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提　要：本文回顾了集合预报的发展历程、关键技术和应用价值。集合预报源于对大气非线性与混沌特性的认知，自２０世

纪６０年代Ｌｏｒｅｎｚ提出“蝴蝶效应”后，通过在数值预报中引入多扰动试验来量化预报不确定性。初始扰动技术从繁殖增量

法、奇异向量法到集合卡尔曼滤波等方法，模式扰动技术则包括随机动力学扰动、随机物理参数化扰动及多物理方案集合等。

国际主要气象中心于９０年代初相继建立了全球和区域集合预报系统。通过统计后处理技术，集合预报可生成多种概率预报

产品，显著提升了极端天气预警的准确性和时效性。近年来，以ＧｏｏｇｌｅＳＥＥＤＳ等为代表的ＡＩ集合预报模型取得突破，以更

低成本实现更优预报性能。未来集合预报将向物理模式与ＡＩ结合的新范式发展，进一步提升预报能力。

关键词：集合预报，初始扰动，模式扰动，预报校正，概率预报产品，极端天气预警，人工智能气象预报

中图分类号：Ｐ４５６　　　　　　文献标志码：Ａ　　　　　　犇犗犐：１０．７５１９／ｊ．ｉｓｓｎ．１００００５２６．２０２５．０９１８０１

ＲｅｄｕｃｉｎｇＦｏｒｅｃａｓｔＵｎｃｅｒｔａｉｎｔｙａｎｄＩｍｐｒｏｖｉｎｇＦｏｒｅｃａｓｔｉｎｇＣａｐａｂｉｌｉｔｙ

—ＡＲｅｖｉｅｗｏｆｔｈｅＤｅｖｅｌｏｐｍｅｎｔａｎｄＡｐｐｌｉｃａｔｉｏｎｏｆＥｎｓｅｍｂｌｅＰｒｅｄｉｃｔｉｏｎ

ＺＨＵＹｕｅｊｉａｎ
１，２
　ＤＡＩＫａｎ

３
　ＴＡＮＧＪｉａｎ

３

１ＣＭＡＥａｒｔｈＳｙｓｔｅｍＭｏｄｅｌｉｎｇａｎｄＰｒｅｄｉｃｔｉｏｎＣｅｎｔｒｅ，Ｂｅｉｊｉｎｇ１０００８１

２ＳｔａｔｅＫｅｙＬａｂｏｒａｔｏｒｙｏｆＳｅｖｅｒｅＷｅａｔｈｅｒＭｅｔｅｏｒｏｌｏｇｉｃａｌＳｃｉｅｎｃｅａｎｄＴｅｃｈｎｏｌｏｇｙ，

ＣｈｉｎｅｓｅＡｃａｄｅｍｙｏｆＭｅｔｅｏｒｏｌｏｇｉｃａｌＳｃｉｅｎｃｅｓ，Ｂｅｉｊｉｎｇ１０００８１

３ＮａｔｉｏｎａｌＭｅｔｅｏｒｏｌｏｇｉｃａｌＣｅｎｔｒｅ，Ｂｅｉｊｉｎｇ１０００８１

犃犫狊狋狉犪犮狋：Ｔｈｉｓｐａｐｅｒｒｅｖｉｅｗｓｔｈｅｄｅｖｅｌｏｐｍｅｎｔｈｉｓｔｏｒｙ，ｋｅｙｔｅｃｈｎｏｌｏｇｉｅｓ，ａｎｄａｐｐｌｉｃａｔｉｏｎｖａｌｕｅｏｆｅｎｓｅｍｂｌｅ

ｐｒｅｄｉｃｔｉｏｎ，ｗｈｉｃｈｏｒｉｇｉｎａｔｅｄｆｒｏｍｔｈｅｕｎｄｅｒｓｔａｎｄｉｎｇｏｆａｔｍｏｓｐｈｅｒｉｃｎｏｎｌｉｎｅａｒｉｔｙａｎｄｃｈａｏｔｉｃｃｈａｒａｃｔｅｒｉｓ

ｔｉｃｓ．ＳｉｎｃｅＬｏｒｅｎｚｐｒｏｐｏｓｅｄｔｈｅ“ｂｕｔｔｅｒｆｌｙｅｆｆｅｃｔ”ｉｎｔｈｅ１９６０ｓ，ｉｔｈａｓｑｕａｎｔｉｆｉｅｄｆｏｒｅｃａｓｔｕｎｃｅｒｔａｉｎｔｙｂｙｉｎ

ｔｒｏｄｕｃｉｎｇｍｕｌｔｉｐｌｅｐｅｒｔｕｒｂａｔｉｏｎｅｘｐｅｒｉｍｅｎｔｓｉｎｔｏｎｕｍｅｒｉｃａｌｗｅａｔｈｅｒｐｒｅｄｉｃｔｉｏｎ．Ｉｎｉｔｉａｌｐｅｒｔｕｒｂａｔｉｏｎｔｅｃｈ

ｎｉｑｕｅｓｈａｖｅｅｖｏｌｖｅｄｆｒｏｍｂｒｅｅｄｉｎｇｖｅｃｔｏｒｓａｎｄｓｉｎｇｕｌａｒｖｅｃｔｏｒｓｔｏｅｎｓｅｍｂｌｅＫａｌｍａｎｆｉｌｔｅｒｉｎｇ，ｗｈｉｌｅｍｏｄｅｌ

ｐｅｒｔｕｒｂａｔｉｏｎｔｅｃｈｎｉｑｕｅｓｉｎｃｌｕｄｅｓｔｏｃｈａｓｔｉｃｋｉｎｅｔｉｃｅｎｅｒｇｙｂａｃｋｓｃａｔｔｅｒ，ｓｔｏｃｈａｓｔｉｃｐｈｙｓｉｃｓｐａｒａｍｅｔｅｒｉｚａｔｉｏｎ

ｐｅｒｔｕｒｂａｔｉｏｎｓ，ａｎｄｍｕｌｔｉｐｈｙｓｉｃｓｅｎｓｅｍｂｌｅｓ．Ｉｎｔｈｅｅａｒｌｙ１９９０ｓ，ｍａｊｏｒｉｎｔｅｒｎａｔｉｏｎａｌｍｅｔｅｏｒｏｌｏｇｉｃａｌｃｅｎｔｅｒｓｓｕｃ

ｃｅｓｓｉｖｅｌｙｅｓｔａｂｌｉｓｈｅｄｇｌｏｂａｌａｎｄｒｅｇｉｏｎａｌｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍｓ．Ｔｈｒｏｕｇｈｓｔａｔｉｓｔｉｃａｌｐｏｓｔｐｒｏｃｅｓｓｉｎｇｔｅｃｈ

ｎｉｑｕｅｓ，ｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎｓｙｓｔｅｍｓｈａｖｅｇｅｎｅｒａｔｅｄｖａｒｉｏｕｓｐｒｏｂａｂｉｌｉｓｔｉｃｆｏｒｅｃａｓｔｐｒｏｄｕｃｔｓ，ｓｉｇｎｉｆｉｃａｎｔｌｙ

　 国家自然科学基金气象联合基金项目（Ｕ２４４２２２１）、国家自然科学基金面上项目（４２３７５１５２）和中国气象局重点创新团队智能预报技术团

队项目（ＣＭＡ２０２２ＺＤ０４）共同资助

２０２５年４月２３日收稿；　２０２５年８月２１日收修定稿

第一作者：朱跃建，主要从事集合预报研究、发展和应用工作．Ｅｍａｉｌ：Ｙｕｅｌｉａｎ．Ｚｈｕ＠ｈｏｔｍａｉｌ．ｃｏｍ

第５１卷 第１１期

２０２５年１１月
　　　　　　　　　　　

气　　　象

ＭＥＴＥＯＲＯＬＯＧＩＣＡＬＭＯＮＴＨＬＹ
　　　 　　　　　

　Ｖｏｌ．５１　Ｎｏ．１１

Ｎｏｖｅｍｂｅｒ　２０２５



ｉｍｐｒｏｖｉｎｇｔｈｅａｃｃｕｒａｃｙａｎｄｔｉｍｅｌｉｎｅｓｓｏｆｅｘｔｒｅｍｅｗｅａｔｈｅｒｗａｒｎｉｎｇｓ．Ｉｎｒｅｃｅｎｔｙｅａｒｓ，ａｒｔｉｆｉｃｉａｌｉｎｔｅｌｌｉｇｅｎｃｅ

（ＡＩ）ｂａｓｅｄｅｎｓｅｍｂｌｅｍｏｄｅｌｓｒｅｐｒｅｓｅｎｔｅｄｂｙＧｏｏｇｌｅＳＥＥＤＳｅｔｃ．ｈａｖｅａｃｈｉｅｖｅｄｂｒｅａｋｔｈｒｏｕｇｈｓ，ｄｅｌｉｖｅｒｉｎｇ

ｓｕｐｅｒｉｏｒｆｏｒｅｃａｓｔｐｅｒｆｏｒｍａｎｃｅａｔｌｏｗｅｒｃｏｍｐｕｔａｔｉｏｎａｌｃｏｓｔｓ．Ｆｕｔｕｒｅｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎｗｉｌｌｄｅｖｅｌｏｐｔｏ

ｗａｒｄａｎｅｗｐａｒａｄｉｇｍｃｏｍｂｉｎｉｎｇｐｈｙｓｉｃａｌｍｏｄｅｌｓｗｉｔｈＡＩｔｏｆｕｒｔｈｅｒｅｎｈａｎｃｅｔｈｅｆｏｒｅｃａｓｔｉｎｇｃａｐａｂｉｌｉｔｉｅｓ．

犓犲狔狑狅狉犱狊：ｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎ，ｉｎｉｔｉａｌｐｅｒｔｕｒｂａｔｉｏｎ，ｍｏｄｅｌｐｅｒｔｕｒｂａｔｉｏｎ，ｆｏｒｅｃａｓｔｃｏｒｒｅｃｔｉｏｎ，ｐｒｏｂａｂｉｌｉｓ

