王嘉鑫,王成刚,严家德,等,2025.北京地区一种弱风速带包裹型边界层急流现象的研究[J]. 气象,51(5):607-617. Wang J X, Wang C G, Yan J D, et al,2025. Study on the weak wind speed zone boundary layer low-level jet phenomenon in Beijing[J]. Meteor Mon,51(5):607-617(in Chinese).

北京地区一种弱风速带包裹型边界层 急流现象的研究*

王嘉鑫^{1,2} 王成刚¹ 严家德¹ 苗世光³ 刘志涛² 樊 嵘²

1 南京信息工程大学,中国气象局气溶胶与云降水重点开放实验室,南京 210044
 2 河北省人工影响天气中心,石家庄 050021
 3 北京城市气象研究院,北京 100089

提要:边界层急流通过促进物质与能量的交换,与空气污染、降水等问题密切相关,研究边界层急流有助于大气污染和极端天气预报水平的提高。在利用 2018 年 3 月至 2019 年 2 月多普勒测风激光雷达资料对北京地区边界层急流的研究过程中,发现了一种特殊的急流现象,使用数值模拟方法对该现象形成机制进行了研究。结果表明:该急流强度在 6 m・s⁻¹左右,多出现在 02-09 时(北京时)。急流厚度较薄,仅 500 m 左右,急流轴高度仅有 200~300 m,明显低于经典型边界层急流。垂直方向风切变明显,急流内部以东北风为主,而急流上方为西南风。在风向转换区形成了一条弱风速带,该区域对低层急流进行了"包裹",故称其为弱风速带包裹型边界层急流。地形强迫作用是弱风速带包裹型边界层急流形成的根本原因。受太行山脉与燕山山脉的阻挡及夜间地形冷泄流的共同作用,靠近山体的平原地区形成了一条浅薄的东北风控制带,长、宽、高分别为 130 km、10 km、600 m,该风速带即为弱风速带包裹型边界层急流出现的位置,同时也是急流高度较低的成因。夜间山风带来的大量冷空气会楔入平原地区底部,形成明显的地形逆温,在逆温层的作用下,大气湍流运动迅速减弱,上方气流与地面解耦形成急流。随着地面冷池的增厚及向南扩展,急流也不断向南、向上发展,日出后随着逆温层消散,急流逐渐减弱消散。弱风速带包裹型边界层急流的发生对北京地区大气底层污染物的传输扩散、城市热岛结构演变都具有重要的作用。

中图分类号: P425 文献标志码: A DOI: 10.7519/j.issn. 1000-0526. 2025. 031901

Study on the Weak Wind Speed Zone Boundary Layer Low-Level Jet Phenomenon in Beijing

WANG Jiaxin^{1,2} WANG Chenggang¹ YAN Jiade¹ MIAO Shiguang³ LIU Zhitao² FAN Rong²

1 Key Laboratory for Aerosol Cloud Precipitation of CMA, Nanjing University of Information Science and Technology, Nanjing 210044

2 Hebei Weather Modification Center, Shijiazhuang 050021

3 Bejing Institute of Urban Meteorology, CMA, Beijing 100089

Abstract: The boundary layer low-level jet can enhance the exchange of matter and energy, and is closely related to precipitation, air pollution and other issues. Studying the boundary layer low-level jet helps to improve the forecasting ability of air pollution and extreme weather. During the study of the boundary layer low-level jet in Beijing by using the Doppler wind lidar data from March 2018 to February 2019, a special jet was found. By using the numerical simulation method, this paper analyzes the formation mechanism of

