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Abstract ; Intelligent digital weather forecasting is a key means to support meteorological service. Countries
around the world are actively developing new-generation seamless forecasting technology systems and pro-
moting the application of artificial intelligence (AD) in the meteorological field. China has established a rel-
atively complete intelligent digital weather forecasting operation system, achieving seamless forecasting for
the near-surface and three-dimensional meteorological elements with a resolution of 1 km across China and
5 km around the globe, covering a time range of 0—30 days. By developing adaptable technologies through
the strategy of implementing different strategies at different time scales and integrating multi-source fore-
casts, China has made remarkable achievements. A unified, standardized, and modularly expandable intel-
ligent digital general technology framework has been constructed, with more than 30 types of algorithms

constructed and the “low-code” deployment able to be supported. This is very important in major event
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support and extreme weather forecasting. The in-depth application of Al technology has significantly im-
proved forecast performance in short-time, short-term and medium-term precipitation forecasting, severe
convective weather forecasting, and disastrous gale forecasting by leveraging deep learning models. Pro-
gress has also been made in refined downscaling technology. At the same time, the data fusion and integra-
tion technology has continued to be developed, and the intelligent integration of objective and subjective
forecasts has developed to enhance the ability to predict disastrous weather. China’s intelligent digital
forecasting system has improved the forecast accuracy by 10% —31% compared with the EC_IFS and CMA
models, and has been widely applied in many fields. However, it still faces challenges. In the future,
breakthroughs will be made in the technologies related to the forecasting of disastrous and transitional
weather, the low-altitude hundreds-meter-resolution refined downscaling forecasting, the industry-specific
weather and risk forecasting, and the integrated platform with the meteorological “intelligent brain” as the
core.

Key words: intelligent digital weather forecasting, technical framework, artificial intelligence (Al), multi-

source fusion, refined downscaling
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Fig. 2 Comparison between the observed accumulated precipitation during the heavy precipitation

process in North China from 29 July to 1 August 2023 and the forecast by NIMM

(a) observation, (b) forecast with 84 h lead time, (c) forecast with 72 h lead time
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Fig. 5 (a) Technical route and (bh—e) application case of downscaling refined forecasting:

2 m temperature forecast with 6 h lead time at 14:00 BT 24 December 2024
(b) ECMWF-IFS forecast, (c¢) refined forecast with resolution

downscaled to 5 km, (d) refined forecast with resolution downscaled to 1 km,

(e) a fusion product of multi-source observations from the CLDAS data with 1 km resolution
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Fig. 6 The MAE of the average fused temperature forecasts with different fused algorithms
and different lead times at 2411 national meteorological stations

in China from March 2023 to February 2024
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Fig. 7 Fusion forecast case of high temperature process: maximum temperature
forecast with 24 h lead time in 10— 11 July 2024
(a) intelligent digital weather forecasting, (b) forecasters’ subjective forecast,

(c) fusion of objective-subjective forecasts in the corresponding time period
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Table 3 Verification results of 24 h forecasts for various meteorological elements

in intelligent digital weather forecasting from 2020 to 2023

BE R K U 2020 4E 2021 4F 2022 4 2023 4F
CMA-NDFS 0.222 0.232 0.215 0.209
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(TS ¥E4M) . : o . Y
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_ ) CMA-NDFS 0.366 0.360 0.387 0.356
0.1 3
=0.1 mm/ ECMWF-TFS 0.365 0. 349 0. 370 0.347
(TS 40
CMA-GFS 0.323 0.325 0. 346 0.350
o CMA NDFS 67. 49 69. 73 74.03 71. 99
B * Uil ECMWE-IFS 59. 68 57.79 61. 45 60. 08
(TR HER )/ % ’ ’ ’ B
CMA-GFS 45.19 47. 33 15. 99 145,47
CMA-NDFS 70. 77 73.17 75. 99 74. 29
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(TR HEH %) / %6 i ’ o ’ ’
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(WA /% ) ) - o o -
CMA-GFS 40. 47 40. 63 40.85 39.11
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Fig. 8 Comparison and verification of the average intelligent digital precipitation

forecasts for the whole year of 2023 and the model predictions

(a) TS score for 0.1 mm/3 h precipitation, (b) TS score for 50 mm/24 h precipitation,

(¢) forecast accuracy for the 24 h clear/rain
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Fig. 9 Comparison between the observed accumulated precipitation (dot) from 30 to 31 July during the

extremely heavy rainfall process in Juy 2023 and the forecast with 36 h lead time (colored)
(a) CMA-NDFS, (b) ECMWEF-IFS
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