Vol. 51 No. 10 October 2025

谢五三,张强,李威,等,2025. 南水北调中线工程区域性干旱过程识别与评估[J]. 气象,51(10):1203-1214. Xie W S,Zhang Q, Li W,et al,2025. Identification and assessment of regional drought processes of Middle Route Project of South-to-North Water Diversion Project[J]. Meteor Mon,51(10):1203-1214(in Chinese).

南水北调中线工程区域性干旱过程识别与评估*

谢五三1 张 强2 李 成2 姚世博2 赵 琳2

1 安徽省气候中心,合肥 230031 2 国家气候中心,北京 100081

提 要:南水北调中线工程水源区和受水区的干旱研究,对于该工程水资源调度及运行管理具有重要意义。文章基于南水北调中线工程水源区和受水区所有气象站 1961—2023 年逐日平均气温、降水、气象干旱综合指数 (MCI)以及 NCEP-NCAR 再分析资料,开展水源区和受水区区域性干旱过程识别与评估。结果表明:水源区和受水区干旱日数常年值分别为 101 d 和 114 d,总体呈现"中间多两头少"的空间分布特征,受水区河南北部、河北南部为干旱日数高值区;水源区大部、受水区河南大部以及河北东部干旱日数呈增多趋势,而受水区河北北部、西部与南部及北京和天津大部干旱日数呈减少趋势。基于动态区域性干旱过程识别方法,识别出研究区 1961 年以来共发生 97 次区域性干旱过程,采用百分位数法对区域性干旱过程强度指数进行划分,得到不同强度等级对应的阈值,进而计算出研究区共发生 4 次特强、15 次强、30 次较强、48 次一般等级的区域性干旱过程;最强 3 次区域性干旱过程依次发生在 1968 年、2001 年和 1997 年,环流特征差异致使这 3 次过程在干旱日数时空分布以及各等级干旱站数占比等方面存在明显差异。针对研究区 97 次区域性干旱过程,其中 54.6%为水源区不旱而受水区干旱,此种情况有利于工程调水;同时有些年份全区一致干旱或水源区干旱而受水区不旱,不利于工程调水,因而南水北调中线工程水资源调度需结合实际情况开展有针对性的调水工作。

关键词:区域性干旱过程,识别,评估,气象干旱综合指数(MCI),南水北调中线工程

中图分类号: P466

文献标志码: A

DOI: 10.7519/j. issn. 1000-0526. 2025. 041801

Identification and Assessment of Regional Drought Processes of Middle Route Project of South-to-North Water Diversion Project

XIE Wusan¹ ZHANG Qiang² LI Wei² YAO Shibo² ZHAO Lin²

1 Anhui Climate Center, Hefei 230031

2 National Climate Centre, Beijing 100081

Abstract: Studying the drought condition in the water source area and receiving area of the Middle Route Project of South-to-North Water Diversion Project is of great significance for the water resource scheduling and operation management of the project. Based on the NCEP-NCAR reanalysis data and the daily average temperature, precipitation, and meteorological drought composite index of all meteorological stations in the water source area and receiving area of Middle Route Project of South-to-North Water Diversion Project from 1961 to 2023, this article conducts identification and assessment of regional drought processes in water source area and receiving area. The results show that the annual values of drought days in the water source area and receiving area are 101 d and 114 d, respectively, presenting an overall spatial distribution

^{*} 国家重点研发计划(2023YFC3006601、2017YFC1502402)、中国气象局创新发展专项(CXFZ2023J007)、安徽省自然科学基金项目 (2408055UQ008)和国家气候中心能源气候服务团队项目(NCCCXTD003)共同资助

²⁰²⁴年10月12日收稿; 2025年4月18日收修定稿

第一作者:谢五三,主要从事气候监测评估与气象灾害风险研究. E-mail:xiewusan_2008@sina.com

通讯作者:张强,主要从事气候应用研究. E-mail:zhq62@cma.gov.cn

feature of "more in the middle and less at both ends". The northern part of Henan and the southern part of Hebei in the water receiving area are high-value areas of drought days. The number of drought days in most of the water source areas, most of the water receiving areas in Henan and eastern Hebei is increasing, while the number of drought days in most of the water receiving areas in the northern, western and southern parts of Hebei, Beijing and Tianjin is decreasing. Using the dynamic regional drought process identification method, a total of 97 regional drought processes have been identified in the study area since 1961. Using the percentile method to divide the intensity index of regional drought processes, we obtain the threshold values corresponding to different intensity levels, and a total of 4 "extremely heavy", 15 "heavy", 30 "relatively heavy", and 48 "moderate" regional drought processes in the study area. The heaviest 3 regional drought processes occurred in 1968, 2001 and 1997, and the differences in circulation characteristics led to significant differences in the spatial and temporal distribution of drought days and the proportion of drought stations at different levels among the three processes. Among the 97 regional drought processes in the study area, 54.6% were droughts in the water source area but not in the water receiving area, which is beneficial for engineering water diversion. At the same time, in some years, the entire region is uniformly dry or the water source area is dry while the water receiving area is not dry. This is not conducive to engineering water diversion. Therefore, for the water resource scheduling of the Middle Route Project of South-to-North Water Diversion Project, the targeted water diversion work needs to be carried out based on the actual situation.

