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Abstract: Numerical weather prediction (NWP) is the core technology for weather forecasting services and
disaster prevention and mitigation, and it is also a key indicator for measuring the level of a nation’s mete-
orological modernization. In the course of independent innovation of China’s NWP, the establishment of a
comprehensive operational system centered on the Global/Regional Assimilation and Prediction System
(GRAPES) is a milestone event, marking a major leap from technology introduction to independent inno-
vation. This article provides a comprehensive review of the original achievements in the core technologies
during the development of the GRAPES since the 21st century. The key innovations include a prediction-
correction semi-implicit semi-l.agrangian time integration scheme, the multi-moment constrained finite vol-

ume (MCV) method, a high-precision positive-definite shape-preserving scalar advection scheme, a
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double-moment microphysical cloud scheme, a scale-adaptive 3D turbulence parameterization scheme, the
self-developed ARMS (advanced radiative transfer modeling system) model, the tangent linear and ADjoint
models for non-hydrostatic global models, the constrained satellite data bias correction techniques, and the
assimilation algorithms for FY-4 infrared hyperspectral data. These breakthroughs are the results from the
close integration of fundamental researches and operational practices, and have comprehensively enhanced
the forecast performance of China’s independently developed numerical weather prediction model.

Key words: numerical weather prediction (NWP), GRAPES, semi-implicit semi-Lagrangian (SISL), finite

volume method, physical process parameterization, four-dimensional variation (4DVar), satel-

lite data assimilation
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Fig. 1

The 850 hPa temperature after 9 d integration of baroclinic wave test by

CMA-GFS with (a, ¢) old and (b, d) new dynamic frameworks
(as b) time step: 600 s, (c, d) time step: 1200 s
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(2013) TEH RIR AL bR &R T & J& T EoA = [ U B
JE B 5E 4 AT R4 SPAE B 4R AR R s I HELE .
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5 R W R 2250 2 oA B A FR 5 32 7 2001 A 14 ot
e R A TR (5 2 () BUAR T AR G 1 O X R AR
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Coté, 199 1) " Z I T A% i s rp s A% 9 H J7
DA BRI S8R RS e (H T R
BERERIER S E ., L F 2 Rl 7S E
92 hi s B H 7 s ) s 4E R T AR A2 R A B H
77 (Nair and Machenhauer,2002) , 45 & 47 BE 4
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(Zerroukat et al,2004) F143 B AE 45 B 4 (Zerroukat
et al,2007) i~y 4E Z I 2 R kg B H J7 ik, sp A 2R 4r
B H 2R B8 J7 1 (Lauritzen et al,2010) Sz Fo
HIE R T (Harris et al, 2020048, E4EK TR
b i R g 0 T 12 PR LA R RS AT 1 5L
4 o T R N R A T P R0 BEAE R AUBUE
BT BT FE 8 . S ZEFIAS 3 S i AL 4
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et al,2016) J& B8 1l /& & b 3k — B AEURe P 9 AR R 1
FBY T . R BT A R TG S R R B 7E (1)
W K R B B 3 25 7 AR AR BRI S o Oy T Ak X el
15O . 75 % BUE 1F J7 5 (Qiu and Shu, 2005; Zhang
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VE AL G AT BRAR B 6 i 7 i - HAT Jm) 3t B2 44
W £ % A R A 1 (multi-moment finite-volume,
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2 AR AP I (8 E 2ok A BR AR FR Oy s b 3 R X
ST DR GBS ST R P T AT A T b 3 i BR
J7 ¥ (Xiao et al,2002; Sun et al,2015) B 2 i #% B
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Xiao, 2017 T Hr . 4 b Bk . & B 7 2 78 KB B B
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(] W B A 22 7 AR AR IR . D T R s B 22 R
HEPREEIR Y , Xiao and Peng (2004) 42 i} 7 —Fbr
PR PR R % » Xiao et al(2002) $2 1 T —Fh Jo ik
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T2 bR R A L BR T 275 - T R Y
SPAEAE TR 7 P AN DR S5 BB R M A KT A
LA ] R A B R 22 S R BOAS W] 5 ) b B A
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BT 1) b SR AR VE RN ) 25 4K 2 B A% BT H 3 B
A PR X (piecewise rational method, PRM) J5 i
(Xiao and Peng,2004) , N\ T E 115 FAE W =50, &
BIEPRB T . BEAE AR T S R T AT S i
A 4 A T AR I SE 48 GE (Li et al, 20205 Tang
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-90 T T T [ T T [ T T [ T T [ T 1
0 60 120 180 240 300 360
% &