2024年4月12日收稿; 2025年3月19日收修定稿

第一作者:王嘉鑫,主要从事地基遥感设备观测研究.E-mail:195898272@qq.com

通讯作者:王成刚,主要从事大气边界层及湍流研究. E-mail:wcg@nuist.edu.cn

^{*} 国家自然科学基金项目(41975011、42330608)共同资助

this phenomenon. The results are as follows. The jet intensity is about 6 m \cdot s⁻¹, appearing mainly from 02:00 BT to 09:00 BT. The thickness of the jet is only about 500 m, and the height of the jet axis is only 200-300 m, which is obviously lower than that of the classical boundary layer low-level jet. The vertical wind shear is obvious. The dominant wind inside the jet is northeast wind, while above the jet is southwest wind. In the wind direction conversion area, a weak wind speed zone is formed, wrapping the low-level jet, so it is called the weak wind speed zone boundary layer low-level jet (WBLLJ). Terrain forcing is the root cause for the formation of WBLLJ. Blocked by Taihang Mountains and Yanshan Mountains, under the joint action of night topographic cold discharge, a shallow northeast wind control zone, which is 130 km long, 10 km wide, and 600 m high, is formed in the plain area near the mountain. This wind zone is the location of the WBLLJ, and can also explain the cause of the low-level jet height. A large amount of cold air brought by the mountain wind at night wedges into the bottom of the plain and forms obvious topographic inversion. Under the action of the inversion layer, the atmospheric turbulent motion weakens rapidly, and the upper air flow is decoupled from the ground forming a low-level jet. With the thickening and southward expansion of the plain cold pool, the low-level jet continues to develop southward and upward. The low-level jet gradually weakens and dissipates with the dissipation of the inversion layer after sunrise. The WBLLJ plays an important role in the diffusion of atmospheric bottom-layer pollutants and the evolution of urban heat island in Beijing.

Key words: Beijing Region, boundary layer low-level jet, spatio-temporal evolution, terrain forcing, weak wind speed zone

引 言

大气边界层是以湍流为主,在距离地面 1~ 2 km 范围内,湍流输送发挥重要作用并导致气象要 素日变化显著的低层大气(盛裴轩等,2003),其通过 湍流交换维持地球与大气系统之间动量、热量、水汽 及其他微量气体的平衡,是地气系统相互作用的桥 梁(胡非等,2003;张强和胡隐樵,2001)。同时边界 层也是人类从事生活、生产活动的重要场所,与人类 日常息息相关(张强,2003;Garratt,1994)。

边界层急流是大气边界层内频发的一种重要现 象,是大气边界层研究中的主要内容,其是指对流层 低层 1500 m 以下风速廓线呈"鼻状"结构分布,且 最大风速上方存在明显风速切变,风速差至少在 3 m・s⁻¹以上的一种天气现象(Andreas et al, 2000;Banta et al,2002)。研究结果表明,边界层以 上天气或次天气尺度低空急流(925~700 hPa)和边 界层急流的建立及增强会使得上下层垂直风切变增 大,并增大正涡度环流,为极端降水的产生提供很好 的动力条件,同时低空急流携带的暖湿气流会为降 水的触发提供充足的水汽条件(雷蕾等,2022;夺青春等,2022;孔期等,2022)。同时, 急流强烈的风切变作用又会影响湍流分布状况,进 而改变下垫面与自由大气间动量、热量、水汽及物质 的交换过程(Hu et al,2013;Lin et al,2022)。此 外,边界层急流还与空气污染(Klein et al,2014;景 翠雯等,2022)、飞行安全(Balmez and Stefan,2014; 陈健伟等,2018)、风能利用(Gadde and Stevens, 2021;Storm et al,2009)、森林火灾(Fromm and Servranckx,2003)、沙尘暴(张春燕等,2022)等诸多 天气、气候现象存在密切关联。因此,自 Goualt (1938)在非洲首次发现这一特殊现象起就引起了人 们的广泛关注(陶诗言等,1979;斯公望等,1982;曾 庆存等,2007;张文龙等,2007;刘鸿波等,2014;苏洋 等,2023)。

大量研究表明,经典边界层急流通常出现在夜间,急流强度在凌晨前后达到最大,最大风速>20 m·s⁻¹(Blackadar,1957;Hoecker,1963)。急流 轴高度多在400~500 m,且与伴随的逆温层有较好的对应关系(李兴生等,1981;李炬和舒文军,2008; 何松蔚,2019)。此外,急流风向在北半球还表现出 显著的顺时针旋转特征,即经典的惯性振荡机制 (Bonner,1968;Klein et al,2016)。