Key words: regional drought process, identification, assessment, meteorological drought composite index (MCI), Middle Route Project of South-to-North Water Diversion Project

引言

南水北调中线工程从汉江丹江口水库引水,跨 越长江、淮河、黄河、海河4大流域,输水干渠地跨河 南、河北、北京、天津4个省(直辖市),是我国南水北 调工程的重要组成部分(周希圣,2018;吴永妍等, 2024),也是缓解黄淮海平原水资源短缺的重大战略 性基础设施(黄绳等,2019),对于完善中国国家水 网、优化水资源配置总体格局具有重要意义(张璐 等,2022)。针对南水北调中线工程水源区和受水区 降水、植被、水文等要素时空变化以及旱涝特征已有 不少研究,陈茜茜等(2024)、刘俊等(2024)、康玲和 何小聪(2011)、陈锋和谢正辉(2012)基于多源降水 资料,探究南水北调中线工程水源区和受水区的降 水时空变化特征以及降水丰枯遭遇风险等;白景锋 等(2024)、李鹏傲等(2022)基于植被指数(NDVI) 研究南水北调中线水源区植被时空分布和演化特 征;曾凌等(2022)、张怡雅等(2022)研究水文情势自 南水北调中线工程运行以来发生的变化;潘佳佳等 (2024)基于全气象参数量化分析了中线干渠冬季热 通量组成,有效提升了中线水温、冰情精细模拟能 力;方思达等(2018)基于工程流域内旱涝资料,分析了近500年来南水北调中线工程水源区及受水区的旱涝遭遇特征及调水保障概率;张利平等(2010;2013)运用广义极值分布和广义帕累托分布两种极值统计模型,预估未来情景下南水北调中线工程水源区极端降水分布特征,并采用集对分析法对水源区与海河受水区的旱涝遭遇进行了研究,结果表明南水北调中线水源区与海河受水区历史上旱涝灾害频发,持续性旱涝灾害严重。上述相关研究为制定南水北调中线工程相关政策和技术指导提供理论依据,有助于提高水资源利用效率和可持续性。

干旱是最常见、最复杂的气象灾害之一,对农业生产、自然生态系统和社会经济都造成巨大的影响(陈少丹等,2017;王晓丹等,2022;高歌等,2023)。相较于局地干旱,区域性干旱因其影响范围广、持续时间长,往往造成更严重的损失,成为制约社会经济可持续发展的重要因素(罗蒙等,2023;周建琴等,2024;杨歆雨等,2022;金燕等,2018)。南水北调中线工程水源区和受水区常发生区域性干旱,如1968年黄淮海春夏秋连旱,旱期长、范围广、旱情重,对农作物播种、生长均造成较大影响或危害(徐建文等,2014);1997年北方夏秋连旱,造成水库蓄水明显减

少,地下水位下降,黄河多次出现断流(邹旭恺等,2021),因而针对南水北调中线工程开展区域性干旱过程研究具有重要意义。目前针对南水北调中线工程区域性干旱过程的研究还不多见,本文以南水北调中线工程的水源区和受水区为研究区,基于气象干旱综合指数(MCI)及气象行业标准(中国气象局,2021;张强等,2021),采用动态区域性干旱过程识别方法,识别出研究区1961—2023年所有区域性干旱过程,采用百分位数法对干旱过程综合强度指数划分阈值,进而开展区域性干旱过程分析评估及空间分型,以期为南水北调中线工程水资源调度及运行管理提供科学依据。

1 资料与方法

研究区为汉江流域(水源区)和北京、天津、河 北、河南4个省(直辖市)(受水区)。汉江流域包括 汉江主干与其全部支流的所有流经区域,流域面积 为 15.9 万 km², 地势西北高、东南低, 其发源地在陕 西西南部秦岭与米仓山之间的宁强县嶓冢山,向东 南穿越秦巴山地的陕南汉中、安康等市,进入鄂西后 向北经过十堰流入丹江口水库,出水库后继续向东 南流,过襄阳、荆门等市,在武汉市汇入长江(高琦 等,2023;夏智宏等,2009)。水源区汉江流域共 65个气象站;受水区北京(20个站)、天津(13个 站)、河北(142个站)、河南(109个站)共284个气象 站。各气象站选用 1961-2023 年(气象站建站时间 晚于1961年的以建站起始年份为准)逐日平均气 温、降水以及 MCI,其中气温、降水资料来源于国家 气象信息中心, MCI 数据来源于国家气候中心, 环 流分析使用的数据为美国气象环境预报中心 (NCEP)和美国国家大气研究中心(NCAR)联合制 作的 NCEP-NCAR 再分析资料。使用的变量包括 位势高度、垂直速度和风场,主要采用 850 hPa 和 500 hPa 两层的数据,其中异常场的计算为原始场 与 1991-2020 年气候态之间的差值。研究区高程 及气象站分布如图 1 所示。

MCI 采用《气象干旱等级》(GB/T 20481—2017)(中国气象局,2017)中给定的方法计算,为保证干旱日数的统计更加精确且符合实际,采用该标准中单站干旱过程的定义,提取各站1961—2023年所有的干旱过程,进而得到各站的干旱日数,分析研究区干旱日数历年变化、空间分布、变化趋势等时空

演变特征。根据《区域性干旱过程监测评估方法》 (QX/T 597-2021)(中国气象局,2021),采用动态 区域性干旱过程监测方法,即通过站点之间的重叠 率来判断研究区区域性干旱过程,具体如下:依据 MCI 的监测结果,某日监测范围内有≥10%的相邻 监测站点(指两个站点之间的距离在 200 km 以内) 出现中度或以上强度的干旱,则定义为1个区域性 干旱日;当连续的区域性干旱日之间站点重合率在 50%以上,且持续时间在15 d以上时,则定义为一 个区域性干旱过程;满足一次区域性干旱过程判定 条件的首目为该次区域性干旱过程开始目;某次区 域性干旱过程开始后,当连续5 d 出现中旱或以上 强度的站点数小于区域总站点数的 10%或与前一 干旱日的站点数重合率低于50%时,即表示该次干 旱过程结束,则将前一日确定为该次区域性干旱过 程的结束目。

依据某次区域性干旱过程的平均强度、平均影响面积和持续时间来确定其综合强度指数,其计算方法为:

$$Z=f(I,A,T)=I imes\sqrt{A} imes\sqrt{T}$$
 (1) 式中: I 为干旱过程的平均强度,即过程内单日干旱强度的平均值,单日干旱强度是指区域内 MCI 达到和超过中旱以上程度所有站 MCI 的平均值; A 为干旱过程的平均影响面积,即过程内单日干旱面积的平均值,单日干旱面积是指区域内 MCI 达到和超过中旱以上程度的面积; T 为干旱过程持续时间,即干

