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Abstract: This paper reviews the development history, key technologies, and application value of ensemble
prediction, which originated from the understanding of atmospheric nonlinearity and chaotic characteris-
tics. Since Lorenz proposed the “butterfly effect” in the 1960s, it has quantified forecast uncertainty by in-
troducing multiple perturbation experiments into numerical weather prediction. Initial perturbation tech-
niques have evolved from breeding vectors and singular vectors to ensemble Kalman filtering, while model
perturbation techniques include stochastic kinetic energy backscatter, stochastic physics parameterization
perturbations, and multi-physics ensembles. In the early 1990s, major international meteorological centers suc-
cessively established global and regional ensemble prediction systems. Through statistical post-processing tech-

niques, ensemble prediction systems have generated various probabilistic forecast products, significantly
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improving the accuracy and timeliness of extreme weather warnings. In recent years, artificial intelligence

(AD-based ensemble models represented by Google SEEDS etc. have achieved breakthroughs, delivering

superior forecast performance at lower computational costs. Future ensemble prediction will develop to-

ward a new paradigm combining physical models with Al to further enhance the forecasting capabilities.

Key words: ensemble prediction, initial perturbation, model perturbation, forecast correction, probabilis-

tic forecast product, extreme weather warning, Al-driven meteorological forecasting
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Fig.1 Concept map of a single model for modern ensemble prediction
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@ Eta-The Eta Vertical Coordinate Regional Model
© RSM-Regional Spectrum Model
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AW . SREF 7= & X 5 xt 9 KUE | 28 W45 1 X
B AR AR T RS R . AR O [ SR T o B
FAEG W (HREF) , 48 18 2 4> 0 i ROBE AR, 52 1
X TR B S R R e TR . A
K 2 A B & Can 8 ] ) COSMOY | ¥ [#
MOGREPS? | [# ) PEARPY %) # g 7. T 41 X 2%
A E 0 XS B R G, R TE 2~
10 km , 35 55 T4 8 21 R ORI kR /K B A8 2 e

o [ o AR A DR B TR R R . R SR
(2005)7E 21 22 00 4EAAHI AT 4 1 %k XS 42 4 13
WAGW VIR, TESIE R T 2018 4F i )5 d A
CMA-REPS (Jfi GRAPES-REPS) , % % 4 W #h X ,
KOV 43 A2 15 km, $E AL 20 A4S 01 1Y 5 A T
. ZRGERHAZ G Ok A 28k E AR RE
B X3R4 A $e 3l ) i 22 4 B et B2 40 3 RE A5 B L 4
HE T A R A K L R X R T TR S A o P G TR
45,2022 ikt 5 L 2022 F I L4, 2025), B,
16 K KA it FEh, CMA-REPS 1 [ 7K HE 2 151 4%
T DX MR 23 5 L Oy T % A AR i A K T DX 4R ARt
T2%. HEi CMA IEFERF & BT K HA X i e
VFAE G TR . LASK 5K 4 Hb 2] 1) J s 568 F2 7K R i %)

AH HE A BR AR TR . X4 4 TR 9 i L 4
Aab B SR — A ) R, 3 R DX A o T A A Bk
AR B A AT DRI 4 BR- X AR A5 ik B e A
2 W AR A R T AL XS =03 A A
7= A XS A PR B AN TR AR B2 o X R X4 & BE
Ak T A BR RS B AT 2 1k BB AE A H R H Y
225 . AR BF 5T R 7R K UL [ 5 dh 5] ABEHL
B F s B )5 % (Houtekamer et al, 1996 ; Marsigli
et al,2001; Bowler et al,2008) , B —Hkik 2 &4
WERES R A R I — 3 km 43R 20 K
FUOR XIRAR A AR E AR TR IR . PR — 2B KBAR 5 R
FH 22 A5 R0 A st A B 32 47 A 22 1 6% 1 =X i dn
% E HREF il D4 G5B IR E S
DI 1) A7 B DX Sl 8 -4 T4l &R 48 (LAM-EPS) 3
HWIRZE T “Iu8HE 457 (meta-ensemble) i J7 ik, A
PRI XIS TR E A ) BT 8 0 R A
E T A O R A AR A (IR A T A TR A s I s 4y B R