ｔｉｃｆｏｒｅｃａｓｔｐｒｏｄｕｃｔ，ｅｘｔｒｅｍｅｗｅａｔｈｅｒｗａｒｎｉｎｇ，ＡＩｄｒｉｖｅｎｍｅｔｅｏｒｏｌｏｇｉｃａｌｆｏｒｅｃａｓｔｉｎｇ

引　言

大气运动具有高度的非线性和混沌特征，单一

确定性预报难以充分描述未来天气演变的不确定

性。２０世纪６０年代初，Ｌｏｒｅｎｚ（１９６３）通过理想模

型试验揭示了初始条件微小差异即可导致预报结果

巨大分歧的现象，即著名的“蝴蝶效应”，表明大气预

报存在内在的不可预报性极限。这一发现奠定了在

天气预报中引入不确定性分析的理论基础。此后，

学者们在７０年代开始探索集合预报思想，通过在数

值预报中加入随机扰动来模拟预报的不确定性。

Ｅｐｓｔｅｉｎ（１９６９）提出了利用随机过程产生天气预报

集合的概念，Ｌｅｉｔｈ（１９７４）进一步验证了蒙特卡罗方

法在理论上的预报效果，初步证明集合方法可用于

量化预报的不确定性。

经过多年研究，到２０世纪８０年代中后期，集合

预报的可行性和价值逐渐被认识。集合预报一般是

指针对同一预报时刻，针对初始状态或模型方案进

行多次扰动试验，从而得到一组不同的预报结果集

合（图１）。通过对这些集合成员结果的离散性和一

致性进行统计分析，可以估计预报的不确定性范围

并提高预报产品的可靠性。１９８５—１９９２年，欧洲中

期天气预报中心（ＥＣＭＷＦ）和美国国家环境预报中

心（ＮＣＥＰ）率先开展了集合预报模型的科学试验，

并于１９９２年１２月几乎同时将全球集合预报系统投

入业务运行。例如，ＥＣＭＷＦ于１９９２年建立了基于

奇异向量（ＳＶ）扰动的全球中期集合预报系统

（ＢｕｉｚｚａａｎｄＰａｌｍｅｒ，１９９５），而ＮＣＥＰ同期发展了基

于繁殖增量（ＢＶ）的方法，用于生成初始集合成员

（ＴｏｔｈａｎｄＫａｌｎａｙ，１９９３）。这些开创性工作标志着

集合预报由理论走向业务应用。

　　进入２０世纪９０年代后期至２１世纪初，集合预

报系统迎来快速发展时期。世界主要气象中心如加

拿大环境与气候变化部 （ＥＣＣＣ）、英国气象局

（ＵＫＭｅｔ）、日本气象厅（ＪＭＡ），以及中国气象局

（ＣＭＡ）等相继建立了各自的全球集合预报业务系

统。同时，各机构间开展集合预报合作计划，例如北

美集合预报系统（ＮＡＥＦＳ）将美加两国的集合预报

进行集成 （Ｂｕｉｚｚａｅｔａｌ，２００５；Ｚｈｕ，２００５；Ｃａｎｄｉｌｌｅ，

２００９）；世界气象组织（ＷＭＯ）发起了“全球交互大

集合预报”（ＴＩＧＧＥ），建立全球集合预报资料库供

研究和应用（Ｓｗｉｎｂａｎｋｅｔａｌ，２０１６）；还有美国的次

季节预报试验（ＳｕｂＸ）（Ｐｅｇｉｏｎｅｔａｌ，２０１９；Ｇｕａｎ

ｅｔａｌ，２０１９）和 ＷＭＯ的次季节至季节（Ｓ２Ｓ）集合预

报项目等（Ｖｉｔａｒｔｅｔａｌ，２０１７）。这些举措推动了多

注：黑色虚线：集合扰动成员，绿线：集合控制预报，蓝线：集合预报平均。

图１　现代集合预报单一模式的概念图

Ｆｉｇ．１　Ｃｏｎｃｅｐｔｍａｐｏｆａｓｉｎｇｌｅｍｏｄｅｌｆｏｒｍｏｄｅｒｎｅｎｓｅｍｂｌｅｐｒｅｄｉｃｔｉｏｎ

６３３１　　　　　　　　　　　　　　　　　　　 　气　　象　　　　　　　　　　　　　　　 　　 　　　第５１卷　



模式集合预报的发展，通过集成不同模式的预报来

减小预报误差，改善集合预报的离散度，从而进一步

提高预报技巧，减小由于单一模式所造成的离散度

偏低（过度自信）的情况。

集合预报技术的发展与高性能计算的进步密切

相关。随着计算资源的提升，集合预报能够使用更

高的分辨率和更多的集合成员，提高了预报的精细

度和稳定性。例如，ＥＣＭＷＦ早期由于计算限制，

其集合预报的水平分辨率一直低于确定性预报，但

近年来随着超级计算机升级，已将集合预报提升到

与高分辨率确定性预报相当的９ｋｍ网格。然而，

集合预报成员数受到计算成本制约，各主要预报中

心的全球集合成员一般为１５～５０个。有限的成员

数可能导致对概率分布取样不足，特别是对低概率

的极端事件刻画不充分。因此，在保证预报质量的

同时，提高集合规模或发展更高效的集合生成方法，

一直是集合预报领域的重要研究方向。

与此同时，近年来深度学习、云计算、大数据等

技术的飞速发展，让基于数据驱动方法（如生成式对

抗网络、扩散模型、变分自编码器等）的集合预报成

为可能。这些模型直接或间接地从历史观测和再分

析数据中学习大气演变的不确定性规律，通过高效

的神经网络推断便可在极短时间内生成多个具有物

理合理性和丰富变异特征的预报成员。此类人工智

能（ＡＩ）集合预报方法不仅显著降低了运行成本，而

且在捕捉极端天气方面往往表现优异。一些最新研

究表明，包括ＧｅｎＣａｓｔ（Ｐｒｉｃｅｅｔａｌ，２０２５）、ＦｕＸｉＥｎｓ

（Ｚｈｏｎｇｅｔａｌ，２０２４）和 ＡＩＦＳＣＲＰＳ（Ｓｉｍｏｎｅｔａｌ，

２０２４）等，ＡＩ生成的集合在均方根误差（ＲＭＳＥ）、连

续分级概率评分（ＣＲＰＳ）、极端天气概率预报等指标

上与传统物理模式集合相当甚至更优，预示着在不

久的将来，数据驱动方法有望突破计算瓶颈，为集合

预报扩增成员规模和提高精度提供全新方案。国际

主要预报中心（ＥＣＭＷＦ、ＮＣＥＰ、ＣＭＡ等）也已纷

纷启动ＡＩ集合预报探索，期待在下一代业务系统

中实现“人机融合”的预报范式转型。

综上所述，集合预报经过数十年发展，已成为数

值天气预报业务和科研中不可或缺的工具。它通过

量化预报不确定性，提高了预报产品的可信度和实

用性。本文将系统回顾集合预报的关键技术和应用

进展。第一、二节分别介绍集合预报的初始扰动技

术和模式扰动技术的发展；第三节讨论各国主要的

全球与区域集合预报系统现状；第四节总结集合预

报的统计后处理与预报诊断评估方法；第五节展示

集合预报在极端天气和灾害预警中的应用；第六节

重点综述最新的人工智能与数据驱动的集合预报新

进展，包括新一代 ＡＩ集合预报模型的原理与性能

及国内外研究动态与未来发展方向。最后给出本文

的结论和展望。

１　初始扰动技术的发展

初始条件的不确定性是数值天气预报误差的重

要来源之一。大气初始场来自不完备的观测和同化

分析，存在观测误差、采样误差和同化算法近似所导

致的偏差。这些初始误差在预报积分中会非线性增

长，引起预报结果与真实演变的偏离。为了模拟初

始场误差对预报的影响，集合预报在起报时刻引入

初始扰动，生成一组经过扰动的初始状态来驱动多

个预报集成。对比不同扰动成员的预报，可以评估

初值误差对预报的不同影响，并通过集合平均减少

随机误差，提高预报稳定性。

初始扰动技术经历了从简单到复杂的演变过

程。早期最简单的方法是对初始分析场施加随机噪

声扰动，即蒙特卡罗方法。这种方法思想简单，但可

能导致非物理性的扰动结构。后来发展出针对模式

快速增长误差方向的繁殖增量扰动法（简称繁殖

法）。该方法由美国 ＮＣＥＰ 的 ＴｏｔｈａｎｄＫａｌｎａｙ

（１９９３；１９９７）提出和改进，通过反复积分和尺度缩

放，提取大气最不稳定的误差增长模态。ＮＣＥＰ在

１９９２年首次将繁殖法用于全球集合预报初值扰动。

该方法实现简单，能高效捕捉主要误差增长方向，曾

在ＮＣＥＰ业务应用多年。与此同时，ＥＣＭＷＦ发展

了基于ＳＶ的初始扰动方法。ＳＶ方法源自线性最

优扰动理论，寻找预报时效内使预报误差增长最大

的初始扰动方向。ＥＣＭＷＦ的研究表明，只需少数

几个ＳＶ即可有效表征中期预报的主要不确定性方

向。因此ＥＣＭＷＦ自１９９２年起采用ＳＶ作为初始

扰动生成方法。经典ＳＶ方法的代表性成果包括

ＢｕｉｚｚａａｎｄＰａｌｍｅｒ（１９９５）的研究。

此后，初始扰动技术进一步融合了现代同化理

论成果。集合卡尔曼滤波（ＥｎＫＦ）等同化方法不仅

可用于资料同化，也可用于生成分析场的不确定性

估计。加拿大气象局在ＥｎＫＦ的发展中，采用分析

误差的集合估计方法来构建初始扰动场。ＥＣＭＷＦ

则在 ２１ 世纪 ００ 年代中期提出集合资料同化
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（ＥＤＡ）方案，运行一个由多组带噪声扰动观测的同