旱过程开始日至结束日之间的天数。

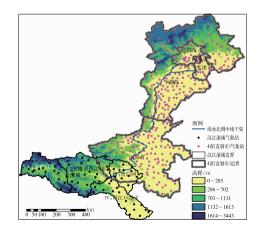


图 1 研究区高程及气象站分布
Fig. 1 Distribution of digital elevation
model and meteorological stations
in the study area

根据研究区历次区域性干旱过程的综合强度指数,按照百分位数法进行划分,得到区域性干旱过程综合强度等级阈值,综合强度共划分为一般、较强、强、特强4级。

2 干旱时空变化特征

2.1 干旱日数历年变化

根据单站干旱过程的定义,提取水源区汉江流域 65 个站、受水区 284 个站 1961—2023 年的所有干旱过程,再统计各站每年的总干旱日数,得到水源区(图 2a)和受水区(图 2b)干旱日数年际变化。

由图 2 可见,水源区和受水区干旱日数常年值分别为 101 d 和 114 d,相关系数达 0.59(显著性水平达到 0.01 以上);二者年际波动均较大,干旱日数较多的年份超过 180 d,而较少的年份仅 10 d。水源区干旱日数最多的前 5 个年份分别是 1966 年(172 d)、2001年(166 d)、1997年(166 d)、1999年

(164 d)、1995 年(163 d);受水区干旱日数最多的前5个年份分别是1968年(187 d)、1999年(185 d)、1997年(170 d)、1981年(170 d)、2019年(167 d)。从年代际看,20世纪90年代,水源区和受水区的干旱日数均处于较多时期。

2.2 干旱日数空间分布

基于 MCI 计算 1961—2023 年研究区所有气象站逐日干旱指数值,按干旱过程定义提取各站历年所有干旱过程,再统计各站历年的总干旱日数,进而计算出各站历年平均干旱日数,得到研究区年均干旱日数空间分布(图 3)。由图 3 可见,研究区干旱日数总体呈现"中间多两头少"的空间分布特征,其中受水区河南北部、河北南部为干旱日数高值中心,年均干旱日数为 115~126 d,而水源区大部、受水区河南南部及河北北部为干旱日数低值区,年均干旱日数为 62~85 d,其他地区年均干旱日数为 85~115 d。

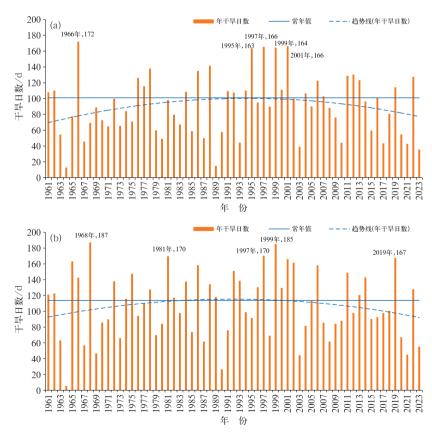


图 2 1961-2023 年(a)水源区和(b)受水区干旱日数年际变化

Fig. 2 Interannual variation of drought days in (a) water source area and (b) water receiving area from 1961 to 2023

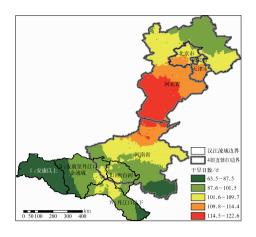


图 3 1961—2023 年研究区年均 干旱日数空间分布 Fig. 3 Spatial distribution of annual average drought days in the study area from 1961 to 2023

2.3 干旱日数趋势分析

根据水源区和受水区各站 1961—2023 年历年 干旱日数变化,计算各站干旱日数的线性趋势系数 及其显著性,分析水源区和受水区干旱日数变化的 空间差异性。水源区和受水区干旱日数线性趋势系 数空间分布及显著性水平检验(通过 0.1 显著性水 平检验)如图 4 所示。由图 4 可见,水源区大部、受 水区的河南大部以及河北东部干旱日数线性趋势系 数为正,表明干旱日数有增多趋势,而受水区的河北 北部、河北西部及南部、北京、天津大部干旱日数趋

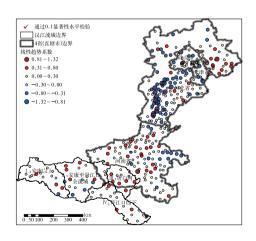


图 4 1961—2023 年研究区 干旱日数线性趋势系数分布 Fig. 4 Distribution of trend coefficients of drought days in the study area from 1961 to 2023

势系数为负,表明干旱日数有减少趋势。从显著性水平检验来看,受水区的河北南部有13个站通过0.1显著性水平检验,即干旱日数存在显著的减少趋势,其他大部地区均未通过0.1显著性水平检验,即干旱日数变化趋势不显著。

3 区域性干旱过程的识别与评估

3.1 区域性干旱过程识别

基于研究区所有气象站 1961—2023 年逐日 MCI,运用区域性干旱过程识别方法,识别研究区所有的区域性干旱过程。识别出研究区 1961 年以来 共发生 97 次区域性干旱过程,干旱持续时间最长的 3 次过程分别为:1968 年 3 月 2 日至 10 月 5 日,持续时间达 218 d;1993 年 4 月 6 日至 10 月 31 日,持续时间达 209 d;1997 年 4 月 17 日至 11 月 10 日,持续时间达 208 d。研究区 97 次区域性干旱过程持续天数的频数分布如图 5 所示,可看出,干旱过程持续天数呈指数递减的频数分布,复相关系数达 0.9532。

3.2 区域性干旱过程强度分析

针对研究区 97 次区域性干旱过程,计算各个干旱过程的平均强度、平均影响面积、持续天数,根据式(1)计算得到历次干旱过程的综合强度指数,研究区干旱综合强度指数前 10 位的区域性干旱过程列于表 1。