©COSMO-The Consortium for Small-Scale Modeling

WL 75 15 S o

DXIAR & WU AE AR TH R 3t 9 5 KBV T T
RO o AN T DAy R 3T B AR /N B K R
RPN » 5N WL 3R T 2 R R AE R T DA SE
FeRE A i SRR 55 . RS 28 B (Il IX i i) X
S JRy b B 5 AR NS A ) 0 Bl g A Y 22 i AR
FREREA A B T ook 4 XL Rl ] [ K
SETAR . AE I AR g VDT B R VLU A K
SEHR L R S AR RE L R BR AR 5 L  UE R
Hb 45 HH AT RE A B K T DR S (L 3 FEL L B A 4T
BIF 0 1) L A3

4 G E A PSS RS WA Ok

LA TR R ] — S s B g At T B L AR A
TR 25 AL L 5 EE A2k 35 Y W G A3 RN JE Ak 3EA g
HMACHH P S T REMA A NE R . St B
(statistical post-processing) 235 %} Ji 4G 4 & T i 12k
TTGE R TN o A48 I 22 1T 1E A A AL I | 25 (]
R RURE VBB LD INA A B A KB R G R 22 0T 4
RESR TR A A SE k. LA O T P A 4 A TR 9 8K
B BN T AR A2 W VAL 7 1% s 045 A B 4 AR A
P 22 % 45 TR 0 B2 3 L AT E 1 KA PR A B aE
T CREREE . 2020) ., &R EAS G AL FH
SR 02 WAl A 25 G L nT L5800 R $5E 4 G Bl
B DI A o A6f7 7 it B 47 b iR 55 oA TR 5

4.1 FIHFAEFZE

Goit e b Hn] 22 RS LA U BRI A T
WH PR (WMO, 202 bR e FE . — it

LU LA TT I
(I i 255 IE « 51 %) 5 A PR B AR A7 A5 ) 2 5 D
ZEPATALIE BT A -

Ca) GV /AR 2 P 18T 0 < 1) P g sk SO0 3000 60 30 41 9%
BHHE ST TR A 5 52 50 22 ) 0 ] 5 O 3R L AR IE AR G T
W ¥R 2= . BlundL 5 MOS J7 3 38 3o 2 4% 1] 15
TH B A X 22 o 70 4R & TR 55 1 ) X 46 5 1 24
AT AR HE . Glahn and Lowry (1972) 1y TAEZE &
TR GE Y SR A

©@MOGREPS-The Met Office Global and Regional Ensemble Prediction System

® PEARP-Prévision dEnsemble ARPEGE
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(b) /R 2 38 (Kalman filter) % # # i : F f
198 AE 1Y) 5 S I SR A G 2 . R X T
AW AR B 2 PR — B T S S8 0 2 2= Al Y
Tl 22 53 LA 32 9 X 7 R B AT A8 T 22 i A
Cui et al (2012)$¢3% 75 15 I H] T B F K 46 5 1
i O 22 T 1E U R AP ROR

(o) i R DL (frequency matching) : 3= B2 4 %
0 S T A S UK FEIERSDURIIR NIV R 57 S T
$EN X 4307 HEATVEBC I 2 . Zhu and Luo (2015)
$& H B AR DL E 7 AR AEAR 2201 55 TR T R K 4R Tl
WERRFRIN T . BT 20 A B 5 R i g
R RE AR 1) 43 A 2 S 0 4 A — B

(d) 43 o B Bk 8f (quantile mapping, QM) .
Hamill and Scheuerer (2018)#2H T QM F1 8k AL
oo K B A 1) A 23R A B K LR G Ab BR T VR . T
28 S5 T3 L B S B AR X 6 4R A PR 2R AT &
3 1 iy 2 A T o DT B T i b XoF 9 AR I K 14 53 AT R
TESEAT VR RE . B S 0 Ak A e A B 53 AB M 7 12
K Py sk w0 T AR 8 % A A 5L 5 2 AR .
B G L AT IASURE A ARE 38 03 A B2 v 4T A S T
AEVEZNERE Ty o %7 R A A A TR KA 5 T4l
F1R) A P R AT e I A R i A K R B AR R
JE B AR TR B PR RE