化系统来产生集合分析。ＥＤＡ为集合预报提供了

一组由同化系统统计生成的初始状态，其离散度能

够反映分析误差水平。例如，ＥＣＭＷＦ业务中通过

ＥＤＡ生成初始分析集合，从而改进了集合预报初始

不确定性的表征。相比之下，美国ＮＣＥＰ在逐步放

弃繁殖法后，于２０１５年转向采用ＥｎＫＦ同化来构建

初始扰动，并结合随机物理扰动等方法改进初值扰

动质量。自集合资料同化方法（ＥＤＡ／ＥｎＫＦ）被引

入数值预报系统以来，集合变分混合同化技术已逐

渐发展成为集合预报初始不确定性的主要来源

（ＨａｍｉｌｌａｎｄＳｎｙｄｅｒ，２０００）。这一技术突破性地将

集合预报提供的流依赖误差协方差与变分同化框架

相结合，显著改善了初始场的质量。如 Ｌｏｒｅｎｃ

（２００３）所述，混合同化通过整合集合协方差的流依

赖特性，能够更准确地表征天气系统演变过程中的

不确定性。研究表明，这种混合方法在热带气旋路

径预报和中纬度天气系统预报等方面均展现出显著

优势 （ＫｌｅｉｓｔａｎｄＩｄｅ，２０１５）。

此外，Ｍｕｅｔａｌ（２００３；２０１０）提出的条件非线性

最优扰动（ＣＮＯＰ）方法为初始扰动研究提供了新的

思路。ＣＮＯＰ通过非线性最优化方法求解在约束条

件下导致预报偏差最大的初始扰动。Ｍｕｅｔａｌ

（２００３；２０１０）研究了ＣＮＯＰ在ＥＮＳＯ预测等问题上

的应用。ＣＮＯＰ考虑了预报系统的非线性，有助于

识别传统线性方法遗漏的误差增长模式，在理论上

拓展了初始扰动方法的范畴。目前ＣＮＯＰ仍主要

用于研究领域，但为集合预报初值扰动提供了宝贵

参考。

综上所述，初始扰动技术包括随机扰动、繁殖扰

动、奇异向量、集合同化、条件非线性最优扰动等多

种方法，各有特点并在不同预报系统中应用组合。

例如，ＥＣＭＷＦ全球集合系统长期采用ＳＶ与ＥＤＡ

相结合，ＮＣＥＰ则逐步由繁殖扰动转向ＥｎＫＦ分析

扰动，ＥＣＣＣ使用ＥｎＫＦ，英国等也尝试ＳＶ和ＥｎＫＦ

的融合。无论方法差异，其共同目标是科学表征初

始场不确定性，优化集合离散度与预报误差的匹配，

在提升集合均值稳定性的同时保留极端事件预报能

力。

２　模式扰动技术的发展

除初始条件外，数值模式本身的不完善（如物理

过程参数化的不确定性）同样会导致预报误差。为

此，集合预报引入模式扰动技术，即在模式积分过程

中对模型物理过程或参数进行随机或系统扰动，以

模拟模式误差带来的预报不确定性。模式扰动的目

的是弥补模式自身局限性，生成一组考虑模型差异

影响的预报成员，从而扩大集合离散度。模式扰动

技术大致包括以下几类：

（１）随机动力学扰动：直接在模式的动力方程中

引入随机项以模拟未解析尺度过程对大尺度的影

响。例如，随机动能后向散射（ＳＫＥＢ）方案向模式

动能方程添加随机噪声，将潜在的未解析小尺度能

量回馈到较大尺度上。Ｓｈｕｔｔｓ（２００５）的研究首先

将ＳＫＥＢ应用于集合预报，通过随机涡旋强迫来模

拟次网格尺度的不确定性。又如涡度局地化（ＶＣ）

方法（ＳｈｕｔｔｓａｎｄＡｌｌｅｎ，２００７），通过随机扰动模式

涡度场，补偿数值扩散耗散的小尺度能量。这些随

机动力学方法在中高层大气预报中有效增加了集合

离散度，改善了集合预报对不稳定天气系统的捕捉。

（２）随机物理参数化扰动：针对模式物理参数化

过程的不确定性，在参数化计算过程中加入随机扰

动。例如，ＥＣＭＷＦ于１９９９年提出并进行业务应用

的随机物理倾向扰动（ＳＰＰＴ）方案（Ｂｕｚｚａｅｔａｌ，

１９９９），即在每一个时间步长将模式所有物理参数化

过程产生的预报倾向乘以一个随机空间场，从而引

入预报倾向的随机波动。ＳＰＰＴ方法以较小的代价

显著增加了集合离散度，被许多业务中心广泛借鉴。

此外，还有针对特定物理过程的扰动方法，如

ＴｏｍｐｋｉｎｓａｎｄＢｅｒｎｅｒ（２００８）提出的湿度参数扰动

（ＳＨＵＭ），为边界层湿度引入随机扰动以模拟云和

对流的不确定性。近期的发展趋势是随机参数扰动

（ＳＰＰ），即对关键物理参数（或过程）引入独立随机

扰动。Ｌｅｕｔｂｅｃｈｅｒｅｔａｌ（２０１７）提出ＳＰＰ的概念并

在试验中证明其有效性。ＥＣＣＣ在２０２２年率先将

ＳＰＰ引入业务，ＭｃＴａｇｇａｒｔＣｏｗａｎｅｔａｌ（２０２２ａ；

２０２２ｂ）的工作表明，加拿大全球集合预报系统通过

随机扰动对流、湍流等参数化方案，提升了集合预报

对模型不确定性的表示。

（３）多物理方案集合：通过集成多套不同物理参

数化方案或不同模式，从根本上反映模式物理过程

处理的差异。ＨｏｕｔｅｋａｍｅｒａｎｄＤｅｒｏｍｅ（１９９５）最早

提出多模式组合产生集合的方法并应用于ＥＣＣＣ

的全球集合预报系统。另一个实例如美国短期集合

预报曾采用同一模式不同物理选项配置成员或北美
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集合预报系统（ＮＡＥＦＳ）和欧洲的多模式集成试验。