AE BB 0 ~F- 3 05 Z6 Pk MCV3_BGS-PRM J57 %%,
Ry B UES i ZEAE A v W R R
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Fig. 2 Distribution of ¢, in deformation flow test at the 4900 m altitude for the high-precision

positive-definite shape-preserving scalar advection schemes (MCV3_BGS-PRM)
(cited from Tang et al, 2022)

(a) half-cycle result, (b) full-cycle result
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A0 Je 2R X g B AR . g 2 A
e [m) i 81 H 22 A 5 1 RSl 40 - i O SR S
L4k (Kent et al,2014; Hall et al,2016), DL g 47
Xy, Ho, CAM-FV Oy NCAR 3 T 4 45 i
W & Fi AR AR R JF & 9 3 J B 0 s CAMSSE
NCAR 5&F 37 77 Bk 9 g 13 oG 75 TF & 19 8l T3 A% 0
MCore NI & 3 [ %5 BRHL K 27 5k 57 75 B3k M A% LA
FRARBULETF L3 1 # 0. NERBFTLLE H X T
WL ¢ » MCV3_BGS-PRM 145 5 H. Mcore §F
(L RERRSN .5 CAM-SE #%4, {HE# T CAM-

FV r Zmss R 2, TEEH T & B o CAM-FV
FEN A HEZ T MCV3_BGS-PRM, 7£i% ik I
H1, CAM-FV 757K - 28 25 B A% 11 54 HEE Dy 360 X
180, 1fif MCV3_BGS-PRM J % fif F] 7. J7 BR M 4% 11
MAMER24XA5X454+2, N HZ KA R4 3,
X T HA 9 ] W s » MCV3_BGS-PRM [ 45 1 5
Hoflh oy MY, K L R T HAA TR, KR
SRRV LM BAS T RGE . EE . 5H
o [7) 24 RSP 338 77 58 AH LU o A2 3 SRS B8 O 1 2R B 4R
SR G T

F1 ZHTERABRERE

Table 1 Standard errors of the three-dimensional deformation flow test

E Y& 3 15 2% qQ qs3 qu
MCV3_BGS-PRM 14t 0.1879 0.0277 0.0030
Iy 0.1537 0.2533 0.0138
L. 0.2574 0. 6984 0. 3407
CAM-FV A 0.1210 0.0236 0.0011
Kent et al(2014) Ly 0. 0998 0.2519 0.0130
L. 0.1923 0. 8589 0. 3990
Mcore A 0.1774 0.0251 0.0014
Kent et al(2014) Ly 0. 1552 0. 2354 0.0125
L. 0.3384 0. 8444 0. 3906
CAM-SE 1A 0.1813 0.0241 0.0013
Hall et al(2016) Iy 0.1518 0. 2260 0.0117
L. 0.3198 0. 8162 0.3673

L4 NSHZHYE

ZY T R R A B EE WY R R
— . BT FEACKL T R A A RO R R 1 S 2
S8 HLE 2SR 0 K7 3 3R R ME LU AT = 1 4
AR T A AR B AR KT 2 Bl B o R A A A AR A
YR HE, = PP R AT E M R IR A B
Fe Wz — (IPCC, 2022; Solomon et al,2007) , %f H
TE B A R 4 e B0 A X i M e e DG e

£ CMA-GFS #5550k R WA . 2= 0w B 5 48 5k
B F XA TR, X 2 07 28 T aloBe i 3w
PRI AL A% T BK PGR BRI B A & H B =
FITE B . SR S 6T A X 35 A0 43 k25 1 4 3k op 1 4
{H RSB & ZAE L Tk 20 BE 3R N 8 2 il Fn
RAIFAE S, 0 H IR 78 X 3 16 BR 0 301 i X AR
AR HE . PR AU 2 o B %R 2 I A
it A1 25 HiL XK 5 0 R AR RO R K . TR il
TR - 27K P HE LA T, BT L X 2 R o
SBUBRENF AR BEELEZENBR T X = i Hl 4
S LA 2 = T B R LA 2R K R

