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Abstract; Extreme weather events have an important impact on economic and social development. The ex-
treme weather events often result from superimposed influence of multi-factor and multi-scale abnormal
signals of climate environment. Thus, extreme weather events embody the unity of weather and climate.
This paper analyzes the difficulties and challenges of extreme weather event prediction from the perspective
of the internal relationship between weather and climate, and also discusses the opportunities of extreme
weather forecasting which are gained from the weather and climate integration models, multi-loop coupling
assimilation and ensemble technology as well as the assimilation probability prediction technology based on
deep learning and Al. Finally, the significance of the integration of weather and climate disciplines and the
establishment of weather and climate integrated forecasting operation system is pointed out.
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Fig. 1 Evolution of numerical weather prediction

skill over different periods (cited from Ritchie, 2024)
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Fig. 2 Schematic diagram of meteorological

forecast skill across different lead times
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Fig.3 Schematic diagram of the influence of initial condition and

external forcing on forecasts across different lead times
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RAGRTERE = WF 5T F 55 W T 43 B 146 R
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Model for Prediction Across Scales) # 2 1/ i 3F 4%
A 0 A% 552 BT K 2% 53 BE 8 42 BR B 4L (Skamarock
et al,2008; Bacmeister,2012) ; 7 E X 4 /A & 3K [F 1k
iR & 4t (CMA-GFS) (Jit GRAPES-GFS) % [l B
TR AR I H AR L B TR B XTI AR B TR Y
PERE CF 55, 20185 8 SR BE0S , 20200 . ¥y 3l
FEFNZ B0 A 77 S8 T LA o RUBE | i 7 5 B R A<
ROBE 038 1 TER 5 B AL FREAR 19 SCHE R BB A
TR 28 G AT LA S5 B0 R - T o o T bRk vy A8 0
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R A ek AR AR A T A S AH L B e (1 ] — A~ S5 )
R T S 5 TS R AR AU S AR S AR TE T 2 s R
JEARE AT . KA — Ak 5 B A X BE B 4 3t
Z0) AN TR RUJEE 28 58 1 AH B 52 0, G H AT B T 2 v X
2 RUE S A5 5 B T 77 A i A o R A 1 A
AESS . BRUH A ) K R BUR 0 (European Centre
for Medium-Range Weather Forecasts, ECMWEF)
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MARTEATEE

R TR I

MIZE & iR & 4t (Integrated Forecasting System,
IFS) il NCAR #y i@ F] # Bk 452 #8048 5 ( Community
Earth System Model, CESM) 45 B A0 %5 (81 455 =38 1
PTH PR ONA TRYE] T KGO MG 21 )21
FE RS E-RE - KR ED . C & BT R RS
SRR R R . ECMWE 2245 Bl & 48 (Sea-
sonal Forecast System, SEAS5) 5 KX Wi ik & 4t
IS #e5  fif PR AUE A= U7 B 000 42 i 36 21 R
(Schreck Il et al,2023), IFS & z0AE A 51 A7
RS- Il i L ) A o A BCRE A T 2R I Y I
M H A TRIT B AU R e L B G Mg AR 72 /it
oAl 1R 22 AR A X T B — AR TR g5 el i T
209, XF 2021 4F{AT g 28 R 1 BCE RS R W] AZ G2 5L
(B R S B AR AR AT 325 36 26 T — 1A% Ak A% =X 3t
3 km % 2 U B A A P R XU &R S (Sun et al,
2024) , WATH S E T AR i i K R A ADLASCR

KA — R TR Y A BB BB &
JEATHTHT . MR AU BE AL AR I8 25 B A9 R
G3 R B R o B A RUBE B R A — 1R Ak
BB A W TR AR A R A b SR 2 % L 0 R
A TR 55 AR 55 (19 EER (R 5 R, 2023)

3.2 ZEIRBARMLMESTR

B A SR B AT R B R B A SR S
fifl o 1A 4 2 i TR R K AR P R 22 R TR
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P4 R R TR IR A P 14 5 22 R U