(2) R AR A UE - B XF £ A AE 258 T4 i b A9 A% I
O A Tl TR AL 2 5 S UL A AR A — B,
Ji kAL

(a) ZICIBHWIE - g7 4R A R ge it i 5 00
KA S Z B 1) 2 o018 48 B LR, B AR OE IS Y
HMER , B Eckel and Walters(1998) 22 5t 9]
UF T B KA % TR A o . Wilks (2006) 338 T
(] A A VAR 2R 14 T ¥

(b) D1 nf H 455 A SE ¥ (BMA) ;: Raftery et al
(2005) #2& Hy » FI— 1> i A iy A0 32 %% 5 o BA0TR 6 ok 36
HESE A TR A ME R 43 A . BMA MR I s v e 45 45
AN G T B PR A B AR 3 A 2
HE WML BRI X I IEAERE K il S
FETRR A T AR R AT AT B R R AR R IR 1 AT
FEPE

(OF B ME: 5 o RFA 2R T
FD s 2 %8 1] 0K B 0 6 6 4 1Y) R A SR AT Ml
4% 1E . Hamill and Colucci (1997) Ji7 Fl 3% % [a] )4
XF B K AR 2R R AT J5 A 3L B 1 2 T ARE RS TR 1 A
HR AT SERE

(DHBRME: S H 2 E B MIRARUET .
N Guan et al(2015)#2 H K5 22 R 3 & 1E (Kalman g
P SUAERD 5 I 50 [ 4R G A IR AR 45 5 [R) i 25 pE AR
AT 3R 22 A g s A i 25 4 TR G B R A
% . KR B AE A DXk R K MR R R T T

A UM H G« A 4R 5 BRI B2 T
R S5 B 2 AR 5 1 1 JE i T3 S [ AR R
A AR . 4 .

Ca) B FEZRME TO A 4 G - %A 6 0 D e B M o
FOR AN A AR B 53 0% 22 Db 5 22 6 7 » DA T 4 21 07
2t/ H o B A B B4R . Gneiting and Raftery
(2005) #& i ADRF 1 B AR F T 4 6 Bl 4b 3L, 0K
TEZ B G5 IE T IR & 45

(b) 255 B 5% Iy s P B 0 A AR 4f 2% iR 5 o 26
— BN [B] 70 4 ME B B 95 B o 25 T 00 75 51 R AL
TG BINELER | DR A B 5 T 4 s
KA . Leutbecher and Palmer(2008) {iF BH 1% #f 14
INACHT $2 5 4R 3 P 24025 . Song et al (2018) HL7E
Z R G KR A G B b SR S5 A s T
UE & e

(OZHRES RN BRESHARES
SR RGN LG M AL R E S B R R
(NAEFS) il £ % H NCEP 5 % K% b
(CMO) {1y = BREE A T4 ™ fr . Candille(2009) 4 HH £
G L RAELE AT B — B RN, PRl 55
th 2R 5 Bl DL GE TR sURGE DA PR RE .

() 73 [) J Ak P < B0 M 5 TR 3 1) 725 T) 40075 34
R A AE B RUBE S RV R g 2 9 3t T WL 7 ik T
FEAEAE B K AR B TR 7 440 (RS IE B B v 2y MR
DIt il . 0 4nks 10 kem 4 45 000 B R
2| 1 km, DA e IE 5200 . Stensrud et al(2000) #
ARG R RO X JR) % T TR A 20t . Zhu and
Cui(2007) 42 i 1) 2 B B [ R J5 3 £E NAEFS i
T2 2R Pl tp A5 3 1T AR G i R

25 (8] < 46 T 37 T s AL B O 25 B/
JRUBE M o M S LA 1 B T A E . Atger(2001)
WHIE TG 1Y 7 iy £ 1 Lk U B O i AT 4R
e P P AR 258 4 1) A 132 2 [ IS I 3 R AR A S
) ¢

Zeqd bR e 22 VT IE RS ACUE 5T BRI R
JE AP BRAL PG L 4R 5 TR B0 R 1 R T R
HRnJ AR BN TE . W AR AN [R) RO G 0 X
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SR JHRH N 19 J5 b 3 0 58 5 JF MO P s A 30 ok IR AL 2
B AnELEE TR IE A 2 0T Il 5+ R AL, K
T8 0] B AR S 43 07 KR G + 3 A el A AR, AR ) A
(2018) 25 T S A WA = ik B K TR 4 11 )i A
PR ECAR R . AR BB HLAS 2 2 I R R
BT K g R TG R EIRER .
130, Haupt et al (2009) 2232 F # 22 BY 28 4% IE 52 &
R K AR A7 240 55 (2022) AR P55 (2025) X B 2 2]
FHF PUA% KA TR B F S AT T 2538 Hrh i ig
T ATTER G R R R B . Hlas¥ A
ARG Z GGG A7 B B S AR R
W S AR (B A5 T ) R R T 1]