RAN FE AR A G HIL

Ry fifk DR 3 4 ] g AT AT BA T R AUF T B S SRR
(ENCE L N o8- & W BT 7/ BL PO B LB L i
(Tiedtke,1993;Zhao et al, 1997 ; Harris et al,2020;
McTaggart-Cowan et al,2019), B 45 CMA-GFS #
2R MR BT b, DX 2 TR K TR AR A Y 32 2 IR 22
HEERF SR SR T - EBEH T
CMA-GFS 3y Jj HE 32 1 4y B i 7% 09 08 = ) 3l 7 %
(Ma et al,2018; 845 ,2013) ,i% /T £ F 2016 4E4E
CMA-GFS JiA T+ g 52 301l 55 46 0 T QUL 2 I
85,2021) X TR EEW AR & 8 = ) B 2 3L
FLAE R RBE R W 2 7 58 U M6 X I A % A i R
FEMR BT B S Z MBI R =T R Ir
o Horp R RUEE 22 UL = ) B 5 48 02 Ak 3 0 4 SF- 34
TKPAGR BN AT 2 190 1 B %) 2 3 45 ] 0, H: DG i i
JE BT B2 i 5 AR R BE A B A 5 YIRS X I
HR A s RUBE B B 7 SR A A s RO K BEYI I =
A — S BRI, 2 PR U AR £ BR
23 N X R RUBE 5 T8 JCR 52 1 5 XS 8 o T ) B
T3 58 M2 b 35 2= P9 7K B 0 L~ A R e THT o K ) T



11

VR R - b [ 55 S0 R AR A 32 2 i b i 898 0 7 vk 18 1301

SEERY L T R B IR KR L Bz i AR
2 GlLBE 1)) S R W A s Sy d #g . [ s 1
—Em B AR TR L R A R

1E CMA-GFS V55 80z Wy FLJ7 S b L K BEY)
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Slr\icro(N,l-)+D(N1-) (9)
% — AC@) + Sum (@) + S (@) + Sy (@)
(10)
2T .
a ACT) 4+ Seone (T) 4 Siiveo (T =+ Sriere (T

(11)
K&~ 10 H:q FI N 35 FoR KK BEW IR &
RO B R AR o AR A ] B K J R 2L 43 5
H vie.rids fl g /AR IKIE KRR KSR VF A
Weo TS E BB bR 2 18 2 i K0 B i T
e B, N, B3R T T L UK SR R Bk
a . T HRE. ACq.) AN Ala) LR
gy 77 3t A8 0 7K P S TSR 5 R 1 K Y R A
BU LBk B DL B 2 o R A A B A Y AR Ak R
Seom (@@ +Seone (ND FI Seony Cad W E H1 T UK M A% X
Ui H gk A XA R 2 K R UK TR A B LUK
B DL B DT . Scro (4@ FH Shero (N1
SR P4 K PR B A N R (RN RO 2
W2 ) B 5 ZE TR B = K K TR A L DA R VK AR TR
BB . Suico (@) F Shiero (N U2 R 7] K
W AE W S5 o O 7 8 TP el T30 B b o
RAEMAALE, D(q ) F DON,) A 75 3 18 K BE )
L AE TR A v i AR AL 3 AL = HAR M K,
VKA VE N o Sa (@) J& B F 2 2 8L, 1 R T = 2E
M) 25 i AR R s S () W2 BRI 25 300 B 11 28 K 3
SlEN BB %E, RAD A S 2~4 T4 52
YIRS A R A58 0 2 W K R 2 W= Wy H ) %
2z i #8758 vh il T AR A8 A 5 1R Y IR AR 4R
R, T EULII M 7E R WU R P R R %
WL 2 40 P 5 8 IR I o) 4 HE R B S R R
Xt 2 7K FH UK i 0 52 00 B A B A 2 7K R UK i B B 3
Do A% SF- 25 RUBE J5 38 3k 4 B A b AR 2 5 31 KOkE
TFREEY L BB AR TR it 7

CMA-GFS 2R B 10 2 il B 7 58 7 2E4%
SRR 3038 T B pK T AR AR AT dh T 5 B A
P X TEHL T PER AT 2 3 BUR L Hiy 1 X = Al
& R B K AR W A D R G . Ry i D R) A
AT RZ B R K Sundqvist 7155 M ks
RNE F =4 A J5 2 (Sundgvist, 1988 ; Sundqvist
et al,1989;McTaggart-Cowan et al,2019), #% 5 R
JEE T B K VRAR T 35 7 B A R0 A5 D0 a0 SR B Gk
B 1 B 1% J5 ¥ AT DL o B A Bl o A R
Al B 5 R RS Y T BE R KR AR AR R TSRS
SN IR AR 2 BE 245 1 7 JF R IR AR 1Y) 2 5 45
= P AR S B A SORUBE . TR R DA
A Y ORRUBE FA S N B e A [R] Z B
RO 2 W9 IE 80 PRI 32 07 125 00 8 PR 2 h 8 W = )
W%

1E CMA-GFS £ A =5 & Bef
FE 5 SR T S B0 0 I A AR R = B
Wy 33k R 0 52 0 DR AN BE AR G b A L AT A 4
Xof i PR e DX Sl oK BE W K B O3 AT S B S RS
B R, 2% ECMWE-TFS # X i 7k (ECMWEF
Documentation,2012) , 7E 2 J7 2 0 AR X A& 1R X
DL R X AL A5 3 R R U A% TR O B TR
b AR A O o (B Rt R WA S (B
6 R KR 2 vk SR I A B B4 7 AR L R
FRUEE TR BEH) 5 /K FA% K R B2 1 m (M et
al,2018; {HH4E.2013),