除了经典型边界层急流外,在地形、天气系统的 强迫作用下急流还可表现为其他形式(Holton,

1967; Uccellini et al, 1987; 孙继松, 2005; Jiang et al,2007)。如 Lundquist and Mirocha(2008)在模 拟俄克拉何马城市上空的边界层急流过程发现,部 分急流核存在向上或向下的发展趋势。Du and Rotunno(2014)的模拟结果也表明美国大平原的夜 间边界层急流存在倾斜向上的延展结构。王嘉鑫等 (2024)发现北京地区边界层急流还表现出间歇型、 下沉型及抬升型等多种急流特征。另外,还有一种 特殊的急流类型,即弱风速带包裹型边界层急流。 在北京地区,这种急流的发生频率仅次于经典型急 流,且这两种急流特征存在明显差异。弱风速带包 裹型边界层急流主要发生于北京城区西部近地面的 后半夜时段,在加速底层污染物扩散,改善北京城区 空气质量,优化夜间城市热岛结构,提高城市舒适度 等方面均具有重要意义。现阶段有关这种特殊急流 的研究相对较少,形成机制不明确。因此本文利用 多普勒测风激光雷达资料、地面自动站资料及数值 模拟方法对该急流的基本特征及形成发展机制进行 讨论。

1 数据与方法

1.1 数据资料

采用 2018 年 3 月至 2019 年 2 月北京宝联站多 普勒测风激光雷达数据。仪器为法国 LEOSPERE 公司生产的 WINDCUBE 多普勒测风激光雷达,空间分辨率为 15 m,时间分辨率为 1 s,探测盲区为 50 m。雷达以 75°仰角分别扫描东、南、西、北 4 个方位及垂直方向,在此基础上可获取 1000 m 范围内的瞬时风场。对获得的观测数据采用滑动窗口平均法进行质量控制,并利用北京南郊观象台的秒级探空数据与雷达数据进行个例对比(图略),风速的相关系数达到 0.85,风向的相关系数达到 0.92,此雷达数据能有效地反映观测期间的垂直风场结构。除此之外,文中还用到了观测期间的垂直风场结构。

1.2 数值模式

本文采用的数值模拟工具为天气研究和预报 (WRF)模式,模拟区域中心为 40.30°N、115.76°E,其 采用 3 层嵌套,水平分辨率分别为 27、9、3 km,网格 数分别为 112×112、160×160、260×260,最内层包 括北京全部区域。模式垂直方向分为 52 个 σ 层,为 了更好地模拟低空急流的形成演变过程,在 1500 m 高 度以下加密至 25 层,模式起始时间为 2018 年 10 月 18 日 16 时(北京时,下同),结束时间为 23 日 16 时。初始气象场采用 NCEP-FNL 全球再分析资料, 模式中各种参数化方案的选择列于表 1。图 1 为 3 层模拟嵌套区域及北京周边地形分布。

表 1 WRF 模式中各物理过程参数化方案选择

Table 1 Thysical process parameterization scheme in WKF model				
物理过程	参数化方案			
微物理过程方案(mp_physics)	WSM6(Hong et al,2004)			
长波辐射方案(ra_lw_physics)	RRTM(Mlawer et al, 1997)			
短波辐射方案(ra_sw_physics)	Dudhia(Dudhia,1989)			
边界层方案(bl_pbl_physics)	BL(Bougeault and Lacarrere, 1989)			
陆面过程方案(sf_surface_physics)	Noah(Chen and Dudhia,2001)			
近地面层方案(sf_sfclay_physics)	MYNN(Mellor and Yamada,1982)			
积云参数化方案(cu_physics)	Kain-Fritsch(Kain, 2004)			

2 急流特征及形成机制

2.1 弱风速带包裹型边界层急流的基本特征

为更好地说明经典型与弱风速带包裹型边界层 急流的区别,图2给出了两种急流的对比。由图2a 可见,2018年10月16日经典型急流开始于14时, 结束于21时,急流厚度约1000m,急流轴高度约位 于300m,急流最大风速可达7m・s⁻¹以上,急流开 始时为东南风,之后逐渐转向正南,有明显的顺时针 旋转特征。由图2b可见,2018年10月19—20日 弱风速带包裹型边界层急流的出现和结束时间要略 晚于经典型急流,强度较弱,仅6m・s⁻¹,急流轴高 度也仅有 250 m,急流风向基本保持不变且也与高 空背景风有明显差异,在风向转换高度处形成一条 明显的弱风速带(图 2b 中深蓝色区域),该区域将下 层的低空急流进行了包裹,故将该急流称为弱风速 带包裹型边界层急流。表 2 列出了北京地区边界层 急流的研究情况,可见急流风速多分布在 5 ~ 15 m•s⁻¹,急流风向多为西南风,观测到的弱风速 带包裹型边界层急流表现出不同的特征。

