契合观测和背景预报的集合成员，形成完整

的顺序同化循环。基于这种同化生成的集合成员，

可以利用数值模式或数据驱动模型进行推演，生成

未来时间步的概率预报结果。由于有先验学习的预

测场和初始条件的约束，可以确保大气状态与真实

气候态符合，使生成的集合成员表现出更高的极端

事件过程覆盖率，以及物理一致性更好的能谱结构，

并使得数据驱动天气预报能够更接近理论可预测性

极限（Ｎａｉｅｔａｌ，２０２４ａ）。图６给出了ＧＡＰ和中国

几个ＡＩ模型对台风“杜苏芮”的路径和中心位置误

差预报结果。从图中可以看到，ＧＡＰ集合预报的台

风路径与ＥＲＡ５数据有较好的一致性，台风中心位

置平均误差在５天（１２０小时）预报时效内低于

１００ｋｍ。

　　ＥＣＭＷＦ基于贝叶斯神经网络的概率预报系

统（ＡＩＦＳＰｒｏ）开展了集合预报试验，其集合离散度

较传统方法增加了４２％，能更准确地反映极端天气

事件的不确定性。ＧＡＰ同化概率预报模型基于对

大气气候态概率分布的准确刻画，其集合与预报的

发散都能够更好地覆盖未来天气的全部可能性，包

括小概率的极端天气事件，同时通过循环同化过程，

有效约束天气事件演变轨线，并量化未来天气状态

的不确定性。

在给定观测初始场和外部强迫约束的情况下，

通过给出并量化气候状态的概率分布（Ｎａｉｅｔａｌ，

２０２４ｂ）。这样就可以突破初始和外强迫造成的天

气预报和气候预测的割裂。ＧＡＰ可以构建完整的

观测同化预报闭环系统，真正将观测信息、动力约

束和统计规律有机结合，实现了对天气气候系统更

全面的描述和预测。其所具有的这种优势有助于形

成天气气候一体化的预报理论和技术方法，并提升

对极端天气事件的预报能力。

　　最近的一些分析研究表明，使用卷积神经网络

（ＣＮＮ）和长短期记忆网络（ＬＳＴＭ）结合卫星图像和

再分析数据（如ＥＲＡ５），对热带气旋（２４～７２小时）

的路径预测相比传统数值模型（如ＥＣＭＷＦ）误差

减少了１０％～２０％（Ｋｉｍｅｔａｌ，２０１９；ＺｈｕｏａｎｄＴａｎ，

图６　ＧＡＰ集合预报和盘古、风乌和伏羲ＡＩ模型对台风“杜苏芮”的（ａ）台风路径预报

和（ｂ）台风中心位置的预报误差（Ｎａｉｅｔａｌ，２０２４ａ）

Ｆｉｇ．６　（ａ）Ｔｒａｃｋｆｏｒｅｃａｓｔａｎｄ（ｂ）ｃｅｎｔｒａｌｐｏｓｉｔｉｏｎｆｏｒｅｃａｓｔｅｒｒｏｒｓｏｆ

ＴｙｐｈｏｏｎＤｏｋｓｕｒｉｂｙｔｈｅＧＡＰｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍ，ａｎｄｔｈｅＰａｎｇｕ，

ＦｅｎｇｗｕａｎｄＦｕｘｉＡＩｍｏｄｅｌｓ（ｃｉｔｅｄｆｒｏｍＮａｉｅｔａｌ，２０２４ａ）
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２０２１）。ＧｏｏｇｌｅＤｅｅｐＭｉｎｄ的ＤＧＭＲ（ＤｅｅｐＧｅｎｅｒａ

ｔｉｖｅＭｏｄｅｌｏｆＲａｉｎｆａｌｌ）模型，基于ＧＡＮ对１～２小

时短时临近强降水预测效果优于传统外推法（如光

流法）和 ＷＲＦ数值模式预报（Ｒａｖｕｒｉｅｔａｌ，２０２１）。

而在基于３ＤＣＮＮ 分析多普勒雷达数据（如反射

率、速度场等）的检测结果的龙卷风预警预报中

（Ｃｉｎｔｉｎｅｏｅｔａｌ，２０２０），ＡＩ模型的预警时间比传统

方法提前１５～３０ｍｉｎ，误报率降低了２０％。

从上述可见，深度学习和 ＡＩ技术在数据同化

和集合预报领域有广泛的应用前景，并在极端事件

的预报中展现了优势潜力。此外，由于基于深度学

习和ＡＩ的预报模型预报计算的效率相比传统数值

模式预报呈指数级下降，使其在天气气候一体化的

高分辨率、高精度预报模型在业务上应用也具有巨

大的优势。诚然，尽管 ＡＩ在极端气象预报中表现

突出，但仍面临可解释性、小样本学习（极端事件数

据少）和物理一致性等问题。而传统数值模式除具

有较强的物理可解释性的优势，数值模式的大样本

模拟在某种程度上也可丰富和补充极端气象事件的

样本。因此，ＡＩ和传统数值预报结合并相互融合发

展，将是今后气象预报技术的重要发展趋势。

４　展　望

目前的天气预报是基于当前天气状况的有限观

测和不完善的预报模型给出的未来天气演变的轨

迹，气候预测是在多种外源强迫情景下得到物理约

束下未来气候变化状态。事实上，天气和气候都同

时受到大气初始条件和外强迫边界条件的不同影

响，而大气运动的混沌性质又导致了确定性天气预

报的极限和气候预测的不确定性。因此，大气演变

所具有的高维度、多时间尺度、非线性的性质，使得

天气和气候预报预测成为最具挑战的科学难题之

一。但令人鼓舞的是，深度学习和 ＡＩ技术正在重

塑概率同化与预报的技术路径。通过高效的非线性

建模、不确定性量化及物理约束融合，深度学习和

ＡＩ在气象领域的应用可以显著提升预测的准确性，

并展现出强大的实用潜力。我们可以预见：（１）未来

天气和气候学科将进一步相互影响，最终走向融合

发展；（２）数值模式的发展和ＡＩ技术将进一步相互

渗透，数值模式和 ＡＩ的结合将是未来气象预报的

最优技术解决方案；（３）天气气候学科的融合，天气

气候一体化数值模式的发展，尤其是深度学习和ＡＩ

的赋能，将为天气气候一体化预报业务的建立奠定

理论和技术基础，并成为攻克极端天气预报难题的

阶梯。
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