WAh . Fe F Tiedtke (1993) 1§ T./E, Ma et al
(2018) 7 CMA-GFS @ 57 3 19 = 42 i X B4 7
2R AU Y 38 Ak AR 6T T RE RN R RLBE I A% - 34
KR A R BB R OR 12 M = & 1) J7 58 (Xu and
Randall. 1996) . *J [i% 2z & W4k 75 8 5 A 1945
=i S EUL O AR UK S e W Bk
B, o RO R RE T A AL g B2 RS H
AR L BRHEAR 2 i R 2 35 O 20 F) [) A, Xof
S WA B Rk B s R A
R4 B i 22 T i 25 385 KR ILZR (& 3) = 3t 1 Tl 4z
B ERE T CMA-GFS B 58 5 150 2

76 CMA-GES 4 BRBER th s 31 A th & Bl 2%
K H EW RSB S W BT 5 R iR A ST
B2 DI WA ) M B #E . WS s M
T3 G52 i P E R B 5T e 7R AE 20 (4 80
FAH H A (Hu and He, 198831989, Ho H A& N
THEEZE = I = 1) = o 3 X R S



A

1302

% 951 %

100
(a)
80
60 -
40
< 20
N ]
1
i 0
20
—40
—60
100
(b)
80
60
N
N
g
1K
=
"
20"
—40
100
(c)
80
60 -
< 404
mm ‘/
1K
= M
0
_20 -
740 T T -\ g T T

CERES PROGCS

DIAGCS

720,
—40:

—60 -1

100

80

60

—204

—40t
100

(f)
80+

60

1 \//\ /N

—40 + T T \.’ . T T
90°S 60 30 EQ 30 60 90°N

P-CERES

- - D-CERES

B3 2013 4 (a~c)1 HMIA~DT7 A Z#EHMT R ELO M #I2W T R ELOBEMMIK . H o &
F 45 ] -2 43 A5 (S5 28) 15 CERES TR WL (2020 LA K A 40015 000 Fry i3 25 (R 42D 43 4ii (Ma et al, 2018)

Fig. 3 Zonal mean distributions (solid line) of the (a, d) low, (b, e) medium and (c. [) high cloud amounts simulated

by cloud amount prediction scheme (green line) and cloud amount diagnostic scheme (blue line) ,

the CERES satellite observations (red line) and the distribution of errors between simulation and

observation (dashed lines) in (a—c¢) January and (d—1{) July 2013 (Ma et al, 2018)

(2003) TEBLFEAE b JF AT T & J& At O 6 LR A
)T AR REE RSB, wFR R, iz
SR L ZE RE AR G B 4L & XL R Rl TR
Bk 58 KA o FE (25645, 20195 20255 Ma et al,
2022), 5 CMA-GFS (A B . w0 %
R AERBE A B S HESE W B G R DL RORL 2 B R A

SN SR W) B 7 S AT T B 11 R R A R
A RASE D7 2 BROHL 70 i A A SRR

HRAE K B AR S LR B AR | B H 2K K 0 T
JEZS T BIKYR  K R K oK SRR . o T B
R E 2 BCR KPR 2 T Y L K DL B oK ik
IR 7K 9 B 5 7K A R S5 b 2 i Ok S A
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FEAELARBEL [ A RE 2 90 3 30 i e A oKl 0
(ISR (EPRIE S SR NE NP WU iD) Ik R RS
Py 2 1 DR R R (R SR VWL & L El g T
WAL R . i TAERTH = W) 307 R b eSS 1 2
i R RUBE W W B 5 S0 D A S 8
T BT SR N SR BE A I AR L TR 2 8 A
S B KRN AR R B (R 1 28 e i AR L X
35 2 1% T RR 9 04 78 5 LA B ok AH K BE 1 (Ol i 55 AT R
O MTHES R . X T REEY) Z 18] 1 e A id e A4
(1) 27 16 TR oKt i) 25 AT K o 1) 8 L 5 A ) i 1Y)
H B4 s (2) 2 5 AR 2 3 A0 oK 2 i A
VA 2 R 0K o R DK K R R L oKl A S AT
TR P RE I 5 (3D UK iy A % A i 7 0 B8 AR 1
s (4D 7K b 3 LA B R AL s (5) 2 i T TR 1Y R

+
4.