针对研究区 97 次区域性干旱过程的综合强度 指数,采用百分位数法对其进行等级划分,分为特强、强、较强、一般区域性干旱过程,进而得到研究区 各干旱过程综合强度等级对应的指数阈值(表 2)。 根据表 2 中区域性干旱过程各等级对应的阈值,对 研究区 97 次区域性干旱过程进行等级划分,特强等 级 4 次、强等级 15 次、较强等级 30 次、一般等级 48 次。研究区 4 次特强区域性干旱过程分别为 1968 年 3 月 2 日至 10 月 5 日、2001 年 3 月 23 日至 10 月 13 日、1997 年 4 月 17 日至 11 月 10 日和 2000 年 3 月 11 日至 8 月 10 日。

3.3 历史典型区域性干旱过程评估

针对研究区历史典型区域性干旱过程,选取其

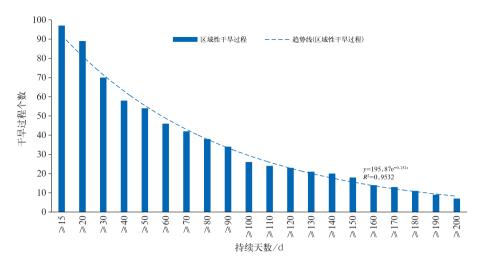


图 5 1961-2023 年研究区区域性干旱过程持续天数的频数分布

Fig. 5 Frequency distribution of duration days of regional drought processes in the study area from 1961 to 2023

表 1 1961—2023 年研究区干旱综合强度指数前 10 位的区域性干旱过程

Table 1 The top 10 regional drought processes in the comprehensive drought intensity index

in the study area from 1961 to 2023						
序号	起始日期(年-月-日)	结束日期(年-月-日)	持续天数/d	平均强度	平均影响面积/km²	综合强度指数
1	1968-3-2	1968-10-5	218	-1.57	219 918. 6	-10880.1
2	2001-3-23	2001-10-13	205	-1.55	235 281. 6	-10790.6
3	1997-4-17	1997-11-10	208	-1.44	235 114. 5	-10087.7
4	2000-3-11	2000-8-10	153	-1.63	242233.3	-9900.9
5	1972-4-8	1972-10-15	191	-1.52	190017.3	-9150.8
6	1986-4-2	1986-10-18	200	-1.42	206078.0	-9120.3
7	1978-4-5	1978-10-25	204	-1.44	193515.0	-9022.1
8	2022-4-4	2022-10-5	185	-1.49	186 101. 9	-8733.7
9	1996-3-2	1996-7-29	150	-1.49	226578.0	-8671.4
10	1981-4-19	1981-9-30	165	-1.43	210.905.7	— 8425. 6

表 2 研究区各干旱过程综合强度等级对应的阈值

Table 2 Threshold corresponding to each drought process comprehensive intensity level in the study area

百分位数	综合强度等级	综合强度指数阈值		
≥95%	特强	≪-9225.8		
[80%,95%)	强	(-9225.8, -7174.9]		
[50%,80%)	较强	(-7174.9, -3923.5]		
<50%	一般	>-3923.5		

中最强的 3 次干旱过程开展评估分析(表 1,序号 $1\sim$ 3)。 3 次干旱过程均为特强等级,持续时间均在 200 d 以上,平均影响面积均超过 21 万 km²。

从典型区域性干旱过程各等级干旱站数及降水量逐日演变(图 6)可以看出,3次干旱过程在时间分布、干旱最强时段以及各等级干旱站数占比等方面均存在明显差异。1968年的干旱过程呈单峰型分布,最强时段主要出现在6月上旬至7月上旬,轻旱

站数占 27%,中旱及以上站数占 73%,其中特旱站数占 16.1%。2001年的干旱过程呈多峰型分布,最强时段主要出现在 5 月中旬至 6 月中旬,轻旱站数占 35%,中旱及以上站数占 65%,其中特旱站数占 17.5%。1997年的干旱过程亦呈多峰型分布,最强时段主要出现在 8 月上旬至 9 月上旬,轻旱站数占 37.4%,中旱及以上站数占62.6%,其中特旱站数占 11.7%。

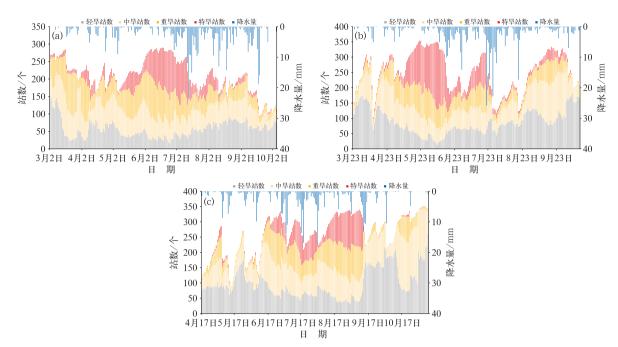


图 6 历史典型区域性干旱过程各等级干旱站数及降水量逐目演变
(a)1968年3月2日至10月5日,(b)2001年3月23日至10月13日,(c)1997年4月17日至11月10日
Fig. 6 Daily variation of the number of drought stations and precipitation
at different levels of historical typical regional drought processes
(a) 2 March to 5 October 1968, (b) 23 March to 13 October 2001, (c) 17 April to 10 November 1997

从典型区域性干旱过程各等级干旱日数空间分布(图7)可以看出,3次干旱过程干旱日数的空间分布差异明显。1968年的干旱过程主要发生在研究区的中部和北部,干旱日数为120~220d,干旱中心主要位于河南中部和北部、河北中部和西部,特旱日数达30~110d;2001年的干旱过程发生在研究区的全域范围,干旱日数为80~200d,干旱中心主要位于汉江流域东部、河南大部以及河北北部,特旱日数达30~120d;1997年的干旱过程亦发生在研究区的全域范围,干旱日数为80~190d,干旱中心主要位于汉江流域南部、河南西部和北部、河北南部,特旱日数达30~70d。