注:图 a 中黑色方框表示嵌套区域边界;图 b 中黑点为宝联观测点,黑线为垂直剖面位置。

注:箭头表示水平风方向;图 b 中黑框位置为观测到的弱风速带包裹型边界层急流。

图 2 北京地区 2018 年 10 月(a)16 日经典型急流和(b)19-20 日 弱风速带包裹型边界层急流风速(填色)对比

Fig. 2 Wind speed (colored) comparison of (a) typical low-level jet on 16 and (b) weak wind speed zone boundary layer low-level jet in 19-20 October 2018

Table 2 Research results of boundary layer low-level jet in Beijing						
相关文献	时段	y 季节特征	急流轴高度/m	急流强度/(m・s ⁻¹)	主要急流风向	
李炬和舒文军(200	8) 夏季	141	$100\!\sim\!300$	3~8	西南	
孙继松(2005)	夏季		$600 \sim 900$	$11\!\sim\!24$	西南	
Miao et al(2009)	全年	医冬春多,夏少	$1200\!\sim\!2100$			
何松蔚(2019)	全年	-	$300 \sim \! 1500$	$6 \sim \! 18$	夏季偏南,冬季偏北	

图 3 给出了观测期间经典型急流与弱风速带包 裹型边界层急流发生的背景天气形势统计结果。经 典型急流主要发生于均压场(37.5%)、高压底部 (25%)、高压前部(20.8%)、高压顶部(12.5%)及高 压后部(4.2%),而弱风速带包裹型边界层急流主要 发生于均压场(42.9%)、高压控制(21.4%)、高压顶 部(17.6%)、高压后部(10.7%)及高压前部 (7.1%)。两种低空急流在均压场下均表现出最高 的发生频数,二者的差异在于弱风速带包裹型边界 层急流在高压控制下有明显的发生情况,而经典型 急流却很少发生。此外,本文还统计了弱风速带包 裹型边界层急流发生时的天气状况,其中 75%的个 例表现为晴天,25%的个例为阴或多云,即急流现象 在晴天或阴天状况下均会发生。

为了更好地说明弱风速带包裹型边界层急流的 总体特征,对观测期间的北京28个个例进行了统计 分析(图4)。由图4a可见,弱风速带包裹型边界层

图 3 2018年3月至2019年2月北京经典型
 急流与弱风速带包裹型边界层急流
 发生背景天气形势统计结果

图 4 2018 年 3 月至 2019 年 2 月北京弱风速带包裹型边界层急流的(a)发生月份, (b)起始、结束时刻,(c)最大风速与风向的玫瑰图,(d)急流轴及弱风速带高度

Fig. 4 (a) The occurrence month, (b) the beginning and end of time, (c) rose diagram of the maximum wind speed and wind direction, (d) heights of jet axis and weak wind speed zone for the weak wind speed zone boundary layer low-level jet in Beijing from March 2018 to February 2019

急流主要发生于 10—12 月,即在秋冬季的弱天气背 景下多发。由图 4b 可见,这种特殊急流的开始时间 多集中于 02 时前后,在 09 时前后结束,生命史约 7 h。由图 4c 可见,弱风速带包裹型边界层急流的 强度主要集中在 5~7 m \cdot s⁻¹,风向以东北风为主。 由图 4d 可知,弱风速带包裹型边界层急流轴高度主 要出现在 150~350 m,弱风速带高度则主要出现在 约 500 m。

2.2 弱风速带包裹型边界层急流的形成机制

为了探究弱风速带包裹型边界层急流的形成机制,利用WRF模式对2018年10月19日夜间出现的弱风速带包裹型边界层急流过程进行了模拟。由19日的天气图(图略)可知,受500hPa高压脊控制,北京地区晴朗少云,气温7~19℃,风向西南,风速1~2级。