H AT VE 22 500U R AT O il 55 858 K- 23
PrR Ok B T KRG, BT AR R JLAE N Al gk B
K 2% (Hong and Dudhia,2012) , #2050 3R %
JEAAOR By S HEZRAE 5 F g i T B B 2K T
HAF ZAEY R EX &R S8y R S S
N o DL 0 -5 01 502 3 R O AU A0 v 20 HE
TR A RO TR A Y 2 B0k ) i 2 e E A O T 2
— (Dudhia,2014),

— MR A A% RURE A [) BT 8 A A i 3
ZRATT RWN A WK IR G 1S 80k &
SR B R OB TR ROA% RUEE . Bl H AP
JRUBE B SR ARE 2 ) 53 3 o g 22 A o A%
B A 5 B LA B RS LA S I (A~ D, B
(19 8l g 3k B A b (B3R 8D — AR 43 it 4z 3, {H 4
53— 40 3 T 2 B . Wyngaard (2000)
Pz XA FR Sk “ Terra Incognita (A H0 40 38 7, 3
LR Ay i Y 32 ) YK €5 X IR I AR IR A S
Bl 7 Z A T 2 IR 1 RRE L K R DX A RURE
T U 2 B4 1) BE R W) T AR e AT R A2
(PBL) Z 84k A [] K 103 2 480 CLES) 19 Jifi it 2
BiAl BREEF-55,2025) , A LA Bk B R A & L
f18 3 U 2 A T %

FEKF-J5 1) b Bl B0 PR AR A 4 & KT i
Ui i 2% TR 53 A P 728 A5 ke bl T B, U 8 DX T
KV i Ui 3 5 A i U 8 B E A AR Y Y R
SRS L 7K 3 — 4 2% 1 (Wyngaard. 2010) . PR T

it Vi 300 18 7K1 B AN T 220 0 25 2 TR KT T
] IR A EH

75 —TJ7 I i i 7 KB 8l P e 0 AR A
AFAE TR Z WA AEAE T A2 DL B Z ]
EX R E T (Marks et al, 2008), XF i = N 1 i I
S HR OGP AR i D 2% T D R I e R R R R
Hr e 2 e 4 /F FH (Persing et al, 2013), K, 7F %K
(B R TR AR 5 rp Ay HL 5 B3 2 B R AR 5 1R )
D 3 AR R DG 1A R0 A i A K 6T T A Aff T A
L PO RN T N

25 BRI\ =4 i i AR R R T R O
ORTTRIIRIZAEE S € ap i i AR I I T 1 5/
HE = R S B T7 R A RR R T PBL A,
7 J2: B % FRAE B A KA = 4t i Wi iz 3l 2 & 4 Bt
B PR i i S Hk 7 RS b SR
L5.1 REBERZYERSHNT E(SMS

3DTKE) # % J&

1% & i i 07 58 R3E T ORI RO AL, O 1 %)
J 7 S8 HEAT Y LA W TR 0 X R L o A
SE P KRB S0, 20 0 i ROy BER T AR R
IR IR G KR . X TR E B 23 A M A%
F & A] g3 Oy Jay M I AR JR) b 3 (NonLocal . & 5
S NL) .l R i g ) s $AGE B w07 3 A A8
I3 PR R E R AT R P (A/ 20

w0 N = W8N Py (A=) (12)
MR PR IRE] LES RIER, Py (A/2) =0, H
':F' <i %7 PBL %Ev P (A/z) E‘J,E:12|§ﬁ/’iﬁ§ﬂ
Zhang et al(2018),

TEKF-J7 1) F o i — b T B A 3RO 68 DX
RO KERG A J7 58,8 53 51 A BERE 00 Bt
AL H) R B Smagorinsky J7 485 i i i 3l fiE
(TKE) thE 194 BUr 28 45 6 E ok - T 52 BLK 1R
A YR H 3 N .