多物理集合能显著增加成员间差异，但也可能因为

模式偏差不同而增加均值误差，需要权衡与调整。

此外，有研究提出在预报积分的不同时间段引入扰

动而非仅初始时刻，即“时变扰动”，以模拟模式误差

随预报时间积累的影响。

模式扰动技术已经成为各主要集合预报系统的

标配。ＥＣＭＷＦ在２１世纪００年代初引入ＳＰＰＴ

后，不断完善随机物理方案，目前其全球集合系统综

合采用ＳＰＰＴ、ＳＫＥＢ等多种随机扰动。英国气象

局、德国气象局等也都有各自的随机物理扰动方案。

美国ＮＣＥＰ的全球集合预报则很早开始尝试总倾

向随机扰动方案，最新的全球集合 预 报 系 统

（ＧＥＦＳ）ｖ１２ 版本 （Ｚｈｕｅｔａｌ，２０１８；２０１９；Ｚｈｏｕ

ｅｔａｌ，２０２２）集成了多种模式扰动技术。模式扰动有

效增加了集合离散度，使集合预报不仅反映初始不

确定性，也涵盖模式不确定性来源。这对提高极端

天气事件（如强对流、飓风等）的预报能力尤为重要，

因为这些事件对模式物理过程的敏感性较高。实践

表明，合理的模式扰动可以显著改善集合预报性能，

尤其在提高概率预报的可靠性和极端事件捕捉能力

方面。举例来说，ＳＰＰＴ具有明确的物理意义，尽管

表现为随机过程，但它能够有效描述大气物理状态

的变化。较强的模式倾向通常对应系统更快的增

长，而这恰恰反映了大气中快速发展系统（如天气尺

度扰动）的特征，这些系统也是数值预报中误差增长

的主要来源之一。因此，合理引入模式倾向随机扰

动有助于更好地捕捉大气中的快速变化过程，从而

提升对极端天气事件的预报能力。

需要注意的是，模式扰动的引入也带来新的挑

战：如何确定扰动的幅度和空间相关结构，既保证扰

动足够大以增加不确定性，又避免扰动过强破坏模

式的物理合理性。同时，模式扰动增加了预报系统

复杂度和计算量，需要在效果与成本之间取得平衡。

未来，随着对模式误差统计特征认识的加深，预计模

式扰动技术将在物理更加合理、计算更加高效的方

向进一步发展。

３　全球和区域集合预报系统

３．１　全球集合预报系统

全球集合预报系统旨在针对行星尺度的大气环

流提供不确定性预估，预报时效通常在中期（３～

１５ｄ）乃至延伸到季节尺度。自１９９２年 ＥＣＭＷＦ

和ＮＣＥＰ开启全球集合预报业务以来，各主要数值

预报中心的全球集合系统不断演进，在成员数、分辨

率、物理方案等方面持续升级。

ＥＣＭＷＦ的全球集合预报（ＥＮＳ）被公认为当

前世界领先的中期集合预报系统之一。目前运行

５１个成员（包括１个控制预报），预报时效１５ｄ，水

平分辨率约为 ９ｋｍ（与其确定性预报一致）。

ＥＣＭＷＦＥＮＳ以ＳＶ＋ＥＤＡ 生成初始扰动，结合

ＳＰＰＴ和ＳＫＥＢ等模式扰动方案。经过数十年发

展，ＥＣＭＷＦＥＮＳ在５００ｈＰａ高度场等指标上显示

出极高的技巧和稳定的可靠性，在国际灾害性天气

预警中发挥核心作用。例如，ＥＣＭＷＦ集合预报产

品中的极端预报指数（ＥＦＩ）可有效提示极端天气事

件发生的概率和强度异常。ＥＦＩ由ＥＣＭＷＦ研发，

用集合预报与历史气候分布比较来度量未来天气异

常程度，在欧洲风暴、强降水预警中应用广泛。由于

ＥＦＩ是一个无量纲指数，需要有对应的量化指标，研

究表明，对温度预报来说，ＥＦＩ＝０．７８相当于９７．６％

偏态（ＧｕａｎａｎｄＺｈｕ，２０１７）。

ＮＣＥＰ的全球集合预报系统（ＧＥＦＳ）也是国际

上具有重要影响力的集合预报系统之一。ＮＣＥＰ最

初于１９９２年１２月开始运行２个成员的全球集合预

报（当时采用繁殖法进行扰动）。此后 ＧＥＦＳ经历

多次升级：１９９８年提高水平分辨率，２００６年扩展到

２０个成员并引入集合转换和重新尺度化等扰动改

进技术 （Ｗｅｉｅｔａｌ，２００６），２０１５年引入ＥｎＫＦ分析

扰动替代繁殖法，并结合物理扰动以增加成员差异。

最新业务版本ＧＥＦＳｖ１２（２０２０年上线）使用大气、

陆面、海浪和海洋单向耦合模式，分辨率为２５ｋｍ

的成员数增加到３１个，预报时间由１６ｄ延伸至

３５ｄ，采用了５种时空尺度的ＳＰＰＴ方案和ＳＫＥＢ

方案等现代技术 （Ｚｈｕｅｔａｌ，２０１８；Ｚｈｏｕｅｔａｌ，

２０２２），并提供了３０年的集合预报回算（Ｇｕａｎｅｔａｌ，

２０２２）。ＧＥＦＳ在热带气旋路径集合预报、北美极端

天气概率预报等方面发挥着重要作用。例如，

ＧＥＦＳ提供的飓风路径“集合同心圆”概率图和美国

国家飓风中心（ＮＨＣ）预报的产品，是美国飓风预

警决策的重要依据之一。

ＥＣＣＣ的全球集合预报系统以ＥｎＫＦ同化和多

模式物理扰动为特色。加拿大在１９９６年前后建立

了２１个成员的全球集合，初始扰动来自ＥｎＫＦ分析
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误差，模式扰动采用多物理参数方案（不同物理组

合）。近年加拿大集合已更新采用ＳＰＰ并提高分辨

率至０．３５°，对高纬度天气预报提供了可靠的集合信

息。加拿大还与美国 ＮＣＥＰ 共同推进 ＮＡＥＦＳ

（Ｔｏｔｈｅｔａｌ，２００６），共享集合预报成员并统一概率

预报产品，为北美地区提供改进的不确定性预报服

务。

英国气象局（ＵＫＭｅｔ）的全球集合预报系统为

ＭｅｔＯｆｆｉｃｅＧｌｏｂａｌａｎｄＲｅｇｉｏｎａｌＥｎｓｅｍｂｌｅＰｒｅｄｉｃ

ｔｉｏｎＳｙｓｔｅｍＧｌｏｂａｌ（ＭＯＧＲＥＰＳＧ）。英国早期在

集合预报上进展稍慢，但２００５年后建立了基于北半

球２５ｋｍ局地分析扰动的全球集合，后来转为采用

ＥＣＭＷＦ的ＳＶ技术和本国四维变分 （４ＤＶａｒ）同

化分析扰动相结合的方法。当前 ＭＯＧＲＥＰＳＧ约

有２０个成员，每天两次预报，在欧洲和热带的大尺

度预报上与ＥＣＭＷＦ互为重要参考。此外，英国还

与欧洲其他国家合作开发多中心集合产品，例如欧

洲季节年际预测计划（ＥＵＲＯＳＩＰ）项目将 ＥＣＭ

ＷＦ、英 国 气 象 办 公 室 （ＵＫＭＯ）、法 国 气 象 局

（ＭéｔéｏＦｒａｎｃｅ）集合预报进行集成，用于季节预测。

日本气象厅（ＪＭＡ）自２０世纪９０年代末运行全

球集合预报，当前的ＪＭＡＧｌｏｂａｌＥｎｓｅｍｂｌｅＰｒｅｄｉｃ

ｔｉｏｎＳｙｓｔｅｍ（ＧＥＰＳ）包含２７个集合成员，预报时长

１个月，并与ＪＭＡ独特的台风集合预报系统相结

合。ＪＭＡ集合预报对西北太平洋台风路径和强度

预报提供了宝贵的不确定性信息，经常被亚太各国

采用参考。近年来ＪＭＡ也提升了集合分辨率并引

入模式不确定性处理来改进集合性能。

中国气象局（ＣＭＡ）的全球集合预报业务起步

于２０世纪９０年代后期至２１世纪００年代初期。并

于２００４年基于Ｔ２１３Ｌ３１全球谱模式开展了集合预

报试验，这是中国全球集合预报的早期探索 （李晓

莉等，２０１９）。２１世纪１０年代后，ＣＭＡ逐步转向自

主研发的 ＧＲＡＰＥＳ模式体系，并于２０１６年前后

ＣＭＡＧＥＰＳ（原 ＧＲＡＰＥＳＧＥＰＳ）实现业务化运行

（陈静和李晓莉，２０２０；李晓莉等，２０１９），标志着技术

完全自主化（沈学顺等，２０２５）。当前 ＣＭＡＧＥＰＳ

有３１个成员，水平分辨率为５０ｋｍ，采用奇异向量

结合多物理方案扰动。中国的集合预报产品已在国

家级天气预报和台风路径预报中应用，如台风路径

集合概率图、袭击概率图等，提高了预报客观性和稳

定度。随着“数值预报攻关”和新一代全球模式的建

设，ＣＭＡ计划进一步增加集合成员数和分辨率，并

尝试引入ＥＤＡ分析集合、随机参数扰动等先进技

术，缩小与国际领先中心的差距。

值得一提的是，为促进全球集合预报资料共享

和研究，ＷＭＯ组织的ＴＩＧＧＥ计划自２００５年起建

立了包含ＥＣＭＷＦ、ＮＣＥＰ、ＣＭＡ等十余个中心集

合预报数据的共享库，分别由ＥＣＭＷＦ、ＮＣＡＲ和

ＣＭＡ承担。在项目实施的１０年期间，各个中心根

据自己的能力和条件，共享了多达７３个气象要素的

全球集合预报，为气象学界开展概率预报研究和服务

提供了重要支撑 （Ｓｗｉｎｂａｎｋｅｔａｌ，２０１６）。ＴＩＧＧＥ的

数据分析表明，不同中心集合预报各有优势，若进行

多系统集成（如简单合并或加权平均），可在一定程

度上提高预报技巧和可靠性。这印证了多模型集合

的价值，也为各国改进各自系统提供了参考。另外，

２０１５年启动的Ｓ２Ｓ计划扩展了集合预报在次季节

至季节尺度的应用，通过汇集各中心延伸期集合预

报（时效长达３０～６０ｄ）来研究热带大气季节内振荡

（ＭＪＯ）、季风等低频变率的可预报性。这些国际合

作项目体现出集合预报在气象大数据共享时代的重

要意义。

３．２　区域集合预报系统

区域集合预报聚焦于有限区域（如单个国家或

州、省）的高分辨率集合预报，侧重于短期（０～３ｄ）

至中期（３～１０ｄ）内的中小尺度天气系统的不确定

性预报。随着２０世纪末区域数值模式（ＷＲＦ①、

ＡＲＯＭＥ②、ＡＬＡＤＩＮ③等）的发展和计算资源增长，

各国从２０世纪９０年代末开始建设区域集合预报系

统，以提高本地高影响天气的预报能力。

区域集合预报通常采用更高的水平／垂直分辨

率（几千米量级）以及更频繁的更新周期（例如每日

４次以上初始化），以捕捉局地天气过程。例如，美

国运行的短期集合预报（ＳＲＥＦ）系统（Ｄｕｅｔａｌ，

２００３），结合多个区域模式（Ｅｔａ④、ＲＳＭ⑤、ＷＲＦ

等）和多物理方案，提供１６～２１个成员的北美区域
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集合预报。ＳＲＥＦ产品对强对流风暴、暴雨等的风