针对 3 次干旱过程进行环流分析,利用 NCEP-NCAR 再分析资料,给出 850 hPa 和 500 hPa 的位势高度场(图 8)、垂直速度场(图 9)和风场(图 10)。结果显示,3 次干旱过程的环流背景存在明显的差别,1968 年研究区西侧 850 hPa 存在明显的低压负异常中心,整个区域受到异常西南风控制,南部水源区水汽条件较北部受水区相对更好,导致水源区不旱而受水区干旱;2001 年研究区风场异常总体不明显,仅在东南侧的 850 hPa 高度上存在东北风异常,干旱发生的主要原因是 850 hPa 和 500 hPa 都处于异常下沉气流控制,对流发展困难导致干旱发生;

1997 年研究区的整个中低层几乎都被北风异常控制,不利于水汽输送,且 850 hPa 东亚大部地区都被高压异常控制,研究区存在明显的下沉气流异常,不利的水汽输送条件与难以发展的垂直运动共同导致了这次干旱过程。

4 区域性干旱过程空间分型

为分析研究区区域性干旱过程的空间分型,对其所有气象站 1961—2023 年 MCI 进行经验正交函数(EOF)分析,前 3 个模态分别为:第 1 模态的解释方差为 44.8%,表现为研究区干湿一致型,即全区一致为干旱或湿润;第 2 模态的解释方差为14.3%,表现为研究区南北干湿跷跷板型,即南部干旱时北部湿润,或南部湿润时北部干旱;第 3 模态的解释方差为 7.7%,表现为研究区南、中、北部三极子分布,即南北部干旱时中部湿润,或南北部湿润时中部干旱。这是因为 MCI 主要是基于降水计算而得,对研究区降水进行 EOF 分析,其结果与 MCI 结果十分相似,第 1 模态为全区一致型(解释方差为 65.3%),第 2 模态为南北反向型(解释方差为 7.7%),第 3 模态为三极子分布(解释方差为 4.9%),因而影响MCI 3 模态的主要因素是降水的时空分布。根据

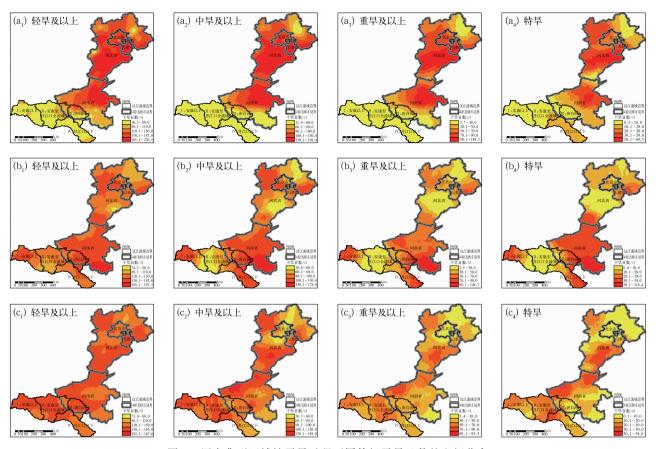


图 7 历史典型区域性干旱过程不同等级干旱日数的空间分布 (a)1968年3月2日至10月5日,(b)2001年3月23日至10月13日,(c)1997年4月17日至11月10日 Fig. 7 Spatial distribution of drought days at different levels of historical typical regional drought processes (a) 2 March to 5 October 1968, (b) 23 March to 13 October 2001, (c) 17 April to 10 November 1997

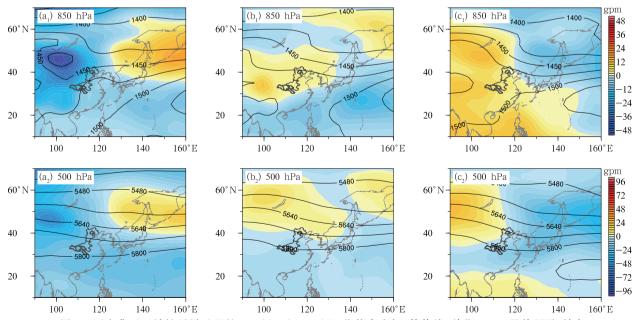


图 8 历史典型区域性干旱过程的 850 hPa 和 500 hPa 位势高度场(等值线,单位:gpm)及其距平(填色) (a)1968年3月2日至10月5日,(b)2001年3月23日至10月13日,(c)1997年4月17日至11月10日 Fig. 8 Geopotential height (contour, unit: gpm) and its anomaly (colored) at 850 hPa and 500 hPa during historical typical regional drought processes

(a) 2 March to 5 October 1968, (b) 23 March to 13 October 2001, (c) 17 April to 10 November 1997

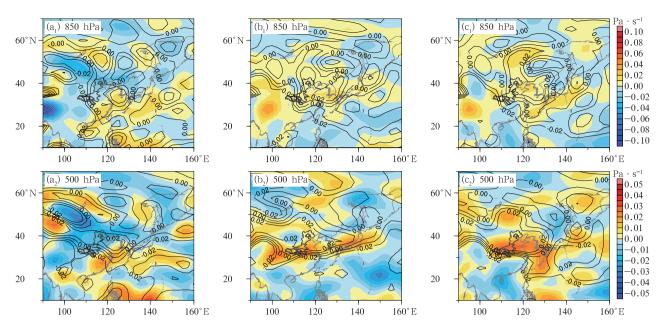
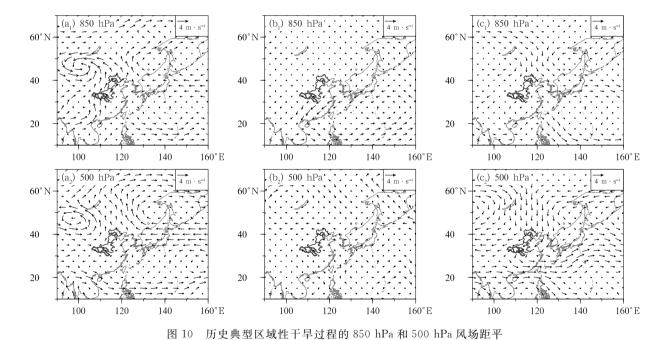