207 58 30 3 A AR T i I 20 RE A K PO
S TSR fige 5 B (1 it Y 2 BB 0L O R L SRR T 3 LR
TP T 1) R A TR G AE ) B AN A — bk 5
W TAR G RGN AR T 5 BRI L —4E Ty ) i R FR
PE 5 30 2o 2 R Sy b e 1 ROEE ARV L S T UM
& i It 2 B O 58 AR RUBE 31 e RUBE B RUBE 3 3
i (Zhang et al, 2018). 1% Jr % fir 44 5 SMS-
3DTKE ( Shanghai Meteorological Service-Three
Dimensional Turbulent Kinetic Energy), 3f #%
NCAR /N RS R 52 50 % (MMM — e RUE
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Fig. 4 Simulation results of vertical velocity by (a) MYNN, (b) YSU and (¢) SMS-3DTKE with 500 m resolution at
1 km altitude at 05:00 UTC 29 August 2016, compared with (d) visible light observation with
250 m resolution from the MODIS-Terra satellite (Zhang et al, 2018)
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Fig. 5 Radar composite reflectivity (shaded) (al—d1) from observations, and simulations with 3 km resolution
by (a2—d2) SMS-3DTKE, (a3—d3) SMS-3DTKE-H and (a4—d4) YSU at (a) 12:00 BT, (b) 14.00 BT,
(¢) 16:00 BT and (d) 18:00 BT 10 July 2022 (cited from Gao et al, 2025)
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ER7/BLEUR I LY S R RE I NS R OE  X )
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S UL B A AE 42 BR A G I v i) B SR A Lz L
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AR R, 15 ARMS #5220 i) 4 1 Ak 5 i 4% i
SRARETT 28 KRR T3 77 58 VBRI L 3%
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e, 1 G 5 W Ok ek e S A o R A R L A 0 8
A 4 DU T — S 7E A L A 5K T AR )
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R TV A RURU R R RS A T L A B S AT DL O T
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TR T B AR O ot 1 G 32 5 K BH U 2K o BB # ST
HE B 5 U2 vy K2 T G s 0 4 5 B R ik 5 R
SRS BRI B RBE X &Ir Z U
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BUEBUR R G B [FIAE R (Zhu et al,2024)
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fF()eiw/lUM(/jesﬁ; — Mo 9¢()) - (1 7&))B7
T

27 1
ﬁj d¢ LL(W’@MWW gHdy D

o L AR AR P T FE e R L e e TR R
o DRI R T AR e A0 XI5 5 1 ¢ 1 PRLER
c WRRNEFER O FRIZRAME . c=0 RRTE
BT, c=1, RRTEZIE, 00 WIKIZ K EHE
BE o w IR BB B 3 BB KRR
550 MCusgsp’ « ") R RSB HE R B L S L 5 g
A gD BUR BIA BE Ges ) ARG B . F
B 4351 2 7% K BH A S S 00 307 4G 5 7 K B RTR
A B R (B ER LT A1 K S A D B T T R
it VDISORT R fiff 5 Z8 A5 H 2 PRk 4 56 12 i 455 =X
A% O s HEA A A B T A B BT 7 0 R
RS,

KRB 1o B F 545 2 KA AR o
SRt FE ARMS KAGE T RIS B, oy
TG N A B R AN UL R e L A AR R
T ST i 1Y R AR

J. I'; (v) SRF (v)dv
v

F(.l,,_, == (15)

J SRF(v)dv
v

Hop Do, RAR N KAZ RN )2 KA 2 AL
BB AR BE LR, T, (0) Fl Lo, 2L FoR
AR v TR KA GEF SRF (0) R B2 3 AU 8
TEOGTE e B PR AL . AN £ 1 MonoRTM £ R 2
ARMS IHE R OB AR 1 R A S R R0 42
TR BN T B AR AE S AR W AT AR A I AT
VLS JorA 0 by SR A R 1) e AL GR3CIB Ao A 2% WL %
G B HT A AR (Kan et al,2024) ,

L B e BT 5 2 O U G 2
5. 7E ARMS i B Hedp, 3 3 2 T T-Matrix
FE BN FIELL(DDA) Fik KR T =k F M=X
Ve ISR - TS OB T SO U T AR = 4
Kas TR GEORHRNAL B (Yang et al,2020) . 7E48
SHERBIT, 2 FobLF BO Re Ml T 2 G o
L 3% o0 A A 2R R I O e
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B
K i6.(D) wo. (D) F m(D) 43 5 7R BAAS 0BT 1
PRI AR T T ' A TR S A R B s B, 8 R ML Gy
I R 2 R 4 O S T A T O K T A
B MR . 2RI E A R caa FTHU G2
JEBE o @1t FH BB 5K (O S AR R T A
B, HFRREE 7 BRI 5 RO S 80
AT v Ml A BRI G 27 P 0 1 2 ] 25 2R .
EAFE RIS S AJEBRIE B T 8UR )5 . ARMS X

Al )

183.31 15

138 144°E

Xt e S R D IO AL B O R T (S LR 6)

£ ARMS HJF & T 3k 0UR B g v A R A
TN () Qi B XL ) B2 33 43 AT R (pBRDF) » 58 38 T Sl
ARV SRR i S A A A X Vi B e L) R S
Wy BRAIL ] #4 E TAE R 1) VS T B Ak T LA )
R Ak R 20 D A3 1 9 2 S SRR T 3 BB AN
(05— 1k B TR A, B R T S R d g — R Ak G
EHILHE /1 (He and Weng,2023). 7 ARMS i
2% Bt R A PR (LandEM) 1, 76 Dobson + 14
HL R BB R LAl L #MFE T 0. 3~1.3 GHz i fl K
(A R0 T S B0 A B DA SRR AT 0T T 1 A5 4
JUH s & 8 T Mironov 4 34 i 3 OB A, ok 3% T
TS B BOT FORT EE 5 76 Ulaby 5 IRAE B B
BRI A -, & B T Matzler KI5 R 8% A L 8 5K