Fig. 4 Sources of errors affecting the accuracy of numerical weather prediction
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ARSI N R A E 2l R A SRS
R A L At BT 2 R 285 ] 7 Oy 22 41 24 I 4R E L
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TV S T IR T TR R ) 5 K KR K S
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35 B — 118 AR 2 [R] A X L 47l 12 125 B 2 ) e it
R 1M 22 P 2 A 5 85X (in CESML EC-Earth) Af
VA3 2ok % 5 4 3 ok AR A 220 T A RS R R R
SR BEALLRE T o DT 22 s T 6 o At e

B 0] e 4% 1 1 SRR P R R 22 T R U
Z—. M4 Lorenz B . RARGEHE A LM
FRAE AT W) 46 25 18 00 10N 52 25 23 BE R 3 B[] 22 48 4K
IR, T BRSO KRN, A
ATTAN 8L 4% g 3t 308 e 30 [) A B A il L 00 5 0 {5
AMROR AW b 25 18 A &b 42 T T R Bk 1y
5. WA AT 2 2 AR AL AR, D
ROont v o i TR 45 R A R 1 B £ 2 R R4
15 2 ) #8 & B 8E W] 4k (coupled data assimilation,
CDA) B 3z 1M A= o L5 B 5 B )2 22 45 19 7] 22 P 0
AN AT PR RR G T g R R 25 T
TERA TR A B JZ o P R I gk 4 0 46 4L b
#i”. WHFE R, CDA M L B )2 [A] Ak B 35 el i
5 V8 J2 8 e i o R L DT B MO S5 0GB RS
ARG B L (Zhang et al, 2021; Kim et al, 2021),
MR — 2B G AL T 3E HE IKF SRS 2
PE )2 A 2 AR AT R 2 T AT Ml S A BB ) g i L B
5 ) JoT 58 4 S X6 IR AT AR o A Y R e, DT A

W 3 g R AR 5 X, JU R AR i i 2 B R R e
5 W] 200 A S R A A AR BE ) O R T 4R
BRI, Bl ECMWF ) 4 i Bk 2 52 17 4L £
4t (CERA) R4 4 K /R & U8 3 (EnKEF) Al Y 4 A
G (AD-Var) o fl £ i) A6 RV 7 A0 UICIR 25 AT LA
P75 A O 15 A2 20% (Hersbach et al,
2020) ,

Ak o A R A ) I T 2l B 98 ful K (A =X 7
KA Z Ml GETE. 45 B4Rk & 48 (ensemble
prediction system) i 13 $f¢ 8l ) ff 4% 74 BAN [ f) 458 5
20K A 7 A A T 0 AR 2 R S DT A AR 3 R AR
AR TP AT RE TR . A0 R AR A TR A R B R O A
B A T AN E PR UR L A RT REAS B R U AR Y
JIT A Y R T R FIRE AS L DA T 48 78 R ok R R 58 B 1Y
BEAI AT H AT RER S LR TR 55 0 14 &
5 Ry 50~ 100 4>, AR Y £ A R 51 HE
AR 5 7 A AS ) 2 PE R U (Buizza et al.2005). K
P e W i R AU i v R B S TR R R 1) £
EWRGIRsh iR B 56 2 B 2 R S8 Al E Mok
P A, TE PR UE R TR b 2 PRI TR IR LI
Tl h 45 A 3l 46 5, T B w5 G G R S R
S PG PR AR R & R AT REE . BSRER LS ik
O 78 35 H E K i 1 K <R (National Oceanic and
Atmospheric Administration, NOAA) 15 3| 2213, H
R B AL 9 BE AT 1) 48 3l (stochastically perturbed
parameterization tendencies) A , 7 ¥ & 55 AU F [iH]
I 2l R AR T 2 R ik T ENSO B kR
(Shin et al,2021) . 112 7N U Pl & 1 5K e Bt
%] ( Coupled Model
CMIP6) 45 5 73 7t % B 22 B8 5046 & W e IS o —
A5 25 A i 2 42 T A s = 47 1) U T S