图 9 历史典型区域性干旱过程的 850 hPa 和 500 hPa 垂直速度场(等值线,单位:Pa·s⁻¹)及其距平(填色) (a)1968 年 3 月 2 日至 10 月 5 日,(b)2001 年 3 月 23 日至 10 月 13 日,(c)1997 年 4 月 17 日至 11 月 10 日

Fig. 9 Vertical velocity (contour, unit: Pa·s⁻¹) and its anomaly (colored) at 850 hPa and 500 hPa during historical typical regional drought processes

(a) 2 March to 5 October 1968, (b) 23 March to 13 October 2001, (c) 17 April to 10 November 1997

(a)1968年3月2日至10月5日,(b)2001年3月23日至10月13日,(c)1997年4月17日至11月10日Fig. 10 The 850 hPa and 500 hPa wind anomalies during historical typical regional drought processes

(a) 2 March to 5 October 1968, (b) 23 March to 13 October 2001, (c) 17 April to 10 November 1997

EOF 分区结果,将研究区分为南部、中部和北部 3 个区域,其中南部为汉江流域(水源区)、中部为河南省、北部为京津冀地区(中部和北部为受水区)。

针对研究区 1961 年以来所有区域性干旱过程,分别计算历次干旱过程中 3 个区域内各站 MCI 的平均强度,统计 MCI 平均值 \leq -0.5 的站点占区域

内总站数的百分比,并以50%为阈值来判断各区域是否为干旱(百分比超过50%为干旱,否则为不旱),得到3个区域的干旱空间分布。由于受水区包含中部的河南省以及北部的京津冀地区,当其任一地区发生干旱时,都认为受水区发生干旱。经过统计得出:研究区97次区域性干旱过程中,有39次水源区和受水区同时干旱,占比40.2%;有53次水源区不旱而受水区干旱,占比54.6%;有5次水源区干旱而受水区不旱,占比5.2%。总体来看,有54.6%的区域性干旱过程,水源区不旱而受水区干旱,有利于南水北调中线工程开展调水工作。

由于南水北调中线工程调水是从汉江流域丹江口水库引水,进一步将汉江流域(水源区)以丹江口为界,分为丹江口以上(汉江流域上游)和丹江口以下(汉江流域下游)两个区域,分别计算汉江流域、汉江流域上游、汉江流域下游的干旱日数与丹江口水库入库流量、库水位的相关性。结果表明:汉江流域、汉江流域上游、汉江流域下游3个区域的干旱日数与丹江口水库入库流量相关系数分别为一0.66、一0.69、一0.52,与丹江口水库库水位相关系数分别为一0.35、一0.42、一0.20。计算结果表明,无论是丹江口水库的入库流量还是库水位,均与流域上游的干旱状况与水源区的水量联系最为密切,为南水北调中线工程调水的关键区。

5 结论与讨论

(1)研究区干旱日数总体呈现"中间多两头少"的空间分布特征,受水区河南北部、河北南部为干旱日数高值区,而水源区大部、受水区河南南部及河北北部为低值区。水源区和受水区干旱日数常年值分别为101 d和114 d,相关系数达0.59;二者干旱日数年际波动均较大,20世纪90年代均处于较多时期。水源区大部、受水区河南大部以及河北东部干旱日数呈增多趋势,而受水区河北北部、西部与南部及北京和天津大部干旱日数呈减少趋势,从显著性水平检验来看,受水区河北南部有13个站通过0.1显著性水平检验,其他大部地区均未通过,变化趋势不显著。

(2)1961—2023年,研究区共发生 97次区域性 干旱过程,干旱过程持续天数呈指数递减的频率分 布。根据干旱过程的平均强度、平均影响面积和持 续天数,计算出历次区域性干旱过程的综合强度指数,采用百分位数法得到特强、强、较强和一般4个强度等级对应的阈值,进而计算出1961年以来研究区共发生4次特强、15次强、30次较强、48次一般等级的区域性干旱过程。研究区最强3次干旱过程分别发生在1968年、2001年、1997年,综合强度均为特强等级,持续时间均在200d以上,平均影响面积均超过21万km²,环流特征差异致使3次过程在干旱日数的时空分布、干旱最强时间段以及各等级干旱站数占比等方面均存在明显差异。

(3)研究区 1961—2023 年 MCI 的 EOF 分析前 3 个模态分别为干湿—致型、南北干湿跷跷板型、南中北部三极子分布,据此将研究区分为南部(汉江流域)、中部(河南省)、北部(京津冀地区)3 个区域,其中南部为水源区,中部和北部为受水区。针对研究区 97 次区域性干旱过程,54.6%为水源区不旱而受水区干旱,此种情况下有利于工程调水。

从研究区年均干旱日数空间分布可知,受水区 干旱日数明显多于水源区,尤其是受水区中部地区, 年均干旱日数超过 110 d,为水源区的近 2 倍;且 1961年以来研究区有54.6%的区域性干旱过程,水 源区不旱而受水区干旱,表明从水源区向受水区调 水非常必要且具备条件,从而体现南水北调工程具 有重要意义;同时有40.2%的区域性干旱过程为全 区一致干旱,即水源区和受水区均干旱,此时可能会 出现受水区需要调水,但水源区无水可调的情形;此 外,还有5.2%的区域性干旱过程为水源区干旱而 受水区不旱,此种情形下受水区调水需求明显下降, 因而对于不同年份的干旱过程,南水北调中线工程 需结合实际情况开展有针对性的调水工作。丹江口 水库以上(汉江流域上游)区域干旱状况与水源区水 量关系最为密切,为调水工程的关键区。此外,南水 北调中线工程线路长,跨越亚热带和暖温带季风气 候区,整个区域气候特征、地形地貌等差异显著,在 气候变暖背景下,不同区域的气温、降水、蒸发、径流 等气象水文要素变化复杂,导致旱涝配置呈现诸多 的不确定性,特别是气候异常情况下,水源区与受水 区连续同旱,将直接影响调水工程的可靠性,这些均 有待进一步研究,为南水北调中线工程调水管理提 供科学依据。

