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Abstract: China has established the world”s largest ground-based multi-band weather radar network and

successfully launched its first active radar precipitation measurement satellite, the third of its kind globally,
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achieving world-class overall technical capabilities. Weather radars and precipitation satellites are crucial
components of the integrated space-ground precipitation observation network, and are key technical sup-
port for accurately capturing precipitation dynamics and comprehensively analyzing precipitation character-
istics. While weather radars offer high spatiotemporal resolution, their coverage is geographically con-
strained, limiting continuous global observation. Spaceborne precipitation radars can provide three-dimen-
sional precipitation structure information over global mid-to-low latitudes, particularly over the regions
difficult to be covered by ground-based equipment, such as in oceans and plateaus. The fusion application
of space-ground integrated systems achieves an organic combination of continuous large-scale precipitation
monitoring and refined detection of local precipitation features, which can provide more precise and com-
prehensive data support and decision-making basis for meteorological forecasting, disaster warning, and
water resource management. This paper introduces the technical characteristics, operational quality, and
data products of the multi-band weather radar network and the FY-3G precipitation satellite in China in de-
tail. It also presents preliminary thoughts and prospects on collaborative observation and the fusion and
application of the fundamental data from China’s weather radar network and FY-3G precipitation satellite
in four aspects: (1) the cross validation of satellite-ground radar reflectivity factor, (2) data fusion of sat-
ellite-ground radar reflectivity factor, (3) the simulation of ground-based radar signals using geostationary
satellite data, and (4) the fusion of active/passive microwave and geostationary satellite infrared data.

Key words: multi-band weather radar, spaceborne precipitation-measuring radar, space-ground integrated

system, cross validation, data fusion application
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Fig.1 The current deployment status of the weather radar network in China
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Fig. 2 Network signal processor architecture
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Table 5 Key technical indicators of miniaturized X-band solid-state
weather radars (simplified version)
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Fig. 7 Calibration and evaluation framework for weather radars
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Fig. 9 Radar reflectivity factor of multi-band

weather radar mosaic products for the

Beijing-Tianjin-Hebei Region
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FY-3G TLA AREK Jy 20 B 45, Br Be & 1
M 55 3 S AN A AL 4 - 3 Bl B K i 7 3K (precipitati-
on measurement radar, PMR) | #% 3 3 I i 1% 1 -F&
7K B (microwave imager for the rainfall mission,
MWRI-RM) | 53 B 356 3% iR AR 7K AL (medi-
um resolution spectral imager for the rainfall mis-
sion, MERSI-RMD Hl 4 2R 3 i TL A2 2 ¢ 48 A2 R0 4%
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Rk U {H 55 1L/ dB <—30 <—25 <—25
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