5 B W)k 5 4R 5 TUHORH 4 AR 80 P 4 A
(49 PP R RS0 AT LA A 550 1l 8 v TR A B2 35 . il
& [H i =5 il K J7) (National Aeronautics and Space
Administration, NASA) [ i Bk # 1k 26 550k 55 1L &
(Geostationary Operational Environmental Satel-
lite, GEOSYHESL . H] EnKF Az il 19 46 5 ) 1R 3 H 3%
9K Bl 2 5 AR - A ) A 3 i eb S T A R 22 B 7
22 It 28 WAL O AR L B B Bl A5 A B A I
Fho BBl B RN AT LA NAO (1 & B0 75 8 %
#£5 (Senan et al,2024; Abid et al,2023),

Z 18 JZ W TR Ak 55 4R 5 TARAR 7T BE J2 R ok Blg it
B TR R G R A, R R HE S R

Intercomparison Project,
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BN RBE 1 B0 B8 07 BRI . (B 22 R 2 A A A5 AR
[ 18 3 BER 5 22 DA AR FUBORE T AR T i R S T
U5 38 % B B AS . IR JE 2% ) (deep learning) I A
T % fE (artificial intelligence, A1) 35 A i 8 I, 41 40
Transformer 1 # 2 ¥4k #5 AU L %0 42 9K 3 Diffusion
T, A] B8 23 7 X — S0 3 A 58 il M 7y 0 g

3.3 EFREFIM A TR AR S B LK

A3 R AR AR 1 2 T 9K Sl L AR Lk
T A8 N T Y AN A S R R A FRATT AT LU B R
A AT LU 5 ¢ 8 RO AR 2 s 0L I K i 10 2 B =
i) Ak DA B ) 22 78 B3 09 46 2 T 41 ok S 9 /b T 4
SR AN E 1 o AELRE A TR I R0 S L TR 5
W HRE R — BV R A A, B O
&, B e S M S R A E Z 4R S
AR B 5 5 K fol 12 14 A R TR T i 0
BT AS . AR R IR BE 2 2 F0 AT R Bl
TR . 5% G B AR b,
FIGEVR I ZER KR BERRAR . T IR BE 2 ) 1 32 [+
A TR He A J B 1 458 1 A R N0 )

RS 7] Ak 14 S5 T 5 S U KR A g R A S
A B Al T R GOIR A HE A 00 A 1Y 3 A TR A
MR WL 5 RS TR) 0 R 2 06 R EL BT L A
SRR R 4% (generative adversarial network, GAN)
A A B LI AR A B DT B T D A AR
g %€ I 1 (Ravuri and Vinyals, 2020; Ravuri
et al, 2021) . A7 — LB AF 5 il R A 28 ) 4%

(deep neural network, DNN) # AL 2& ™ 6] 1k i 72 - $2
EE L AU T K 4 41 T R G IR 25 Y HE 3 () A A AL
(Bonavita et al,2021), PRAEMER TR & 74 % A
AT AT BE M Y oK R AR A 1 ME A A T E B —
TETESS A . AR AR LB AR BT LA T BE AL A 22 ) 4%
(4 MC Dropout) s /f: st 54 (4 GAN.VAE) , /:
TR 545 B A] fE 1 2 AR AL TR BE & L OF B A A Bl E
P4 (Abbasi et al,2020) ; 38 i i 25 #5122 A4, ALK
A HEZ M 45 (ConvLSTM) #1 Transformer 5 5 fig
T AL B TG W I 23 A0 5GP o DT B2 T A3 i = 478 1)
T A R (Garg et al,2022) ; } b HAG W B2 X
B 24 S AR AR, AT DA 901 41 285 L T A A 1 B AR
(Gulian et al,2019), ECMWF Jt & T TR E %
I LA TR R 48, a1 Y 2% DNN A 5 2 D00 46
Y3l 3 B AR AR & TR A9 TF 58 LA [R) I R 5 5
EnKF # %4 # 4% 75 (Hatfield et al,2021), 4 3K
MetNet-3 i il Transformer 4R A 3% 24 /NEFFE K
(925 [ 2850 A s AT DAAS 3 1 ko 5y 43 BF 258 19 04
SR IF I T A% g8 B (A 5K TR P i (Senderby
et al,2020)

e [ B2 B R B 5 BT R A T T T B
WIRE T — T J0 W B A R A R 1 R A AR 32
Tk (generative assimilation and prediction, GAP)
R Sy S B R AR — A Al T B2 i R S8 B
GAP B Je 75 B i R SRR 1Y S 98 43 A O 4
R A R A Al T (B 5) ., RIaE 1 G W B A4
AR R P B 8 (diffusion model) P\ S5 743 A %X