4.2 FURISHRITRE T E

T RACE S PR B ROR S T X T 207
THT AR B PE A o T 4R 5 TR 2 IR 48 A A 45

(1) ¥ 77 R 22 FAH OC R0 T 5 3 (B
B8O 5 S0 Y 34 AR R 22 DL RO 06 R R DLPRAG
EE VPR . — Bk B, 85 R
EU AT A7 B — ok 53 B o A IR 25 S /1) L X R B A TR
et MR T A A B

(2) B B -UR 22 MH O - 1 12 4 45 B HIBE (% Bl A
ZEIPFREZ) SR G PR EMILECRE . HAH
T B0 T o P 287 12 1508 7 422 30 349 7 AR 1R 2 (R (L, DA T 15
FRORE m] LA 0 U AS B 2 MR AT R0 7 o A B TR
TN TR 2 UL AR T AR EEGE T B
B Z A6 B OB G R TR 22 WU RT B A JBE R HIC (T4l A
WSO o B O i T B RO 1R 22 EOR A L 4R B
L3l R .

(3) ME 273 A K 56 - £ 45 55 2 B J7 K F0 PIT
(probability integral transform) &, %2k B J7 K ¥
WA A HE R o 0 067 B gt B T B DA A AR
B AR 2R G0 22 B0 BIORE (R, 0 2R BT 1
I, FRIRAEA B A 5 OW TE A EL B A B A
U B BT 9% e 5 &AM 4R 5 HOREAS 22 5 4
e R AR A R S K. PIT [ 3% 2172 1 11
ARSI o

() A 58 35 R T 2 < T 0T ABE 58 9 41, 225 o AT
PRl 2 PP AL TR AR R 5 S PR R — bk . B
LT 1T 4R N 22 3 % 4k CIn B4 70 0 Mk 3R TR L IR
LSEBRY 000 KB o TR I T Brier 432k H45
KRR TR 1 24 7 AR R 2% . Brier ¥¥43 7] 43 i
g Al SEE SR AT I S AR G R A AT P SR A [ AR

R X 25 SR 1 IX 43 8 7 AT & 1 3RO AR R 1Y
KU S o G P4 R AF R HE G W Y W] 58 i
HEA—E M.

(5) M 224y ML IE 43 (CRPS) « X 2 TF M 45 &
TR A A3 A 5 25 25 A e An A XS TR
TR AR 2, CRPS S /N IR EL S 1
19 SR B 8 531 5 5L bR W B8 4% 3 . CRPS i 7] B
S WA 2 RSB PR S DR G Tz T A A AR A A
Z BB PE S b, Bl 7e Bk AT 55 B R,
JH CRPS iy gt H AR T 1% 58 5 G 1Y ek g )32

(6) 1% sy 75 41z R 1 PEAd - A A & Bl vl L35
e 3 2R B ABE L He 24 NI K 1 50 mm Y
MEAE7 A5 X I ME A TR AT L ROC il 26 9% 4
A SR 2 R ¥ 7 (Guan and Zhu,2017), ROC
2 T i AUE RN X e . G WARTEAE RE IR
e B i = 1 1) ROC A543, R WX T Mo R AHRA
HAF PR D 8 7. B 40 Hamill et al (2006) F1 H
NCEP £ & - fi i #0452 , W & ol st 1 96 [ A o
K B RE 2 TR L T

SEUNDNISE =) QY R N D g TR 3 S
A R R G R g - DA T X et S R A S Ab
. Toth et al(2003) ff HE 2 il Hiz fY 7T 5 11 70 A7
PE LA oAt i T RE M T 21 A 4. S P
Y (6 TPAR I B B 3R, G feit ) 28 UF ¢ i 455 R0 9T Ak
AP AE DK Y 8 4. Richardson (2000)
Zhu et al(2002) WF5E T 4R & PR 7E AL 25 | BB U 25 47
b P S R AR R 2 (R . S5 R R AR TR —
T 2 PE AR o B TR BE 6% W 35 4 e i s L U L
TE 7 AU XS 1 37 5 T AR B @