参考文献

白景锋,张海军,白云帆,2024.南水北调中线水源区植被指数时空变

- 化分析[J]. 湖北农业科学,63(2):205-210. Bai J F, Zhang H J, Bai Y F, 2024. Spatiotemporal variation analysis of vegetation index in water source region of the Middle Route of South-to-North Water Diversion Project[J]. Hubei Agric Sci,63(2):205-210(in Chinese).
- 陈锋,谢正辉,2012. 气候变化对南水北调中线工程水源区与受水区降水丰枯遭遇的影响[J]. 气候与环境研究,17(2):139-148. Chen F,Xie Z H,2012. Effects of climate change on synchronous-asynchronous encounter probability of rich-poor precipitation between water source area and water receiving areas in the Middle Route of South-to-North Water Transfer Project[J]. Climatic Environ Res,17(2):139-148(in Chinese).
- 陈少丹,张利平,汤柔馨,等,2017. 基于 SPEI 和 TVDI 的河南省干旱时空变化分析[J]. 农业工程学报,33(24):126-132. Chen S D,Zhang L P,Tang R X,et al,2017. Analysis on temporal and spatial variation of drought in Henan Province based on SPEI and TVDI[J]. Trans Chin Soc Agric Eng,33(24):126-132(in Chinese).
- 陈茜茜,屈艳萍,吕娟,等,2024. 南水北调中线工程水源区和受水区的降水时空变化特征及丰枯遭遇[J]. 水土保持通报,44(1): 136-146. Chen X X, Qu Y P, Lü J, et al, 2024. Temporal and spatial variation characteristics of precipitation and Drought-Waterlogging encounter probability in water source and receiving areas of Middle Route Project of South-to-North Water Diversion Project[J]. Bull Soil Water Conserv, 44(1): 136-146 (in Chinese).
- 方思达,刘敏,任永建,2018. 南水北调中线工程水源区和受水区旱涝特征及风险预估[J]. 水土保持通报,38(6):263-267,276. Fang S D, Liu M, Ren Y J,2018. Drought and waterlogging characteristics and risk prediction in different river basin areas of Middle Route of South-to-North Water Transfer Project[J]. Bull Soil Water Conserv,38(6):263-267,276(in Chinese).
- 高歌,李莹,陈涛,等,2023.2004—2019 年中国干旱多承灾体灾损风险特征评估[J]. 气象,49(5):611-623. Gao G,Li Y,Chen T, et al,2023. Characteristics and risk assessment of drought losses for different hazard bearing bodies in China from 2004 to 2019 [J]. Meteor Mon,49(5):611-623(in Chinese).
- 高琦,吴翠红,徐明,等,2023. 2021 年汉江秋汛的水雨情及环流异常特征研究[J]. 气象,49(7):868-880. Gao Q, Wu C H, Xu M, et al,2023. Study on hydrological and rainfall characteristics and circulation anomalies in autumn flood season of Hanjiang River in 2021[J]. Meteor Mon,49(7):868-880(in Chinese).
- 黄绳,农翕智,梁建奎,等,2019. 南水北调中线工程运行的环境问题及风险分析[J]. 人民长江,50(8):46-51. Huang S,Nong X Z, Liang J K, et al,2019. Environmental problems and risk analysis for operation of Middle Route Project of South to North Water Diversion[J]. Yangtze River,50(8):46-51(in Chinese).
- 金燕,况雪源,晏红明,等,2018. 近 55 年来云南区域性干旱事件的分布特征和变化趋势研究[J]. 气象,44(9):1169-1178. Jin Y, Kuang X Y,Yan H M,et al,2018. Studies on distribution characteristics and variation trend of the regional drought events

- over Yunnan in recent 55 years[J]. Meteor Mon, 44(9):1169-1178(in Chinese).
- 康玲,何小聪,2011. 南水北调中线降水丰枯遭遇风险分析[J]. 水科学进展,22(1):44-50. Kang L, He X C,2011. Risk analysis of synchronous-asynchronous encounter probability of rich-poor precipitation in the Middle Route of South-to-North Water[J]. Adv Water Sci,22(1):44-50(in Chinese).
- 李鹏傲,姜永涛,戚鹏程,等,2022. 南水北调中线工程水源区植被时空演化特征[J]. 长江科学院院报,39(9):49-55. Li P A, Jiang Y T, Qi P C, et al, 2022. Spatio-temporal evolution characteristics of vegetation in water source area of the Middle Route Project of South-to-North Water Diversion[J]. J Yangtze River Sci Res Institute, 39(9):49-55(in Chinese).
- 刘俊,李浅,肖洋,2024. 南水北调中线工程受水区降水时空变化特征分析[J]. 水利规划与设计,(4):36-42. Liu J, Li Q, Xiao Y, 2024. Temporal and spatial variation characteristics of precipitation in the water receiving area of the Middle Route of South-to-North Water Diversion Project[J]. Water Resour Planning Des, (4):36-42(in Chinese).
- 罗蒙,徐非,李蒙,等,2023. CMIP6 模式对云南区域性干旱过程的模拟评估及预估[J]. 热带气象学报,39(4):484-496. Luo M, Xu F, Li M, et al,2023. Evaluation and future projection of regional drought events in Yunnan Province using CMIP6 model products[J]. J Trop Meteor,39(4):484-496(in Chinese).
- 潘佳佳,郭新蕾,王涛,等,2024. 基于全气象参数的南水北调中线冬季水气热交换模型[J]. 水利学报,55(2):179-189,201. Pan J J, Guo X L, Wang T, et al,2024. A detailed energy budget model for the Central Route of the South-to-North Water Diversion Project in China[J]. J Hydraulic Eng,55(2):179-189,201(in Chinese).
- 王晓丹,张勃,马彬,等,2022. 基于日值 SPEI 东北地区近 58 a 干旱时空演变特征[J]. 高原气象,41(3):721-732. Wang X D,Zhang B,Ma B,et al,2022. Spatial and temporal evolution of drought in Northeast China in recent 58 years based on daily SPEI[J]. Plateau Meteor,41(3):721-732(in Chinese).
- 吴永妍,陈晓楠,陈根发,等,2024. 新形势下南水北调中线工程智慧调度的研究框架思考[J]. 中国水利,(4):67-72,21. Wu Y Y, Chen X N,Chen G F,et al,2024. Thinking of intelligent regulation of Middle Route of South-to-North Water Diversion Project under new situation[J]. China Water Resour,(4):67-72,21(in Chinese).
- 夏智宏,周月华,许红梅,2009. 基于 SWAT 模型的汉江流域径流模拟[J]. 气象,35(9):59-67. Xia Z H, Zhou Y H, Xu H M,2009. Runoff simulation in Hanjiang River Basin based on SWAT model[J]. Meteor Mon,35(9):59-67(in Chinese).
- 徐建文,居辉,刘勤,等,2014. 黄淮海地区干旱变化特征及其对气候变化的响应[J]. 生态学报,34(2):460-470. Xu J W, Ju H, Liu Q, et al,2014. Variation of drought and regional response to climate change in Huang-Huai-Hai Plain[J]. Acta Ecol Sinica,34 (2):460-470(in Chinese).
- 杨歆雨,张容焱,潘航,等,2022. 福建省多维度气象干旱特征时空分