险预报提供了量化信息。近年美国又发展出高分辨

率集合预报（ＨＲＥＦ），集成多个对流尺度模型，实现

对雷暴、龙卷等显著天气的不确定性预报。相似地，

欧洲 多 个 国 家 （如 德 国 的 ＣＯＳＭＯ①、英 国 的

ＭＯＧＲＥＰＳ②、法国的ＰＥＡＲＰ③等）都建立了针对各

自国土范围的区域集合预报系统，分辨率在２～

１０ｋｍ，着重预报剧烈天气和定量降水的不确定性。

中国也非常重视区域集合预报的发展。陈静等

（２００５）在２１世纪００年代初就开始了对区域集合预

报系统的研究。中国气象局于２０１８年前后建成

ＣＭＡＲＥＰＳ（原ＧＲＡＰＥＳＲＥＰＳ），覆盖东亚地区，

水平分辨率约为１５ｋｍ，提供２０个成员的集合预

报。该系统采用多初始扰动（来自全球集合降尺度

及区域分析扰动）和多物理过程扰动，能够较好地给

出我国短期强降水、强对流的预报不确定性（范宇思

等，２０２２；张涵斌等，２０２２；王婧卓等，２０２５）。例如，

在重大天气过程中，ＣＭＡＲＥＰＳ的降水概率预报、

雷暴风险概率等，为预报员判断极端降水落区提供

了参考。目前ＣＭＡ正在研发升级千米级的对流允

许集合预报，以求更精细地刻画短时强降水和强对

流风暴发生概率。

相比全球集合预报，区域集合预报的边界条件

处理是一个独特问题。通常区域模式需要从全球预

报获取边界条件，因而全球区域集合嵌套是常用做

法：将全球集合预报成员下传作为区域模式边界，从

而产生区域集合预报的不同成员。这样区域集合既

继承了全球尺度的不确定性，又能在本地放大细节

差异。但也有研究采用在区域模型自身中引入随机

边界扰动的方法（Ｈｏｕｔｅｋａｍｅｒｅｔａｌ，１９９６；Ｍａｒｓｉｇｌｉ

ｅｔａｌ，２００１；Ｂｏｗｌｅｒｅｔａｌ，２００８）。另一个挑战是高分

辨率集合的计算量，比如一个３ｋｍ分辨率、２０个成

员的区域集合非常耗费资源。因此一些区域集合采

用多模型集成而非同时运行众多成员的方式，例如

美国ＨＲＥＦ通过少量模式的组合替代大规模集合，

欧洲的有限区域模式集合预报系统（ＬＡＭＥＰＳ）项

目也探索了“元集合”（ｍｅｔａｅｎｓｅｍｂｌｅ）的方法。总

体而言，区域集合预报正在向更高分辨率、更频繁、

更新和更智能集成（同化雷达、卫星等高时空分辨率

观测）方向发展。

区域集合预报在提升局地灾害天气预警方面成

效显著。例如，其可为特定城市提供逐小时降水概

率预报，或为机场提供雷暴大风发生概率预报，以支

持精细化的决策服务。在复杂地形（山区、沿海）区

域，局地集合预报对热力和动力细节的刻画明显优

于全球集合，有助于改进山谷风、海陆风、地形降水

等预报。在中国，华南前汛期暴雨、江淮梅雨锋降水

等预报中，区域集合往往能比全球集合更早、更准确

地给出可能的降水落区和极端值范围，成为预报员

研判的重要依据。

４　统计后处理与预报诊断评估方法

集合预报为同一预报时段提供了离散的多样本

预报结果，需要经过适当的统计分析和后处理才能

转化为用户易于理解和利用的信息。统计后处理

（ｓｔａｔｉｓｔｉｃａｌｐｏｓｔｐｒｏｃｅｓｓｉｎｇ）是指对原始集合预报进

行统计校正和提炼，包括偏差订正、概率校准、空间

降尺度、集合成员加权等，旨在去除系统误差并提高

概率预报的可靠性。此外，为了评估集合预报的效

果，需要应用预报诊断评估方法，如各类检验指标和

图表，对集合预报的技巧、可靠性及不确定性信息进

行定量评价（朱跃建，２０２０）。高质量的统计后处理

与科学的诊断评估相结合，可以充分发挥集合预报

的优势，使其产品更好地服务预报决策。

４．１　统计后处理方法

统计后处理可参考世界气象组织出版的集合预

报用户指南（ＷＭＯ，２０２１）中的标准流程。一般包

括以下几个方面：

（１）偏差校正：针对集合预报整体存在的系统偏

差进行校正，主要方法有：

（ａ）线性／非线性回归：利用历史观测和预报资

料建立预报值与实况之间的回归关系，校正集合预

报的均值偏差。例如传统 ＭＯＳ方法通过线性回归

消除模式偏差，在集合预报情景下可对集合平均进

行回归校准。ＧｌａｈｎａｎｄＬｏｗｒｙ（１９７２）的工作奠定

了回归校正的基础。
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　　（ｂ）卡尔曼滤波（Ｋａｌｍａｎｆｉｌｔｅｒ）逐步校正：利用

递推的方法实时更新预报偏差。具体做法是对于每

个新预报时刻，用前一时次预报与实况之差估计当

前偏差，并乘以衰减因子累积，从而修正当前预报。

Ｃｕｉｅｔａｌ（２０１２）将该方法应用于温度和降水集合预

报偏差订正，取得良好效果。

（ｃ）频率匹配（ｆｒｅｑｕｅｎｃｙｍａｔｃｈｉｎｇ）：主要针对

降水等变量，比较预报值与观测值的累计频率分布，

找到对应分位进行匹配调整。ＺｈｕａｎｄＬｕｏ（２０１５）

提出的频率匹配方法在很多业务部门降水集合预报

订正中得到应用。它类似于分位数映射技术，通过

调整预报量的分布使之与观测分布一致。

（ｄ）分 位 数 映 射 （ｑｕａｎｔｉｌｅ ｍａｐｐｉｎｇ，ＱＭ）：

ＨａｍｉｌｌａｎｄＳｃｈｅｕｅｒｅｒ（２０１８）提出了ＱＭ 和秩加权

最优成员修饰的概率性降水预报后处理方法。该方

法首先利用分位数映射技术对原始集合预报进行系

统性偏差校正，从而更准确地对预报降水的分布特

征进行调整。随后，应用秩加权最优成员修饰方法，

将历史最优预报成员的信息引入当前预报，通过对

集合成员进行加权构建概率分布，提高预报的不确

定性刻画能力。该方法能够有效提升降水概率预报

的准确性和可靠性，尤其在极端降水事件的预报中

展现出更优的性能。

（２）概率校准：针对集合概率预报输出的校正，

核心在于使预报概率与实际观测频率相一致。常用

方法包括：

（ａ）多元逻辑回归：建立集合预报统计量与观测

发生与否之间的多元逻辑回归模型，输出校正后的

事件概率。例如ＥｃｋｅｌａｎｄＷａｌｔｅｒｓ（１９９８）将多元回

归用于降水概率预报校准。Ｗｉｌｋｓ（２００６）也讨论了

回归校准概率的方法。

（ｂ）贝叶斯模型平均（ＢＭＡ）：Ｒａｆｔｅｒｙｅｔａｌ

（２００５）提出，用一个加权的概率密度函数混合来表

征集合预报的概率分布。ＢＭＡ根据历史性能给每

个集合成员赋予权重，再将各成员的概率分布线性

组合成综合概率预报。这种方法在降水、温度等概

率预报校准中效果良好，可明显提高概率预报的可

靠性。

（ｃ）逻辑回归校准：针对二分类事件（如是否下

雨），用逻辑回归将原始集合给出的发生概率进行偏

差校正。ＨａｍｉｌｌａｎｄＣｏｌｕｃｃｉ（１９９７）应用逻辑回归

对降水概率进行后处理，提高了暴雨概率预报的命

中率和可靠度。

（ｄ）组合校准：结合多种信息的混合校准方法。

如Ｇｕａｎｅｔａｌ（２０１５）提出将实时滚动校正（Ｋａｌｍａｎ滤

波思想）与历史回报统计校正相结合，同时考虑模式

近期误差趋势和历史气候偏差，构建混合概率校准

方案。这种方法在中国区域降水概率预报中提升了

稳定性。

（３）集合成员加权与整合：针对集合预报成员贡

献不等或多模型集合的情形，通过赋予不同权重来

优化预报。例如：

（ａ）最佳线性无偏组合：对集合成员按照线性加

权求和，权重根据成员误差协方差确定，从而得到方

差最小且无偏的合成预报。ＧｎｅｉｔｉｎｇａｎｄＲａｆｔｅｒｙ

（２００５）提出可将此技术用于集合预报后处理，尤其

在多模型集合情形下优化集合结果。

（ｂ）集合成员历史性能加权：根据各成员过去

一段时间的预报准确度指标，给予优秀成员较大权

重、劣质成员较小权重，以此构建加权集合平均或概

率分布。ＬｅｕｔｂｅｃｈｅｒａｎｄＰａｌｍｅｒ（２００８）证明这样的

加权可提高集合平均技巧。Ｓｏｎｇｅｔａｌ（２０１８）也在

多模式台风强度集合预报中采用成员加权，改善了

预报效果。

（ｃ）多模型集合：采用多模式超级集合技术整合

异构预报系统的集合成员，如北美集合预报系统

（ＮＡＥＦＳ）融合美国 ＮＣＥＰ 与加拿大气象中心

（ＣＭＣ）的全球集合预报产品。Ｃａｎｄｉｌｌｅ（２００９）指出多

集合集成往往比任何单一集合表现更好。实际业务

中多模型集合常辅以统计权重或校正以优化性能。

（４）空间后处理：针对格点预报场的空间细节调

整，包括降尺度，即利用高分辨率地面观测或雷达卫

星等信息，将集合预报场插值并校正到更高分辨率，

以提供局地预报。例如将１０ｋｍ集合预报降尺度

到１ｋｍ，以反映地形影响。Ｓｔｅｎｓｒｕｄｅｔａｌ（２０００）探

讨了集合降尺度对局地暴雨预报的改进。Ｚｈｕａｎｄ

Ｃｕｉ（２００７）提出的多模型降尺度方法在 ＮＡＥＦＳ地

面要素预报中得到了很好的应用。

空间平滑：对集合预报场应用空间滤波，去除小

尺度噪声，使概率预报图更清晰稳定。Ａｔｇｅｒ（２００１）

研究了集合概率场的平滑技巧，发现适度平滑可提

高用户对概率预报的解读度，同时不显著降低信息

含量。

经过上述偏差订正、概率校准、成员加权和降尺

度等步骤处理后，集合预报产品的准确性和可靠性

都可得到提升。需要指出，不同预报对象和区域应
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采用相应的后处理方案，并依赖历史检验来优化参