HA

T

pH(X:—l |xr):N(xr—| ;‘uéJ(X/) 2 ZH(A:» ’

__________________________

TE 3205 B AR Y OBEAL o i i ACBOR T 2 UE S IE 1) e 072 A b s i B 2 A B A
SR T o BIAR A R 390 0 A s e Y 0 B 16 e R U S 8 3 A e A D H R A I ek
R A1 o 3o R o 4 L) 5 AT B A AR A H B R ek i s ] A

K5 R o 58 0 A #  0 IBR ISPIR 25 A5 T 4 R R BB (Chao et al,2025)

Fig. 5 Schematic illustration of prior distribution construction and instantaneous state

estimation techniques in weather and climate (cited from Chao et al, 2025)
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He WL A5 L5 2 20 2 10 S e B R o A AR L 15 2
— MR A S R R T A T RE RS
RS (Chao et al,2025) . HiA= il 24 8 ) 58 K
UG BE ) R AL 5L 7 6 iR 22 3RAEZ PR T T AR
B Jry R 8 0 T o 5 b, 220 1] 5 4% 1) 152 2 445 ) R 4K
MR AR

FE T — S AT DL R AL R AR E A AR
SULE &2 D ORI I R TR 7 NG LT SR /OSN3
G0 PS4 BIORE Y L DA sy P LA B afs b o
SR 3 A AT A B A 2 58 4 1 A AR A
TEAS B — DR AL AR B S B 5 A AT RE R
AR RS TEZ )5 o 38 A T4 ASE B RS A T 4
BRI 2 B O T — A8 [ Ak 5 A AR 7 A
SRJG 5T — I )25 BRI A5 8 R AT R ARl
I [ B 25 SO0 0 R 5 5% AT 1 B S B T i 5E
R 5T () AT A o R T 3 o ] A A i ) R 5 B
A A P A X B0 A0 K 3 A5 A R A7 HE 38 2F AR
AR ] 20 B PR 25 R . TR S 2 T
W37 FIR) I A5 40 I 29 o), AT DL O KRS 5 B 5
SRS A5 A A BB B 5 R D1 2 B B o A R
o BB T DL R P — M A R AR RS A
I A5 B 408 K Bl KT AR % B B2 3 e w0
e BR (Nai et al,2024a), & 6 254 7 GAP [
JUAS AT ARG G AL 75075 7 18 A2 A0 L iR
ZWHRER . BT LIE S|, GAP 4 Wk &

25 A

20 O

105 115 125 135°E

w—— FRAS

S TR b

W61 5 ERAS B A Bby i — 3ok & Koo A
EOHR A 5 R (120 /NEE) TR B RN AR T
100 km.,

ECMWF 3 DU iy bt 25 1) 2% 1) A0 6 101 4k &=
4 (ATFS-Pro) JF & T 5 & Wil il 50, L4 & 2 U
WAL G TN T 4256, fiE 5 o 1 M S A 35 K <
HAFRAHG E Y. GAP [H] Ak HE 2R 7 4 45 7Y 5 F X
KA AR A3 A 0 o Tt 20 1, JL 4 A 5 TR 9
AR BE U B A7 M B T ROk KA A E T RE M L
58 /INABE 38 14 A8 iy DRSS 0 [) B 3 o A9 3R TR Ak A
ARARRIFHHEANL B R RS
1) AN 2 1