4.3 &M= mnBl

it 5 A N2 Wi PP AG I B 4 H B2 A A T
e A B A T 0 I 4 ™ i 4 1 25 4 D AN
o W UL A TR AL

(DA F R 18] - B AR 45 R e iR R
PR B2, WK 2 fros, BE 28 & B K ik
(PQPE) 1 [ & 7 5 5 DX 38 7 R o 24 /i) B K &
B E (U0 1 mm. 10 mm ) R, BG5S
SRR 35 °C B o A B A [R) 6 3R IR
KA MR TR o AR T ] g i R ) AR T
a7 Z BT R A i AR E WU, S
(i) B A v 0 24 Ry b B

()B4 P JH P AN AR 2R 18 T e B 5 7
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1 5 10 20 30 40

60 70 80 90 95 100 %

K2 AERHLIX 2025 429 F 25 H 08 IF & 26 H 08 W} 24 /i Bif /K =10 mm
IE SEy I S UEi& il
GEAR BT [8] 7 2025 45 9 A 25 H 20 B, BRI 8h 0~24 /NP
Fig. 2 Distribution of the probabilistic forecast of 24 h accumulated
precipitation == 10 mm from 08:00 BT 25 to 08:00 BT 26 September 2025,
initiated at 08:00 BT 25 September with 0—24 h forecast lead time in South China

R AE B b 5 ) HRUAEL 23 AT (&1 3) o A0 2P 10 3 LA )
DA R R % DY T A1 B I 1 A A DL 3 2k
BT o PN A 2 A I L U Bl AT A
SE VR BE I A1 A2 1k o i 24 P DU AR 2 1k 20 PR A 1o ok
B AR AL b O P o 7 FIAR (55 . X L8
Pl AT B 4l O3 PR T Mgk 4 B BIORE AL AT BE Y
i A O

(3) 4R 4 PO R S5 10 7 60 T 2 1417« i 2% P
TR 22 A B A BB R L 114 5 (8] B 3 DL B S
R QTR — HEHE S TR 5l 3 o ) B 28 5
B7) el PR 1o A T G B ) %o R O R Y T A R A —
B 2R 2 Mo 5 R R A Y A TR R A U R B
5 F B T LA 5 A A5 AR LR A TR Y
TR 0 » ) I0E 7% AN 0 R A i L g S T AN [ A 1
o TR TE ] ok b BB 2 A 4R 5
B AF (A AN 4 500 hPa & B 5 (9 45
SE SFAELE0O 1 70 A 11 D - AT A2 1l 26 A0 LA AL IR

WA A5 R . 1T A% P O 30 T 5 M 4R A A B A A
RGER G B 3 IR ) 1 K7 B 5 e B 22
5B AR P BUROS TS X SRR E KRR
RGN . PRy AT A8 A 5 — B[R] 1) 904
LR IAR A 51 X [A] — R AR R AN [ ) &G R
Ao JH Xt AR W A UL 7

() R 5 P S A8 B < 0 0 AT B M 1 5
E (Toth et al,2001) , ¥4 5 & B Bl (s B 55 1k Ry 25 ]
FIE . 5 8 R B AR %] B4R M (RMOP) By —
#l. RMOP i it 2 % S b Jr 22 8 1 4 1 Y w7
i 7 FH X6 R A R B G R 68 5 ) R R < Bt
TR % b X A 4 TR — 30 m] TR o 5 £ v
Tt R 5 A o B R R A B M . S,
ECMWEF 42 i 4 & 5 0 48 25151 Fn i i 25 M 11
5 Bl U B3 AR T AT S

(5 JRUPG: T4 7= i 33K 2% 1 1) FF P A 2 5 o 1) 7o
e B B S TR A SR R O R S O KU 1
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T I I I T T T T T T T T T T I T
25.08 27.08 29.08 1.08 3.08 5.08 7.08 9.08
9H 101
IEHRI(BT)/(H . 1i)

4y il 1]
uALn, IAIPNIAAA] 68 Lanlanol LuAS0b)

0 7 8 aa0ess bt RAEULASE |20 Jalllgaligssshally
25.08 27.08 29.08 1.08 3.08 5.08 7.08 9.08
9 101

ff A (BT)/(H i)