2.2.1 模拟结果验证

图 5 给出了 2018 年 10 月 19 日 20 时与 20 日 05 时北京弱风速带包裹型边界层急流模拟结果与 观测结果的对比。由图可见,两个时刻的模拟结果 都很好地呈现出了急流的鼻状结构。此外,急流轴 高度、急流强度的模拟结果和观测值也有很好的一 致性。在距地高度 1 km 以下,两个时刻风速观测 结果与模拟结果的平均相关系数为 0.77,500 m 以 下的平均相关系数可达 0.84,风向的平均相关系数 可达 0.91,表明此次模拟很好地反映了此过程的主 要特征。

2.2.2 弱风速带包裹型边界层急流水平结构特征
 图 6 为 2018 年 10 月 19—20 日北京地区不同

高度、不同时刻弱风速带包裹型边界层急流风场的 模拟结果水平分布。由图 6a₁ 可见,在 19 日 22 时 200 m高度上,当气流远离太行山及燕山山脉时,风 向为一致的西南风,风速也相对较大。但当气流靠 近山脉时气流速度明显减慢,同时还伴有风向转变, 这主要是由低层西南风受地形阻挡效应所致。再加 上夜间"下坡风"作用的增强,在形成了一条风速较 强(约 5 m · s⁻¹)的东北风气流带(图 6a₁ 黑框范围 内),且此高度风速明显大于地面及 400 m 以上的 风速,由此可知,该区域即为弱风速带包裹型边界层 急流出现的位置与高度。图 6a₂ 和 6a₃ 中风场的水 平分布特征与图 6a₁ 类似。图 6a₄ 中,由于水平剖 面高度已经超过北京地区大部分山顶,故地形阻挡 作用明显减弱,气流可以越山,全域基本都为西南 风。

由图 $6b_1$ 可见,至 20 日 02 时,东北风气流带进 一步向西南方向延伸,覆盖范围增大,同时气流带内 的风速明显增强,最大风速可达 7 m・s⁻¹左右。与 此同时,该气流带也在垂直方向上不断延展,在 400 m 高度上也可见一条较大的东北风气流带,风 速 5 m・s⁻¹左右(图 $6b_2$),表明随时间推移弱风速 带包裹型边界层急流迅速变强、变大,与观测结果有 很好的对应关系。图 $6b_3$ 和 $6b_4$ 中风场分布特征分 别与同高度 19 日 22 时风场分布类似。

由图 6c₁ 可见,至 20 日 06 时,东北风气流带继续向南延伸,影响范围进一步扩大,200 m 高度上的影响区域已至北京地区以外。垂直厚度也不断加高,400 m、600 m 高度上都能看到一定范围的东北风气流带,强度约4 m • s⁻¹左右(图 6c₂ 和 6c₃)。综

图 5 2018 年 10 月(a)19 日 20 时,(b)20 日 05 时北京弱风速带包裹型边界层急流的风速、风向观测与模拟结果 Fig. 5 Comparison of wind speed and wind direction between observation and the simulation result for the weak wind speed zone boundary layer low-level jet in Beijng at (a) 20:00 BT 19 and (b) 05:00 BT 20 October 2018

边界层急流的风向(箭头)、风速(填色)的水平分布

Fig. 6 Horizontal distribution of wind direction (arrow) and wind speed (colored) at different heights and different moments for the weak wind speed zone boundary layer low-level jet in Beijing from 19 to 20 October 2018

合分析可知,整条东北风气流带(长 130 km× 宽 10 km×高 600 m)即为弱风速带包裹型边界层 急流在空间上的所在位置。

2.2.3 弱风速带包裹型边界层急流垂直结构特征

为了说明不同时段弱风速带包裹型边界层急流的垂直结构特征,图7给出了2018年10月19日20时、23时,及20日02时、05时、08时、11时风向、风速沿图1b黑线所做的垂直剖面。