JEERIEDD AT

144°E 138 144°E

B 6  FY-3E S i 3 () MM A2 3 5 (by o) ARMS #0025 S X e . 5 X5 17
2023 4 5 A 25 H 20 B (i A1) (Huang et al,2025)
Fig. 6 Comparison of the (a) observed brightness temperature by FY-3E Microwave Humidity Sounder
and (b, ¢) the simulated results by ARMS model for Typhoon Mawar at 20:00 UTC 25 May 2023
(cited from Huang et al,2025)
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Cam~c) 7~ 7] 368 38 A9 00 0 222 305 B A6 401 22 YR COMIB) B HE 2% 18 (i 0, | 5% X OMIB 2 500
(DALY 6 h iR 2 2 22 (RTTOV i 2 ARMS)

Fig. 7 Comparison of the brightness temperature simulations of ARMS and RTTOV models relative to
the NOAA20/ATMS observed brightness temperature (cited from Kan et al, 2024)

(a—c) box plots of the observed brightness temperature minus the simulated brightness temperature
(OMB) (yellow cross: OMB medians of ARMS and RTTOV), (d) the 6 h root mean square
error (RMSE) between RTTOV OMB and ARMS OMB
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2.2 FEHHEREATMELMERRK

2.2.1 &M FetF XA KR 2

#1 CMA-GFS g £k % # iz #< X' (Non-Linear
Model, NLM) f] M 7R HEA KR = Bl BT[] 11
AR T R AT KR

x(t;) = Mx(£,)) (19

A m it x AR A B RS & A KR 2,
20 R 53 30 ¢, B 20/ NLM 585, x (20 J2& 9 16 i Z1
to BIRAARZS  x ) IR TS 2] ¢ 9 RAIRE .

TRA) b I 21 x Ce) 3 — /MRSl Sx (2o L B
x(20) +8x (o) B AL BN S Bl IS ] 14 35 A% Oy

dx (1) = M(x(2y) + 8x(2,)) — M(x(£,)) (20)

AR A 2 R T 22 3K A
AMCx () + (1)) = Mx(2)) +
M (x(1))8x(2,) + OCM) @b

P OCM) For M Z3 8 JETT /& By I, 4 2R 20
F I OCA) X COARAZ 20D, /] LIAT 23
By O i s ] ¥ 75 1) 3 AL A IR O
dOx(t;) =~ Mdx(1,) 22)
X M= e J& A — B 38 AR SR A D)
LA PR T WAt U, TR (TLM,
Tangent Linear Model) J2& % {H & < 1 41 2 = 19 —
B4 AL B R T WD (BB Sl B s ] ) 38 %
FEBERE K (ADM, ADjoint Model) 55 ) £§ 1 461
g —— XK R B R IA U
x" (ty) = M"'x" (1) (23)

AHrex™ GO x™ @) 5y HRRIEW 46 05 21 1 FHE
— JEBEET 2 ¢ WP B ) CBORR R R REAR ASD MY
JE MR AR R B MBS B

P BEASE = A% 0 A T AE T 58 98 AL 4 R 2 Cln
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BT A A 8 AR B 2 AR 0 AR5 1R A A7 AE T
Lk 25 AEP RAME B AT RCRART L B AR
[, PRt B2k Pk 5 e B S =X 0 o o i T R A A
K N T2 5 ™4 5 I 56
2.2.2 CMA-GFS #7 & M AL X (TLM) F= 4F [ 42 X,

(ADM)

(D) Bkt

TLM 5 ADM ¥ 7 3t 52 dy JF £ M 1 4l 185 X
(NLMD A= A B (25 o DL IE 26 1 b 1 7
MIHERYE . CMA-GFS R 486 72 7y 45 #9 R 43 26
PERL R CAnAR DX g I B B AR S d B 5
“HE LML Cln U S (. Helmholtz J5 725K fi#
GRS M A o S IRBOR H LN AL 3 h
FEEIE R /£ NLM 5t TLM #4
TR OB A5 A RS T A B S o R A A R
TLM 7E 43 i) A 52 B b 70 /0 3 o ) 38 2%, 1 5 1)
U3 ADM ) 5 4 & 13 BCH A7 ) 3 28 8 95 . DA
Helmholtz J5 & R 5] . ADM 1. 0 fiiAS 53 45 55 Yo 1153
LIS 2. 0 BRI T TLM — ik Bifr 44 K
FRAS BRI T NAFIHFE H RS T A i AR Lk
Tl 2Bk ADM 1 S FE I 38 /> 29 20% . 4DVar
B R FR TS 10%, WA 8 i, CMA-
GFS 4DVar &, MG 35 = 4 HF2 NLM A Bl
03 K B 4 (1 2 0 RS A A A s AR
HEA AR, TLM 32 O30 I T3 A7 S 2
ftE % ADM . TLM &3l 1k £& 7 3 L F0 A Fif
— B PER TR L BEUE T L ADVar [Rl 4k K 25 5 )
1 K