T!/} 67
g 4 :
> AR
X 24 jiiccl
= ,! il
20\\\\\\\\\\\\\\\\
25.08 27.08 29.08 1.08 3.08 5.08 7.08 9.08
9H 10H
j}ﬁiri;vllgqﬂi',‘“ ] ld)
M|y I h‘
[l |
I
I 1 I
9.08
9H 10H
II(BT)/(H 1)
— ATy — TR

K3 202549 H 25 HO08BF% 10 A 10 H 08 i
GEIREE D 9 A 25 B 08 ML AT uliZ 6 /Nif £ fd
o 5B 5 TR A LR TR W [T 51 FAR £& [
(2 m AW, (b6 h fFEKE, ()10 m K, (D B~ &=
Fig. 3 Box plot with time series of meteorological
elements of ensemble forecast by 6 h numerical
model at Beijing Station from 08;00 BT
25 September to 08:00 BT 10 October 2025,
initiated at 08:00 BT 25 September
(a) 2 m temperature, (b) 6 h precipitation,

(¢) 10 m wind speed, (d) total cloud cover

T, LI T A A B AL FUE A S Rk
24 /NBFREIK B KT 100 mm {1 HE 38 8 ok — 5 o
{ELCH 50 200 B fish 2, LABR B AH DGR I T SR v & . 3%
NCEP 4 # i JC A 5 5 B4R ™ i FIA 40 4F FF
A3 BT A R ETE B S TR A R R R
DIAEER 90 Y088 95 Y0 43 (00 (8 W 4 Oy b 35 S8 . X 28
7 il DL B AR 0 B s < . ECMWE |1 EFT Ay
S — i AU 8 Bk L T O o R AT IR 55 L 40

6 FT 7 o T XU R KOXU R SR R R R4
A PR A b 30T A K SO A T B S (] R
AR HE T A DX T 1 7K e B8 R Al TR O A 06 7 MR
# , Pappenberger et al(2011) #] f§ ECMWF £ &
Sy Bt oK 5 R e A it T kK XURS: AR s ]

w2 AR I R A R A i
PEAS B AT DA R i A% 8 25 T P o E SEBrolk 55 o, T4l
R ELEE S MR G o A 1B DL R 5 1 T
AR FEE G Ja XA AR BUR E TP R AT R $2
R BIANAE & KRR o BR T 1% G0 1 B AR R R 25
He RTE R R SR & Wl T8 G 0 R EE
P Ji 7 1 A DR o7 B M 38 70 A1 o {8l 28 AR B WLl T
fife 5 W BE S B AN A M. BEE TP 5 SR Y & R
KA A TR b N 22 oo Ak AR RE AL, 481 e i
A2 H P M 0 S RO SR 2 4 XU 1) 38 1Y
AHRE .

5 A TR AL A i UM KCE T
iz ]

B B TR AR A 3 R A R TR RN AR5 K T
B IR A . B TR A R &
MR FEAIR L5 I ™ L B — TR A B P R A 4R
A THUAR B L F) ME S 15 80 A B 17 57 0) B K TR SR L
SRHE ., DATF 2B U B 4R A R AR A T AL F PR
A R -

(DA CH AL/ B RO [ 42 R ik BE T - 44
T E I A TR 174 15 25 i 99T K 3G K AT L X A7)
LR 7 B A S B 22 AR R U, SR U
i 3o B A — 41 nT i s A% L T LR VR R Bl o R 5 AR Y
Rz, i, ECMWE #1 NCEP () & Bk 4
Xt 5 KA KU 2 904 1Y) 46 A s B i ROk 2B
B B AR HE” 7 L s AR SR LR & KUl
AR LR B A7 S PR RIORE SR % . XA B T X
A B E B4R . Ry S A T B RE 45
AN T 5 70 4 A5 o XL T 41 43 A B L 4 ok ok 5
MAE . BEERW] ., S G F 30 & KU 42 D8 25 11T
INFRZHR B B T R AR e M A A T
LA B8 3103558 43 1 o 1 190 4 388 UG 100 O % 155 S5, B8 v ket
) SR R R AR R EME . AE 2018 A A KU H A
72019 4F A KB K7 (& 7) R L A i
R T AR T35 /8 H 5 i Bt AL R T A A 8 i X L
RALTH T BB F 4k
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————— PR
e n ]