由图 7a 可见, 19 日 20 时,平原地区 200 m 高 度内及靠近燕山山脉的区域,气流方向已转为东北 风,其余高度处都为西南风,表明地形的阻挡和绕流 作用已影响了背景风的走向,图中深蓝区域即为风 向转换区,同时也是弱风速区。同时,还可以看到在 200 m 高度内与右侧山体相接的位置处有一小块悬 浮的风速大值区,最大风速约为 4 m · s⁻¹,且其上 层有大面积弱风速区,该区域即为弱风速带包裹型 边界层急流初始形成时的状态及位置。由图 7b 可 见,随着时间的推移,弱风速带包裹型边界层急流有 了明显的发展,急流水平范围由靠近山体的区域迅 速蔓延至平原区域,急流厚度由 200 m 发展到 400 m,急流强度增加至近 7 m · s⁻¹。与此同时,随 着东北风气流带的增强,弱风速带在水平和垂直方 向也都得到了快速发展。至 20 日 02 时和 05 时,急 流与弱风速带继续发展,并在 05 时达到最强,急流 最大风速可达 8 m · s⁻¹左右,急流轴高度为 250 m 左右,弱风速带抬升至 600 m 左右,厚度约 100 m (图 7c 和 7d)。08 时后,急流进入消散期(图 7e),急 流厚度(近 600 m)虽然有了进一步增加,但急流强 度开始迅速减弱,仅 5 m · s⁻¹左右。此时,受地形 高度影响弱风速带也开始减弱变薄,且无法继续抬升,至 11 时,急流完全消失(图 7f)。

综上分析可知,模拟结果中弱风速带包裹型边 界层急流的起止时间、急流强度、急流厚度、急流轴 高度、急流风向、急流演变过程都与观测结果有很好 的一致性。同时,模拟结果还给出了急流时空演变 特征,以及与弱风速带的相互关系,进一步证明了地 形的阻挡和绕流作用是急流形成的一个关键因素。

图 8 给出了与图 7 相同时刻的风向、温度剖面。

由图 8a 可见,19 日 20 时在"下坡风"作用下,在燕 山山脚的位置处已有明显逆温层,逆温层顶高约 150 m, 逆温强度 2.6℃ • (100 m)⁻¹。逆温的位置、 高度与弱风速带包裹型边界层急流有很好的一致 性。这主要是由于在逆温层的作用下大气湍流运动 迅速减弱,当湍流摩擦作用削弱后,逆温层上方气流 与地面解耦形成急流。由图 8b~8d 可见,随着时间 的推移,北部燕山地区温度下降明显,地形冷泄流在 东北风的作用下不断楔入平原地区,地面冷池的不 断增厚及向南扩展致使逆温层在水平和垂直方向得 到充分发展,并在20日05时近燕山山脉处逆温梯 度达到最大,为 6.9℃ • (100 m)⁻¹。与同时刻风 速、风向垂直剖面图对比可知,逆温层的高度、范围、 强度的发展过程正是急流增大、增强过程。08时日 出以后,随着太阳辐射增加,地面温度升高,逆温层 开始消散,至11时逆温层已完全不存在(图 8e、8f), 相对应的急流过程也逐渐消散。

综上可知,地形逆温的形成、发展、消散过程是 影响边界层急流演变的另一主要因素。

3 结论与讨论

本文利用观测资料与数值模拟方法对弱风速带 包裹型边界层急流的基本特征与形成机制进行了研 究,得到如下结论。

(1)弱风速带包裹型边界层急流是发生在北京 独特地形条件下的一种天气现象,主要发生于 02— 09时,急流强度为6m·s⁻¹左右,急流厚度约500m, 急流轴高度为200~300m,急流风向基本都为 东北风,发生位置主要为燕山山脉与太行山脉接壤 的平原地区。此急流与其上空背景风之间的风向转 换区是一层弱风速区,该弱风速区对低层急流进行 了"包裹"。

(2)在太行山脉与燕山山脉阻挡作用下,靠近山体的背景西南风会转向为东北风。同时,入夜后,北侧山脉地形区降温明显,在东北风作用下地形冷泄流会不断楔入平原地区,形成明显的逆温层。在逆温层作用下,气流与地面解耦,惯性振荡机制下形成急流。逆温层的形成、发展、消散过程正是急流时空演变的主要原因。