象

- 布分析[J]. 气象,48(12):1565-1576. Yang X Y, Zhang R Y, Pan H, et al, 2022. Spatio-temporal distribution analysis of multi-dimensional meteorological drought characteristics in Fujian Province[J]. Meteor Mon,48(12):1565-1576(in Chinese).
- 曾凌,陈金凤,刘秀林,2022. 南水北调中线工程运行以来汉江中下游水文情势演变分析[J]. 水文,42(6):13-18,30. Zeng L, Chen J F, Liu X L,2022. Analysis on the evolution of hydrological situation in the Hanjiang Mid-Lower Reaches River since the application of the Middle-Route South-to-North Water Diversion Project[J]. J China Hydrol,42(6):13-18,30(in Chinese).
- 张利平,秦琳琳,张迪,等,2010. 南水北调中线水源区与海河受水区旱涝遭遇研究[J]. 长江流域资源与环境,19(8):940-945. Zhang L P, Qin L L, Zhang D, et al, 2010. Drought-waterlogging encounter probability research between the water source area and water receiving areas in the Middle Route of South-to-North Water Transfer Project[J]. Resour Environ Yangtze Basin, 19 (8):940-945 (in Chinese).
- 张利平,杨艳蓉,秦琳琳,等,2013. 未来情景下南水北调中线工程水源区极端降水分布特征[J]. 气候变化研究进展,9(1):29-34. Zhang LP,Yang YR,Qin LL,et al,2013. Distribution of extreme precipitation events in water source area for the Middle Route Project of South-to-North Water Transfer under A2, A1B,B1 scenarios[J]. Prog Inquisit Mutat Climatis,9(1):29-34 (in Chinese).
- 张璐, 卢一杰, 张增信,等, 2022. 南水北调中线水源区和受水区干旱遭遇风险评估[J]. 南水北调与水利科技(中英文), 20(6):1148-1157. Zhang L, Lu Y J, Zhang Z X, et al, 2022. Risk assessment of drought in the source and receiving areas of the Middle Route of South-to-North Water Transfer Project[J]. South-to-North Water Transfers Water Sci Technol, 20(6):1148-1157(in Chinese).
- 张强,谢五三,陈鲜艳,等,2021.1961—2019 年长江中下游区域性干旱过程及其变化[J].气象学报,79(4):570-581. Zhang Q,Xie WS,Chen XY,et al,2021. Regional drought process and its variation

- characteristics in the middle-lower reaches of the Yangtze River from 1961 to 2019[J]. Acta Meteor Sin,79(4):570-581(in Chinese).
- 张怡雅,袁飞,张利敏,等,2022. 中线调水对汉江中下游区水文情势影响研究[J]. 水文,42(3):89-94,66. Zhang Y Y, Yuan F, Zhang L M, et al,2022. Impacts of water diversion of Middle-Route Project on hydrological regimes of middle and lower reaches of Hanjiang River[J]. J China Hydrol,42(3):89-94,66(in Chinese).
- 中国气象局,2017. 气象干旱等级;GB/T 20481—2017[S]. 北京:中国标准出版社. China Meteorological Administration, 2017. Grades of meteorological drought;GB/T 20481—2017[S]. Beijing;China Standards Press(in Chinese).
- 中国气象局,2021. 区域性干旱过程监测评估方法:QX/T 597—2021 [S]. 北京:气象出版社. China Meteorological Administration, 2021. Monitoring and assessment method of regional drought process:QX/T 597—2021[S]. Beijing: China Meteorological Press(in Chinese).
- 周建琴,陶云,符睿,等,2024. 云南 2020 年 4—6 月区域性气象干旱特征和成因分析[J]. 高原气象,43(4):1052-1063. Zhou J Q, Tao Y,Fu R,et al,2024. Study on characteristics and causes of regional meteorological drought in Yunnan from April to June in 2020[J]. Plateau Meteor,43(4):1052-1063(in Chinese).
- 周希圣,2018. 沪津沿海输水通道工程设想与中国北方水资源平衡的 关键技术研究[J]. 水利发展研究,18(9):59-64. Zhou X S, 2018. Design of the Shanghai and Tianjin coastal water transfer channel project and key technical research on water resource balance in Northern China[J]. Water Resour Dev Res,18(9): 59-64(in Chinese).
- 邹旭恺,赵琳,陈鲜艳,等,2021. 中国重大干旱事件分析(1961—2020)[M]. 北京:气象出版社. Zou X K, Zhao L, Chen X Y, et al,2021. Analysis of Major Drought Events in China (1961—2020)[M]. Beijing; China Meteorological Press(in Chinese).

(本文责编:侯翠梅)