FE 25 78 LI A7) 4 3 0 1 5tk 38 29 SRR B
i 3 2 O B AR SR S A A % 4 A (Nai et al,
2024b) . X FERE AT LA S 0 ) 4R A AN 3R 38 1 R R
ATIARR A A T Y K 2. GAP AJ DK 58 3 1Y
LN - ] A - FT 41 P 3 2R 456 L TR ORI 6L L3l 0 2
RGO R A PLES & LB T X RS R G E
T A AR AT . T B RS R B B TR
J R A — AR I 4 B8 LR O ik IR 4R T
Xof R i R T ) TR e

53T A — S8 43 AT A 5 2 B A S AR 48 ) 245
(CNN) FHK B 11012 M 2% (LSTMD 45 & T AL EHZ A
TS T BCE (i ERAS) L 36 BHE UE (24~ 72 /)
1) 3% A% T A EL A% 8 BO(E A AL (i ECMWE) 3 2
0T 10% ~20% (Kim et al,2019; Zhuo and Tan ,

600
(b)
500
400
g
<
W@ 3007
o
200
1001
0 T T T T T T
12 36 60 84 108 132 156
FRAR 28/ /N
—_— A A5, —— R

K 6 GAP 84 WM& S R3] AT BT & AL T35 297 1 () & XU A2 Tl 4
F1(b) & RUH UL ) TR 5% 22 (Nai et al, 2024a)

Fig.6 (a) Track forecast and (b) central position forecast errors of

Typhoon Doksuri by the GAP ensemble prediction system, and the Pangu,
Fengwu and Fuxi Al models (cited from Nai et al, 2024a)
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2021), Google DeepMind i) DGMR (Deep Genera-
tive Model of Rainfal DAY, ZF GAN X 1~2 /)
I 6L IF ek 30 5 [ K 00 250 SR G T 4% S 4 v (ot
WL F WRE B A B4R (Ravuri et al, 2021),
1M AL FE T 3D-CNN 73 #7 2 3% ) & 38 B Cin e 49
R 3 A5 1 R DU 25 R e A IR T A
(Cintineo et al,2020) , AT £ %1 [ T 2 i} ] 1 15 55
T AR AT 15~30 min, RIRFFEART 207,

MNE SR T UL PR B A 2 A AT R 78 B 191k
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AT B T O . A B TR TR
TR0 AT [ 100 i B 2 i 3 B8 Y 85 3 A E AR S AU
R TR 2 8 B B, (AR R AR — R B iy
o AT PR RO B RS AE L 55 BB R A E
KA. R R4 AT 16 W it <5 TR 26 Bt
5t o AELATY 1 I T A R /N AR 2 ) (R g 1 5
It /0) iy B — BovE A ) L, A% e B A R A
AR A ) T AT R B O A BB AR A AR AR
PR AU AE B b R B bt ml = AR e AR o R A
FEAS . H e AT AL SERCIE TR 25 6 O A B Rl 5 &
Ji& KA R AR WA B 2R e

4 g H

LI 4 R SRS 2 T 24 Al KRB A BRI
TR 52 35 1) 99040 A5 8D 25 ) 4 R R IR S A2 Y B
S I S A 22 o A1 U S A SRR A B ) L2
RPN ARRARAEACRZ . F L b KA TR
I 52 B R A 46 2% 10 70 A0 58 30 3 5251 B A TR R
M+ T K 32 Bl 98 2 Joi 3L 3 B80T P KR T
12 1 R PR AN A T 1 AN B . DRI, R AR
JIr AT A e 4R BE L 22 I ) RUBE A 2 o A
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—o (HA NGB TR BE 2 ) A AT SR IEAE B
EBMER Al AL 5 B 1 PO B A ol g i Al etk
R AN o T A B ) P2 R G TR R A 2D R
AT TESGR G AT LA 35 5 T 5000 1% o 40 1P
IR B SRR SISy . AT AL« (1) R
KA A BERS 2 — 25 A B8 i fe 20 1) il &
K s (20 BB B K A AT F AR K i — 2 A H.
Bl BER R AT B9 25 5 8 = R R TR B

LB AR T2 (B RAURAB G KR
A — A BB RS A R S L JE R TR EE 27 ) Al AT
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