由于现有观测条件的限制,未来尚需更长时间 维度观测资料来说明弱风速带包裹型边界层急流的 特征情况。

参考文献

- 陈健伟,王良明,李子杰,2018. 两种典型低空风切变对火箭弹弹道特 性的影响[J]. 北京航空航天大学学报,44(5):1008-1017. Chen J W, Wang L M, Li Z J, 2018. Influence of two typical kinds of low-level wind shear on ballistic performance of rockets[J]. J Beijing Univ Aeronaut Astronaut, 44(5):1008-1017(in Chinese).
- 何松蔚,2019. 北京城市区域边界层低空急流的观测与模拟研究 [D]. 南京:南京信息工程大学. He S W,2019. Observation and simulation of boundary layer low-level jet in Beijing urban zone [D]. Nanjing: Nanjing University of Information Science and Technology(in Chinese).
- 胡非,洪钟祥,雷孝恩,2003. 大气边界层和大气环境研究进展[J]. 大 气科学,27(4):712-728. Hu F, Hong Z X, Lei X E, 2003. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP[J]. Chin J Atmos Sci,27(4):712-728(in Chinese).
- 景翠雯,王成刚,冯妍,2022.2016 年冬季寿县一次边界层低空急流 对污染物扩散的影响[J].中国环境科学,42(7):3013-3022. Jing C W, Wang C G, Feng Y, 2022. Influence of a boundary layer low-level jet on pollutant diffusion in Shouxian, Anhui Province in winter 2016[J]. China Environ Sci,42(7):3013-3022(in Chinese).
- 孔期,符娇兰,谌芸,等,2022. 河南"21•7"特大暴雨过程中尺度低空 急流和低涡的演变特征及成因分析[J]. 气象,48(12):1512-1524. Kong Q,Fu J L,Chen Y,et al,2022. Evolution characteristics and formation analysis of mesoscale low-level jet and vortex in Henan Province during the July 2021 severe torrential rain[J]. Meteor Mon,48(12):1512-1524(in Chinese).
- 雷蕾,邢楠,周璇,等,2020.2018 年北京"7.16"暖区特大暴雨特征及 形成机制研究[J]. 气象学报,78(1):1-17. Lei L,Xing N,Zhou X,et al,2020. A study on the warm-sector torrential rainfall during 15-16 July 2018 in Beijing Area[J]. Acta Meteor Sin,78 (1):1-17(in Chinese).
- 李炬,舒文军,2008. 北京夏季夜间低空急流特征观测分析[J]. 地球 物理学报,51(2):360-368. Li J,Shu W J,2008. Observation and analysis of nocturnal low-level jet characteristics over Beijing in summer[J]. Chin J Geophys,51(2):360-368(in Chinese).
- 李青春,程丛兰,全继萍,等,2022. 夏季两次不同强度暴雨过程的低空急流特征及其作用对比分析[J]. 气象,48(11):1384-1401. Li Q C, Cheng C L, Quan J P, et al, 2022. Comparison of characteristics and effects about low-level jet in two rainstorm processes with different intensities in summer[J]. Meteor Mon,48(11): 1384-1401(in Chinese).
- 李兴生,叶卓佳,刘林勤,1981. 夜间低空急流的分析研究[J]. 大气科 学,5(3):310-317. Li X S, Ye Z J, Liu L Q, 1981. An analytical research on the lower nocturnal jet[J]. Sci Atmos Sin,5(3): 310-317(in Chinese).
- 刘鸿波,何明洋,王斌,等,2014. 低空急流的研究进展与展望[J]. 气 象学报,72(2):191-206. Liu H B, He M Y, Wang B, et al, 2014.

Advances in low-level jet research and future prospects[J]. Acta Meteor Sin,72(2):191-206(in Chinese).