数。如温度预报适合用多元回归＋概率校准，降水

预报则更依赖分位数矫正＋逻辑回归等。代刊等

（２０１８）总结了集合预报模式定量降水预报统计后处

理的技术和方法。近年来，随着机器学习的发展，出

现了将神经网络、决策树等用于集合后处理的探索。

例如，Ｈａｕｐｔｅｔａｌ（２００９）尝试用神经网络校正集合

降水概率，杨绚等（２０２２）、代刊等（２０２５）对深度学习

用于网格天气预报的进展进行了综述，其中也讨论

了ＡＩ在集合预报结果解释中的应用。机器学习有

望整合多种传统后处理方法，自动学习最佳校正策

略，是未来值得关注的发展方向。

４．２　预报诊断评估方法

为了量化集合预报的效果，需要对其进行多方

面的检验评估。常用的集合预报诊断指标包括：

（１）均方根误差和相关系数：计算集合平均（或

中位数）与实况的均方根误差以及相关系数，以评估

集合平均预报的准确性。一般来说，集合平均往往

比任何单一成员更准确（误差更小），这是集合预报

降噪作用的体现。

（２）离散度误差相关：衡量集合离散度（各成员

之间的标准差）与集合平均误差的匹配程度。理想

情况下，平均离散度应接近均方根误差的值，从而离

散度可以作为预报不确定性的有效指示。若离散度

远小于误差，说明集合低估了不确定性（过于自信）；

反之若离散度远大于误差，则可能过度发散（预报不

够收敛）。预报中心常用离散度误差图来调优集合

扰动幅度。

（３）概率分布检验：包括等级直方图和 ＰＩＴ

（ｐｒｏｂａｂｉｌｉｔｙｉｎｔｅｇｒａｌｔｒａｎｓｆｏｒｍ）图。等级直方图将

观测在集合排序中的位置统计成直方图，以检查集

合是否存在系统偏差或离散度问题。如果直方图平

坦，表示集合成员分布与观测无偏且散布合理；若呈

Ｕ型，说明观测常落在集合外侧，集合散度不足；若

中间凸起，则集合散度过大。ＰＩＴ图是连续变量的

类似检验。

（４）可靠度和解析性：针对概率预报，绘制可靠

性曲线评估预报概率与实际频率的一致性。理想情

况下曲线应接近对角线（如预报７０％概率雨天，那

么实际约７０％发生）。同时用Ｂｒｉｅｒ评分来总结二

类事件概率预报的均方根误差。Ｂｒｉｅｒ评分可分解

为可靠性、解析性等部分，其中解析性表示不同预报

概率值对结果的区分能力，可靠性表示预报概率的

校准优劣。集合预报经过良好校准后应当可靠度高

且具有一定解析性。

（５）连续分级概率评分（ＣＲＰＳ）：这是评价集合

预报整体分布与观测差异的综合指标，相当于概率

预报的均方根误差。ＣＲＰＳ数值越小表示集合给出

的累积概率分布与实际观测更接近。ＣＲＰＳ能同时

反映偏差和不确定性，因此广泛用于集合预报模型

之间的优劣比较。例如，在验证ＡＩ集合模型时，常

用ＣＲＰＳ衡量其相对于传统集合的改进幅度。

（６）极端预报能力评估：利用集合预报可以计算

极端事件的概率，比如“２４小时降水超过５０ｍｍ的

概率”等。这类概率预报可以用 ＲＯＣ曲线评估命

中率和虚警率的折中（ＧｕａｎａｎｄＺｈｕ，２０１７）。ＲＯＣ

曲线下面积定量表示区分能力。集合预报往往能提

高极端事件的ＲＯＣ得分，表明对于极端天气具有

更好的探测能力。例如 Ｈａｍｉｌｌｅｔａｌ（２００６）利用

ＮＣＥＰ集合再预报数据集，显著改善了美国极端降

水的概率预报技巧。

通过以上多层次的诊断评估，可以全面了解集

合预报系统的性能，从而针对性地改进模型和后处

理。Ｔｏｔｈｅｔａｌ（２００３）就概率预报的可靠性和解析

性以及其他应用功能做了全面的介绍。另外，用户

价值评估也是重要环节，如使用经济价值模型评估

集合预报在决策中的效益。Ｒｉｃｈａｒｄｓｏｎ（２０００）和

Ｚｈｕｅｔａｌ（２００２）研究了集合预报在航空、能源等行

业决策中的相对经济价值。结果显示，相对于单一

确定性预报，集合预报能够显著提高决策收益，尤其

在需要权衡风险的场景下优势更为明显。

４．３　集合预报产品示例

统计后处理和诊断评估的最终目的是将集合预

报转化为直观、有用的预报产品提供给预报员和用

户。常见的集合预报产品包括：

（１）概率预报图：直接根据集合成员统计计算事

件发生概率。如图２ 所示，概率定量降水预报

（ＰＱＰＦ）地图显示特定区域在未来２４小时降水量

超过阈值（如１ｍｍ、１０ｍｍ等）的概率。再如最高

气温超过３５℃的概率分布图，用不同颜色表示高温

发生概率范围。概率预报图是最典型的集合预报产

品，已广泛应用于天气公报和灾害预警中。文中时

间除标注外均为北京时。

　　（２）集合预报烟羽图和箱线图：用于展示集合预
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图２　华南地区２０２５年９月２５日０８时至２６日０８时２４小时累计降水≥１０ｍｍ

的集合概率预报分布

（起报时间为２０２５年９月２５日２０时，预报时效为０～２４小时）

Ｆｉｇ．２　Ｄｉｓｔｒｉｂｕｔｉｏｎｏｆｔｈｅｐｒｏｂａｂｉｌｉｓｔｉｃｆｏｒｅｃａｓｔｏｆ２４ｈａｃｃｕｍｕｌａｔｅｄ

ｐｒｅｃｉｐｉｔａｔｉｏｎ≥１０ｍｍｆｒｏｍ０８：００ＢＴ２５ｔｏ０８：００ＢＴ２６Ｓｅｐｔｅｍｂｅｒ２０２５，

ｉｎｉｔｉａｔｅｄａｔ０８：００ＢＴ２５Ｓｅｐｔｅｍｂｅｒｗｉｔｈ０－２４ｈｆｏｒｅｃａｓｔｌｅａｄｔｉｍｅｉｎＳｏｕｔｈＣｈｉｎａ

报在某地点的取值分布（图３）。烟羽图通常以时间

为横轴，将某格点各成员预报随时间的演变以折线

表示，再叠加集合均值和观测值，直观反映预报不确

定性随时间变化。箱线图则在特定时刻用箱型阐述

集合分布的中位数、上（下）四分位和极值等。这些

图表可以帮助预报员快速了解集合离散度和可能的

极端情况。

　　（３）集合预报“邮票图”和“面条图”：“邮票图”通

常是将多个集合成员对应的空间预报场以小图并列

显示，如同一排排“邮票”，预报员可通过浏览这些并

列图快速判断成员间对某天气系统的演变是否一

致。如果多数成员显示相近的空间形态，则表示预

报集中度高、可信度较高；若各成员出现截然不同的

预报场，则暗示不确定性大，需重点关注不同演变情

景。“面条图”，在同一张地图上叠加多个集合成员

某个关键等值线（如图４中５００ｈＰａ高度场中的特

定等值线）的分布情况，从而生成曲线相互交织、形

如面条的图像。面条图更注重突出集合成员在特定

气象要素（如高度场、温度场）的水平位置与幅度差

异，适合展示中期预报对于槽脊、锋区等大尺度天气

系统的定位分歧。两种方式都能在第一时间向预报

员呈现集合成员对同一天气过程的不同预测结果，

使其对预报不确定性有更直观的感受。

　　（４）不确定性定量指标产品：例如可预报性信号

图（Ｔｏｔｈｅｔａｌ，２００１），将集合离散信息转化为空间

图形。图５展示的相对可预报性（ＲＭＯＰ）即为一

例。ＲＭＯＰ通过参考气候场方差，定量给出当前预

报场相对可预报程度，通常用颜色或阴影显示：颜色

深代表该地区集合预报一致、可预报性高；颜色浅或

无色表示集合分歧大、预报不确定性高。类似地，

ＥＣＭＷＦ也提供集合信心指数图和预报显著性图，

帮助预报员把握预报可靠度。

　　（５）风险预警产品：这是面向用户和决策者的高

级产品，将集合预报信息提炼成对特定灾害风险的
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图３　２０２５年９月２５日０８时至１０月１０日０８时

（起报时间为９月２５日０８时）北京站逐６小时数值

模式集合预报的气象要素时间序列和箱线图

（ａ）２ｍ气温，（ｂ）６ｈ降水量，（ｃ）１０ｍ风速，（ｄ）总云量

Ｆｉｇ．３　Ｂｏｘｐｌｏｔｗｉｔｈｔｉｍｅｓｅｒｉｅｓｏｆｍｅｔｅｏｒｏｌｏｇｉｃａｌ

ｅｌｅｍｅｎｔｓｏｆｅｎｓｅｍｂｌｅｆｏｒｅｃａｓｔｂｙ６ｈｎｕｍｅｒｉｃａｌ

ｍｏｄｅｌａｔＢｅｉｊｉｎｇＳｔａｔｉｏｎｆｒｏｍ０８：００ＢＴ

２５Ｓｅｐｔｅｍｂｅｒｔｏ０８：００ＢＴ１０Ｏｃｔｏｂｅｒ２０２５，

ｉｎｉｔｉａｔｅｄａｔ０８：００ＢＴ２５Ｓｅｐｔｅｍｂｅｒ

（ａ）２ｍｔｅｍｐｅｒａｔｕｒｅ，（ｂ）６ｈｐｒｅｃｉｐｉｔａｔｉｏｎ，

（ｃ）１０ｍｗｉｎｄｓｐｅｅｄ，（ｄ）ｔｏｔａｌｃｌｏｕｄｃｏｖｅｒ

预警。比如基于集合的暴雨红色预警信号，当未来

２４小时降水量大于１００ｍｍ的概率超过一定高阈

值（如５０％）时触发，以提醒相关部门提前准备。美

国ＮＣＥＰ曾推出无偏异常预报产品，利用４０年再

分析气候基准计算当前预报的异常程度，如果超过

历年第９０％或９５％分位值则判为显著异常。这类

产品可以辅助识别极端事件。ＥＣＭＷＦ的ＥＦＩ也

是一种风险指数输出，专门为极端天气预警服务，如

图６所示。再如风暴潮和洪水风险预报，将大气集

合预报输出到海洋和水文模型，计算沿岸不同地点

可能出现的风暴潮增水高度概率或河流洪峰流量概

率。Ｐａｐｐｅｎｂｅｒｇｅｒｅｔａｌ（２０１１）利用ＥＣＭＷＦ集合

为欧洲洪水预警系统提供了洪水风险预报示例。

　　通过丰富多样的产品形式，集合预报的不确定

性信息得以及时传递给用户。在实际业务中，预报

员会综合参考概率图、集合分布图以及确定性预报，

与经验知识结合后对公众或特定用户发布风险提

示。例如在台风预报中，除了传统的路径点和误差

锥，现在中央气象台也使用基于集合的“概率葵花

图”展示台风未来位置概率分布，使公众更直观地了

解台风路径的不确定性。随着用户需求的发展，未

来集合预报产品将更加多元化和智能化，例如通过

交互式地图、概率情景叙述等形式，提高风险沟通的

有效性。

５　集合预报在极端天气和灾害预警中

的应用

　　集合预报在极端天气事件预报和气象灾害预警

中展现出独特的价值。由于极端事件往往具有发生

概率低、影响严重、单一预报不确定性高的特点，集

合预报提供的概率信息和备选情景对防灾决策尤为

关键。以下举例说明集合预报在若干典型灾害性天

气中的应用：

（１）热带气旋（台风／飓风）路径和强度预报：热

带气旋路径预报的误差随预报时长增大，而且对初

始位置和引导气流的微小差异非常敏感。集合预报

通过提供一组可能路径，可以直观反映未来路径的

不确定范围。例如，ＥＣＭＷＦ和ＮＣＥＰ的全球集合

对５天左右台风路径预报的集合散点图，常用来生

成“气旋路径概率锥”产品，表示未来几天台风中心

可能出现的位置范围和概率密度。这有助于预警区

合理制定防御半径。强度方面，集合预报也能给出

不同成员的气压和风速预报分布，提供增强或减弱

的概率。研究表明，集合平均的台风路径误差往往

小于大多数单一模式，提高了预报稳定性；而集合可

以捕捉到部分确定性预报遗漏的偏移情景，提高对

转向等复杂路径的警觉性。在２０１８年台风“玛莉

亚”、２０１９年台风“博罗依”（图７）等案例中，集合预

报成功提前指示出转向时机和可能的登陆区域，大

大提升了预警的科学性。
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注：细线、黑实线、黑虚线分别为集合成员预报、集合平均和控制预报对应的