T« 2R B S0 L B 2 0 91 o 2 5 0% AT L 4R S 3 R o 00T X B A
500 hPa & ko 1T S e R J2 B 00 A0 AS B 58 1 5 IR 00 1 A 2k 3 m w4 T
i X 2% 4 1 BB TG B8 A 5% 0 2 3 7S i I AT L DX A 2R 5 A L

Bl 4 2025 4E 11 J1 9 A 08 B GRARES A 2 A 08 B FH A XA
Tl iy 500 hPa & 4 (BRAL : gpm) T 4% ]
Fig. 4 Spaghtti plot of 500 hPa geopotential height (unit: gpm) of ensemble

forecast by the numerical model at 08:00 BT 9 November 2025,
initiated at 08:00 BT 2 November

0 10 20 30 40 50 60 70 80 90 100 110 120 130°E

I I [ I I | I
10 20 30 40 50 60 70 80 90 %

5 20114F 4 A 13 H 00 B Citk b, 900 4 s 1]
79 8 H 00 Bf)500 hPa = B 5 R IR 195 A TRk
-39 35 (S 2K, B A - gpm) I
A IR A B e ()

Fig. 5 The ensemble mean forecast field of 5 d

geopotential height forecast (contour, unit: gpm)
and the relative measure of predictability (colored)
at 00:00 UTC 13 April 2011, initiated
at 0000 UTC 8 April

(2) 2 TR 4L 305 0+ 25 T %) % DX R X ) 0 AR
A0 Ry b TR AE R U B — R PR A AL R
SREERZE . ARG TR AR 08 $R AL K 1Y £ Fhoe] RE 4
Ay 3 3k B 7K R 58 T &1 1 B TR e DU DX, 48]
T, £ A TR SR TR SR 20 V0 1 1 51 S 3R i R
2 T B B A P SRR R R A A T AR e T
i PR B . RO LK T R 4 (EFAS) 42 [ K
#i ECMWF 4 4 3k 3K 8f /K SC# #, Pappenberger

et al(201 D GETt W A7 L AL 58 J5 i, 4 A 3K 3l 1 it
IR T U B R 24 10 %6 ~ 20 %6, FF fil $2 Ak s P 3
AN E VE TR, 7R TR L AR A R K T e
T Ll J5 e RIS T i R R il e S im0 R
W e AN 7 M3 - 25 U8 A R R R /NI i K R AR
MES WO T 1 5 B VRS T A T R

(3) 58 N 30 F1 B 2% KR Jo ) S B K VKRS L e 4
SO0 U KRR AR B B N . R R
4 G TR Can CMA [ 5% 38 o 1R 46 A 3D ml A= A
Qe g [ AP AR S Y RE R T . 7E 2019 AE L ZE
AIAEAL e s b, AR R — 1 ORI A Tl L HL 4
EEBUE S h Atk RV A A L EUPN
SR AT REPE LB O AT EB A B T 5 R R T R
ML E S . X o im i B4R AL 7 A e . b
WFIT IR BH L 5 TR T DA S 2 4 w3 5 0 XU 1
o i 2

(4 8y U R0 €0« A i v Yl R ™ € A R
BRI UL 57 0 3 B (H R 5 TR AT T 45 4 2 i
(] 15 B2 () N B 72 Y Bl . Min and Zhang (2011) ]
FHAEAG TR A B 1 [ s b 8 A g s L A €
SRR WIS T T Re 08 R by TR o S PR & 2B (B
L. 4N, 2013 4F b [ g 5 A% o e i ok AR v, 4R
A PARAR ET 10 K RP$2 7R B BT & P BE S O 0
TR LD TR T 40 °C A 1) HR g 25 38 5 Bl BORE 3
I] R ABOE £ o X T IR A A TR AT D I A X
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® ]

W R i (>0.5) W i (<0.5) ® SEEIA(>0.5) ® 5k (>0.5)
B B fwitE(>0.8) W R % (<0.8) & HEREIR(>0.8) ¥ Wbk (>0.8)

T - SR R O () 39 1 7 T S P < hPa

Bl 6 20254F 11 A 4 H 08 HFZE 5 H 08 B (2 H 08 W g4t . BT HOH 5 48~72 /i) h [H
T AR b DX A R 5 B0 A SR ity TR A8 BT 7™ i 23 1) 4 A
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