@RI Fe7/B BuN e any

CMA-GFS 4DVar %k F 4 i XCHE 42, Horp
SMEERE) NLM 23 BE2 8 0. 25°, WFEH 1) TLM Al
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Fig. 8 Processing scheme of model trajectories

in the CMA-GFS 4DVar assimilation system

R RZERRE R . Al Wy P AR 9 S B 23 O DY
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Fig. 9 Design scheme of tangent linear physical process in

the CMA-GFS 4DVar assimilation system
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Fig. 10 Computation time of the dynamical
framework components of NLM, TLM and
ADM of CMA-GFS model

TLM (58wt E 928 NLM i 2 /%, ADM )35
1209 TLM f9 1.3 45 R 8y & 1024 1Y,
TLM 45 ADM 34728 Rl it NLM, HEN7ET
T R I e TE R AT TIUA B SR W ) A
PE AT DL FE 43 A4 (KK AESE . 2017)

2.3 BAHARIEBRBREITE

A543 T A 28 48 B SR WL AN 7 5 1R 2 455 G R
o T AT . BRI TR UL | A A o A T
YRR AETE R G 25 . Ry fif D — o] J, 3 7 ]
22 i ] b 3k A v R 2 B0Ak AE A T 08
M 22 #4717 1F (Harris and Kelly,2001), [E#5E $0(H
TARORE 2 A 7 5 1R 5 6 T LR LI ) 22 9T 1E A9 Bk
ke T L O 22 1T IE S 1R A B R k)R] AL E A
XoF 43 BT TR A T 5T R Y DG B R (Eyre et al, 2022) .
UEAEE » B3 N 5 ¥E A0 A8 43 A 25 1T 1E (VarBC) 15 3|
132 i (Auligné et al, 2007), VarBC K #i T [Fl
b 22 G H 1) TG i B SO0 Sk 24 oA 24l 25 0 08 70 i
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14) 3% FH oA 2237 1F 614k (McNally, 20075 Han and
McNally,2010) 33X F 77 3 {5 15 3 6 i 2 3 3 11 0
i 2 378 /> TR 200 25 . BRI X Rl ABOL 20 T &
AFAE (4 L0 A0 22 G0 41 4 A OB I 25 DA & DR
TRZIEM RGN 2% . Han(2014) 5 WAE WL
i 22 3T TE g | TR B S 3R B0 A A 2 PE S R
HCR SE 560 2 o, 55 F B0 1 BRI () AR b N i
(1 SRR FE AR 43 [ A6 B BR T2 R Hp 38 m TR SO0 0 e 22
AR E AT, W (24) R TR T TR RS R
PR 290 22 1T 1E 75 125 (CBO) & 48 - g 1 )
i 22 1o 455 X 25 1) 5 A [ R
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L7 4 M 5 Uy CBC 29 I, by 2 WL
I 25 1) e B0 Al TS Ry 20 22 S5 30 Al T B AT 2 M 4R
b s HON 5 TR A 46 X0 2 B o S B E MR OGS
o J2 FH T o 5 = T0URTBT 24 3R 3R X 5 1 O
k=45
R B8 UEAT 24 A 25 1T 1F J5 3 A 3R 15 4 BREUE 15
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FH 2013 4 5—6 J 5 b be IR AT M 22 3T 1E J7
AR 2T IE T Z W ERE. M 500 hPa fif
EEG AR IR 22K E T RAER AR BRI R
e . o ZEAE BBk, 3~ 7 d BRIk b A
X F AT I 0 — A X O iR 2 BRI 200 ~
3V0 s FER PR, W B O B L5 d TR N kR 22 R
K2 5%, &5 R A 29 A 2237 1E J7 75 75
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Fig. 11

Impact of the constrained bias correction method on CMA-GFS global medium-range

forecast in summer 2013 ; normalized RMSE of 500 hPa geopotential height forecasts

as a function of forecast lead time

(a) Northern Hemisphere, (b) Southern Hemisphere
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