５００ｈＰａ等高线，用于反映中高层环流的不确定性；蓝色面条线表示高纬度

地区各集合成员的预报路径，紫色线表示南亚和热带地区的集合分布情况。

图４　２０２５年１１月９日０８时（起报时间２日０８时）数值模式集合

预报的５００ｈＰａ高度场（单位：ｇｐｍ）面条图

Ｆｉｇ．４　Ｓｐａｇｈｔｔｉｐｌｏｔｏｆ５００ｈＰａｇｅｏｐｏｔｅｎｔｉａｌｈｅｉｇｈｔ（ｕｎｉｔ：ｇｐｍ）ｏｆｅｎｓｅｍｂｌｅ

ｆｏｒｅｃａｓｔｂｙｔｈｅｎｕｍｅｒｉｃａｌｍｏｄｅｌａｔ０８：００ＢＴ９Ｎｏｖｅｍｂｅｒ２０２５，

ｉｎｉｔｉａｔｅｄａｔ０８：００ＢＴ２Ｎｏｖｅｍｂｅｒ

图５　２０１１年４月１３日００时（世界时，初始时刻

为８日００时）５００ｈＰａ高度５天预报的集合预报

平均场（等值线，单位：ｇｐｍ）和

可预报性相对度量（填色）

Ｆｉｇ．５　Ｔｈｅｅｎｓｅｍｂｌｅｍｅａｎｆｏｒｅｃａｓｔｆｉｅｌｄｏｆ５ｄ

ｇｅｏｐｏｔｅｎｔｉａｌｈｅｉｇｈｔｆｏｒｅｃａｓｔ（ｃｏｎｔｏｕｒ，ｕｎｉｔ：ｇｐｍ）

ａｎｄｔｈｅｒｅｌａｔｉｖｅｍｅａｓｕｒｅｏｆｐｒｅｄｉｃｔａｂｉｌｉｔｙ（ｃｏｌｏｒｅｄ）

ａｔ００：００ＵＴＣ１３Ａｐｒｉｌ２０１１，ｉｎｉｔｉａｔｅｄ

ａｔ００：００ＵＴＣ８Ａｐｒｉｌ

　　（２）暴雨洪涝预警：暴雨的落区和强度对初始条

件和局地地形非常敏感，单一数值预报常有位置和

强度误差。集合预报能够提供降水的多种可能分

布，通过降水概率预报图，帮助识别高风险区域。例

如，集合预报显示某流域有２０％的成员出现极端大

暴雨时，即便确定性预报未报出，该信息也可促使预

报员提高警惕。欧洲洪水预警系统（ＥＦＡＳ）全面依

赖ＥＣＭＷＦ集合来驱动水文模型，Ｐａｐｐｅｎｂｅｒｇｅｒ

ｅｔａｌ（２０１１）统计显示，相比传统方法，集合驱动的洪

水预警准确率提高约１０％～２０％，并能提供峰值流

量的不确定性区间。在我国，集合降水预报也被用

于山洪地质灾害风险预报模型，通过叠加土壤湿度

初始不确定性场，给出泥石流和中小河流洪水发生

概率，改进了地方防汛部门的预警流程。

（３）强对流和雷暴大风：短时强降水、冰雹、龙卷

等强对流天气发生具有较强的不确定性。对流尺度

的集合预报（如ＣＭＡ的对流允许集合试验）可生成

如雷暴回波、风切变等的概率预报。在２０１９年夏季

的华北龙卷事件中，虽然单一模式未明确预报，但集

合预报给出了华北平原中部低压过境时产生剧烈天

气的可能性，其成员中有部分出现了强风暴反射率

回波的信号。这为临近预报提供了有益提示。国外

研究亦表明，集合预报可以显著提高强对流风险的

检测率。

（４）高温和寒潮：极端高温和严寒事件通常由大

型大气环流异常造成，但集合预报仍可给出持续时

间和强度的不确定范围。ＭｉｎａｎｄＺｈａｎｇ（２０１１）利

用集合预报分析了中国历史上的极端高温和寒潮，

结果表明集合方法能够较好地涵盖实际发生的极值

情况。例如，２０１３年中国南方极端高温过程中，集

合预报提前１０天即提示副热带高压可能异常偏强，

部分成员预报了４０℃以上的极端高温，帮助政府部

门早做准备。对于寒潮，集合预报可以预测冷空气
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注：黑色等值线为同期海平面气压，单位：ｈＰａ。

图６　２０２５年１１月４日０８时至５日０８时（２日０８时起报，预报时效为第４８～７２小时）中国

及邻近地区的集合数值模式极端天气指数预报产品空间分布

Ｆｉｇ．６　Ｓｐａｔｉａｌｄｉｓｔｒｉｂｕｔｉｏｎｏｆｅｘｔｒｅｍｅｗｅａｔｈｅｒｉｎｄｅｘｆｏｒｅｃａｓｔｐｒｏｄｕｃｔｓｏｆｅｎｓｅｍｂｌｅｎｕｍｅｒｉｃａｌ

ｍｏｄｅｌｓｉｎＣｈｉｎａａｎｄｉｔｓｎｅｉｇｈｂｏｒｉｎｇｒｅｇｉｏｎｓｆｒｏｍ０８：００ＢＴ４ｔｏ０８：００ＢＴ５Ｎｏｖｅｍｂｅｒ２０２５，

ｉｎｉｔｉａｔｅｄａｔ０８：００ＢＴ２Ｎｏｖｅｍｂｅｒｗｉｔｈ４８－７２ｈｆｏｒｅｃａｓｔｌｅａｄｔｉｍｅ

注：紫线表示台风“博罗依”的实况路径，紫色阴影表示未来路径的不确定性区域（概率分布），

同时标注各主要时刻的中心位置预报。

图７　２０２５年９月２５日１８时发布的２０２５年第２０号台风“博罗依”未来１２０小时路径概率预报

Ｆｉｇ．７　Ｐｒｏｂａｂｉｌｉｔｙｆｏｒｅｃａｓｔｏｆｔｈｅ１２０ｈｔｒａｃｋｏｆＴｙｐｈｏｏｎＢｕａｌｏｉｉｓｓｕｅｄａｔ１８：００ＢＴ２５Ｓｅｐｔｅｍｂｅｒ２０２５
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南下路径的不确定性以及降温幅度概率，使得寒潮

