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Abstract: To improve snowfall forecasting accuracy and aviation meteorological services at Lhasa Airport, this study
employs a modified Jenkinson-Collison (J-C) circulation type classification method to classify and diagnose 56 snowfall
events that occurred during 2013—2020 at Lhasa Airport. The results are as followed. The improved method achieves a
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classification success rate of 92.9%, identifying cyclonic type (12.5%), low-pressure trough type (42.9%), and westerly
advection type (37.5%), with only 7.1% of events remaining unclassified—significantly lower than that from the traditional
method. The three circulation types exhibit distinct characteristics. The cyclonic type, corresponding to plateau vortices,
features the strongest dynamic and moisture conditions, with the largest mean snowfall (3.4 mm) and longest duration (358
min). The low-pressure trough type, influenced by the southern branch trough, shows the most unstable atmospheric
conditions but relatively weak dynamics and moisture, resulting in the lowest mean snowfall (1.2 mm) and shortest duration
(170 min). The westerly advection type, dominated by warm ridges and upper-level jets, has the most stable atmospheric
conditions, with a “low-level convergence—upper-level divergence” moisture structure, and intermediate snowfall
characteristics (average 1.8 mm; duration 280 min). The results provide a scientific basis for refined snowfall forecasting and
improved aviation meteorological services at Lhasa Airport.

Key words: Lhasa Airport, snowfall weather, Jenkinson-Collison circulation type classification
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Fig.1 Spatial distribution of nine differential grid points
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Table 1  Objective criteria for J-C circulation type classification at Lhasa Airport
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Fig. 2 Average snowfall amount, number of snowfall event, and snowfall duration for each snowfall classification at Lhasa
Airport during 2013—2020
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Fig.3 500 hPa geopotential height (contour, unit: dagpm), temperature field(colored), and wind field(barb) for (a) cyclonic

type, (b) low-pressure trough type, and (c) westerly advection type for snowfall weather at Lhasa Airport during 2013—2020
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Fig.4 Anomalies of 500 hPa geopotential height (contours; units: dagpm), temperature field (colored), and wind field (barb)
for (a) cyclonic type, (b) low-pressure trough type, and (c) westerly advection type for snowfall weather at Lhasa Airport
during 2013—2020
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Fig.5 (a—c) Meridional-height and (d—f) zonal-height distributions of vorticity (green contour, unit: 10°s™%), vertical

velocity (colored), and wind speed (black contour, unit: m s %) for (a, d) cyclonic type, (b, e) low-pressure trough type, and
(c, f) westerly advection type for snowfall weather at Lhasa Airport during 2013—2020
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Fig. 6 (a—c) Meridional-height and (d—f) zonal-height distributions of equivalent potential temperature (contour, unit: K)
and temperature advection (colored) for (a, d) cyclonic type, (b, e) low-pressure trough type, and (c, ) westerly advection
type for snowfall weather at Lhasa Airport during 2013—2020
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Fig. 7 500 hPa moisture flux (green vector, unit: gem™* hPa* s ™) and moisture flux divergence (colored, unit: 107
g-em2hPats™) for (a) cyclonic type, (b) low-pressure trough type, and (c) westerly advection type for snowfall weather at
Lhasa Airport during 2013—2020
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Fig.8  (a—c) Meridional-heightand (d—f) zonal-height distribution of moisture flux (vector, unit: g em thPatsh,
moisture flux divergence (colored, unit: 107" g€m 2 hPa * s %) and specific humidity (green contour, unit: g kg ) for (a, d)

cyclonic type, (b, e) low-pressure trough type, and (c, f) westerly advection type for snowfall weather at Lhasa Airport
during 2013—2020
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