预警在时间和影响区域上更加从容。Ｖｉｔａｒｔｅｔａｌ

（２０１７）也指出，在季节预测中集合预报可提供未来

１～２个月温度异常的概率信息，有助于提前部署能

源调度和农业防灾。

（５）森林火灾风险：极端高温干旱和大风是森林

火灾发生和扩散的重要气象因素。集合预报可以结

合火险指标（如火险气象指数）生成火险等级概率预

报。ＳｍｉｔｈａｎｄＨｕｇｈｅｓ（２０２０）对２０１９年澳大利亚

山火季进行了事后分析，发现集合预报在多个地点

提前预示了极端火险条件的持续，可靠度明显优于

单次预报。在火情应对中，集合预报提供的不确定

性信息（如火险高值出现概率、不同风力情景）可以

帮助决策者制定更稳健的资源调配方案。

除了上述例子，集合预报还广泛应用于航空气

象（如飞机颠簸和能见度预报）、海洋预报（如海浪高

度和风暴潮）、环境气象（如沙尘暴路径、空气污染过

程）等领域。例如多家中心联合的火山灰扩散集合

预报，为航空提供了火山灰云影响概率预报图，使航

线调整更加合理。再如欧洲空气质量预报集合项目

（如大气成分与气候监测 ＭＡＣＣ）集成多个化学模

式输出，改进了污染事件的不确定性评估。这些都

体现了集合预报在各领域的适应性和重要性。

总的来说，集合预报通过提供概率预警取代了

过去“报或不报”的二元预报模式，使预报产品更符

合实际不确定性。它为防灾减灾提供了科学依据，

让应急管理能够根据风险概率分级响应，避免漏报

和过度预警的“双重损失”。随着集合预报的不断进

步和与应用部门的磨合，其在极端事件预报中的作

用将更加突出。

６　人工智能与数据驱动的集合预报新

进展

　　进入２１世纪第三个１０年，ＡＩ技术尤其是深度

学习在天气预报领域取得令人瞩目的突破。基于海

量历史再分析数据训练的 ＡＩ天气预报模型，能够

在极短时间内完成与数值模式相当精度的预报。例

如美国ＮＶＩＤＩＡ公司开发的ＦｏｕｒＣａｓｔＮｅｔ模型（基

于深度神经网络）成功实现全球１４天５００ｈＰａ高度

场的预测，与ＥＣＭＷＦ模式精度相当但速度快数万

个数量级；华为团队的盘古天气模型利用３Ｄ神经

网络预测全球逐小时多变量天气，达到全球业务中

心同等水平并登上Ｎａｔｕｒｅ期刊。这些模型主要用

于确定性预报，但其巨大成功启发了概率预报的新

思路———利用ＡＩ模型快速生成大规模集合成员，

或直接学习预报概率分布，从而克服传统集合预报

计算成本高、成员数受限的瓶颈。

Ｇｏｏｇｌｅ研究团队在２０２４年提出了ＳＥＥＤＳ模

型（Ｌｉｅｔａｌ，２０２４）。ＳＥＥＤＳ以美国ＮＣＥＰ的ＧＥＦＳ

集合再预报数据为基础，采用扩散概率模型框架，旨

在模拟传统集合预报的结果分布。其做法包括两个

阶段：首先训练集合模拟器模块，使用少数 ＧＥＦＳ

集合成员的信息来重构ＧＥＦＳ的整体概率分布；然

后训练生成后处理模块，将ＧＥＦＳ模拟的分布与历

史ＥＲＡ５再分析的不确定性信息相结合，纠正集合

预报的系统偏差。最终，ＳＥＥＤＳ能够在仅输入

ＧＥＦＳ两个成员（控制及一个扰动）的条件下，快速

生成上百个模拟成员，且生成集合的统计特征（如均

值、方差、极端概率）与原始ＧＥＦＳ３０个成员集合非

常接近。计算成本方面，ＳＥＥＤＳ使用扩散模型逐步

采样的方法，但因为只需少数输入成员，整体效率仍

比直接跑数值模式生成大量成员要高出一个数量级

以上。更重要的是，ＳＥＥＤＳ输出的超大集合可以更

好地表征稀有事件：在 Ｇｏｏｇｌｅ的试验中，生成

１０００个成员的ＳＥＥＤＳ可以捕捉到原始３０个成员

集合未出现的一些极端降水情景，并以概率形式给

出。ＳＥＥＤＳ展示了ＡＩ生成模型与传统ＮＷＰ结合

的潜力———以较小成本显著扩大集合规模，从而改

善极端事件的概率预报。

ＤｅｅｐＭｉｎｄ团队在２０２３年底提出了另一个具

有里程碑意义的模型ＧｅｎＣａｓｔ。与ＳＥＥＤＳ偏重于

模拟已有集合不同，ＧｅｎＣａｓｔ尝试完全由ＡＩ生成独

立的集合预报。ＧｅｎＣａｓｔ使用扩散模型框架，将天

气预报问题视为逐步消除噪声还原大气状态的过

程。它以ＥＲＡ５再分析数据训练，可以从随机噪声

出发，通过迭代“降噪”生成全球１５天逐１２小时的

天气演变。ＧｅｎＣａｓｔ的架构融合了深度神经网络提

供的大尺度准确定性预测和扩散过程提供的不确定

扰动，其单次运行即可输出一个随机的可能天气序

列。通过多次运行ＧｅｎＣａｓｔ并改变初始噪声种子，

就能获得一个预报集合。性能方面，Ｐｒｉｃｅｅｔａｌ

（２０２５）表明，ＧｅｎＣａｓｔ在０．２５°分辨率、１５天预报对

８０多个大气和地表变量的预报技巧，超过了

ＥＣＭＷＦ的５１个成员集合预报，在９７．４％的检验

指标上取得更高的技巧分数。尤其在降水极值、热
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带气旋路径等方面，ＧｅｎＣａｓｔ对极端情况的捕捉能

力优于传统集合。此外，ＧｅｎＣａｓｔ生成一套２０个成

员左右的集合耗时仅几分钟，这相比ＥＣＭＷＦ集合

需要超级计算机运行几小时以上的情况，有巨大的

效率优势。ＧｅｎＣａｓｔ的出现标志着 ＡＩ有望直接挑

战乃至超越物理模式生成的集合预报。

ＦｕＸｉＥｎｓ是中国研究团队在ＡＩ集合预报方向

的最新成果（Ｚｈｏｎｇｅｔａｌ，２０２４）。２０２４年初，有来

自复旦大学等单位的学者在ａｒＸｉｖ发表了 ＦｕＸｉ

Ｅｎｓ模型的成果。ＦｕＸｉＥｎｓ借鉴了生成模型思想，

但采用变分自编码器（ＶＡＥ）框架来生成集合成员。

其特点包括：（１）输入采用ＥＲＡ５再分析数据，输出

６小时步长、全球１５天预报，与ＧｅｎＣａｓｔ相似；（２）

水平分辨率达到０．２５°（约２５ｋｍ），垂直方向包含

１３个等压面层和十余个地表变量；（３）利用ＶＡＥ的

隐空间随机采样性质来产生初始扰动和模拟模式随

机误差。训练目标方面，ＦｕＸｉＥｎｓ没有像典型

ＶＡＥ那样仅用均方根误差，而是设计了结合连续分

级概率评分（ＣＲＰＳ）和 ＫｕｌｌｂａｃｋＬｅｉｂｌｅｒ（ＫＬ）散度

的损失函数。ＣＲＰＳ部分确保生成的概率分布逼近

真实分布（提升概率预报技巧），ＫＬ散度则约束生

成样本不要偏离历史气候统计。通过这种特殊训

练，ＦｕＸｉＥｎｓ在保留ＶＡＥ高效单步生成能力的同

时，提高了生成集合的可靠度和分散性。根据论文，

ＦｕＸｉＥｎｓ与ＥＣＭＷＦ集合在相同初始条件下对比

测试，在３６０个检验指标中的９８．１％上显著优于

ＥＣＭＷＦ集合预报，尤其是ＣＲＰＳ评分平均降低了

约１０％左右。ＦｕＸｉＥｎｓ不依赖任何传统 ＮＷＰ集

合输入；与 ＧｅｎＣａｓｔ需要通过扩散多步生成不同，

ＦｕＸｉＥｎｓ一次前向传播就输出所有变量的集合成

员。这样在业务部署时，只需提供当前分析场，

ＦｕＸｉＥｎｓ即可直接给出集合预报结果，极大简化了

流程。

总的来说，人工智能集合预报仍处于起步阶段，

但已有的成果足以表明其巨大潜力。一方面，ＡＩ模

型能以远低于 ＮＷＰ的成本生成高质量集合，为提

高成员数、分辨率提供了全新途径；另一方面，ＡＩ模

型也面临诸多挑战，如如何保证物理一致性、防止奇

异假象，以及在模式外推时的稳定性等。这需要气

象科学与人工智能领域的深入交叉合作。未来，我

们有理由期待一个“物理驱动和数据驱动结合”的新

型预报范式。在这种范式下，集合预报将进一步减

少不确定性、提高预报能力，在保障社会经济发展和

防灾减灾中发挥更大作用。

７　结论与展望

本文回顾了现代集合预报系统的发展历程、关

键技术、业务应用以及最新的人工智能驱动进展。

集合预报自２０世纪下半叶兴起，解决了确定性预报

无法量化不确定性的根本问题，通过各种扰动模拟

提供了未来天气多种可能性的概率预报框架。传统

集合预报技术在初始扰动方面发展出繁殖法、奇异

向量、集合同化等方法，在模式扰动方面形成了随机

物理方案、多模型集成等体系，不断改善了集合离散

度与可靠性，使预报技巧稳步提升。各国建立的全

球和区域集合预报系统，如ＥＣＭＷＦ、ＮＣＥＰ、ＣＭＡ

的集合系统等，已成为业务天气预报和灾害预警的

重要支撑。通过统计后处理，集合预报产品更加准

确、稳定，以概率形式服务于各行业决策。在极端天

气和气象灾害预警中，集合预报大幅提高了预报的

提前量和信息量，为防灾减灾赢得宝贵时间。可以

说，集合预报理念的普及是数值天气预报领域的一

场范式革命。

进入大数据与人工智能时代，集合预报正迎来

新的发展契机。深度学习等ＡＩ技术提供了全新的

手段来表征和获取不确定性信息，突破了传统方法

在计算成本和模式偏差上的瓶颈。新近出现的

ＧｅｎＣａｓｔ、ＳＥＥＤＳ、ＦｕＸｉＥｎｓ、ＡＩＦＳＣＲＰＳ等 ＡＩ集

合预报模型，展示了 ＡＩ生成天气集合的可行性和

巨大潜力；它们以更低成本、更高维度，达到甚至超

过传统５１个成员集合的预报性能，尤其在极端天气

概率预报上表现突出。这预示着未来集合预报系统

形态可能发生重大变化———通过 ＡＩ模型，可以实

时生成数百乃至上千个成员的超大型集合来探测极

端事件概率分布，而不再受限于计算资源。同时，

ＡＩ模型可以与物理模式融合，形成“ＡＩ＋ＮＷＰ”双

引擎的集合预报系统：既有物理模型提供可靠性保

障，又有ＡＩ模型拓展预报的广度和深度。

尽管如此，我们也需保持理性认识。目前 ＡＩ

集合预报尚处试验阶段，要替代或大规模应用于业

务，还需解决诸多挑战。例如，如何确保ＡＩ生成的

预报满足大气物理约束，不产生不合理的天气演变？

如何在资料同化环节融合 ＡＩ输出，提高初始场质

量？如何建立 ＡＩ集合预报的检验评估标准，确保

其稳定性和可解释性？这些都需要进一步研究探
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索。另外，预报员角色也会因ＡＩ而改变，更需要关

注概率预报解读和风险沟通，将复杂的不确定信息

有效传达给用户。

总的来看，集合预报的发展体现了气象预报从

确定性走向概率性的科学进步。它极大提升了我们

面对不确定性的从容度。展望未来，随着高性能计

算的发展和人工智能的深度介入，集合预报系统将

更加智能、高效和精细化。不仅天气预报，在气候预

测、环境预测乃至其他复杂系统（如水文、海洋、空间

天气等）中，集合方法都将发挥越来越重要的作用。

我们有理由相信，一个结合了物理机理和数据智能

的新一代集合预报生态正在形成。这将帮助人类更

好地预测和应对天气与气候的不确定性，为防灾减

灾和可持续发展保驾护航。

致谢：感谢地球系统数值预报中心齐倩倩在文档整理

方面的协助。
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