- 钤伟妙,罗亚丽,曹越,等,2022. 基于多种探测资料对华北中部一次 回流暴雪过程的分析[J]. 气象学报,80(5):732-747. Qian W M,Luo Y L,Cao Y, et al,2022. Analysis of a backflow heavy snowfall event in central North China using multi-source data [J]. Acta Meteor Sin,80(5):732-747(in Chinese).
- 盛裴轩,毛节泰,李建国,等,2003.大气物理学[M].北京:北京大学 出版社:243-277. Sheng P X, Mao J T, Li J G, et al, 2003. Atmospheric Physics [M]. Beijing: Peking University Press: 243-277 (in Chinese).
- 斯公望,俞樟孝,李法然,等,1982. 一次梅雨锋低空急流形成的分析 [J]. 大气科学,6(2):165-170. Si G W,Yu Z X,Li F R,et al, 1982. A case analysis on the formation of low-level jet stream associated with "Baiu Front"[J]. Sci Atmos Sin,6(2):165-170 (in Chinese).
- 苏洋,陈豫英,杨侃,等,2023. 低空急流与贺兰山东麓暴雨过程的相 关性研究[J]. 气象,49(10):1171-1186. Su Y, Chen Y Y, Yang K, et al,2023. Correlations between low-level jet and rainstorm process in the eastern foot of Helan Mountains [J]. Meteor Mon,49(10):1171-1186(in Chinese).
- 孙继松,2005.北京地区夏季边界层急流的基本特征及形成机理研究 [J].大气科学,29(3):445-452. Sun J S,2005. A study of the basic features and mechanism of boundary layer jet in Beijing Area[J]. Chin J Atmos Sci,29(3):445-452(in Chinese).
- 陶诗言,丁一汇,周晓平,1979. 暴雨和强对流天气的研究[J]. 大气科 学,3(3):227-238. Tao S Y, Ding Y W, Zhou X P, 1979. The present status of the research on rainstorm and severe convective weathers in China[J]. Sci Atmos Sin,3(3):227-238(in Chinese).
- 王嘉鑫,王成刚,严家德,等,2024. 北京地区边界层低空急流的时空 发展特征分析[J]. 气象科学,44(5):899-906. Wang J X, Wang C G, Yan J D, et al,2024. Temporal and spatial characteristics of the low-level boundary layer jet over Beijing[J]. Meteorol Sci, 44(5):899-906(in Chinese).
- 曾庆存,董超华,彭公炳,等,2007. 沙尘暴及相关的自然灾害[J]. 气候与环境研究,12(3):225-226. Zeng Q C,Dong C H,Peng G B, et al, 2007. Duststorms and the related disasters[J]. Climatic Environ Res,12(3):225-226(in Chinese).
- 张春燕,李岩瑛,马幸蔚,等,2022.河西走廊不同强度槽型沙尘暴垂 直动量传输特征分析[J].地球科学进展,37(9):925-936. Zhang C Y,Li Y Y,Ma X W,et al,2022. Analysis of the vertical momentum transmission characteristics of different intensity trough type sandstorm along the Hexi Corridor, China[J]. Adv Earth Sci,37(9):925-936(in Chinese).
- 张强,2003. 大气边界层气象学研究综述[J]. 干旱气象,21(3):74-78. Zhang Q,2003. Review of atmospheric boundary layer meteorology[J]. J Arid Meteor,21(3):74-78(in Chinese).
- 张强,胡隐樵,2001.大气边界层物理学的研究进展和面临的科学问题[J].地球科学进展,16(4):526-532. Zhang Q,Hu Y Q,2001.
 Scientific problems and advance of atmospheric boundary layer

physics[J]. Adv Earth Sci,16(4):526-532(in Chinese).

- 张文龙,董剑希,王昂生,等,2007. 中国西南低空急流和西南低层大 风对比分析[J]. 气候与环境研究,12(2):199-210. Zhang W L, Dong J X, Wang A S, et al, 2007. Contrastive analyses of southwesterly low level jet and low level strong wind in China[J]. Climatic Environ Res, 12(2):199-210(in Chinese).
- Andreas E L,Claffy K J,Makshtas A P,2000. Low-level atmospheric jets and inversions over the western Weddell Sea[J]. Bound-Layer Meteor,97(3):459-486.
- Balmez M, Stefan S, 2014. On the formation mechanism of low-level jet over Bucharest's airports[J]. Romanian J Phys, 59(7/8): 797-807.
- Banta R M, Newsom R K, Lundquist J K, et al, 2002. Nocturnal lowlevel jet characteristics over Kansas during cases-99[J]. Bound-Layer Meteor, 105(2):221-252.
- Blackadar A K,1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bull Amer Meteor Soc,38(5):283-290.
- Bonner W D, 1968. Climatology of the low level jet[J]. Mon Wea Rev,96(12):833-850.
- Bougeault P, Lacarrere P, 1989. Parameterization of orographyinduced turbulence in a mesobeta-scale model [J]. Mon Wea Rev,117(8):1872-1890.
- Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II :preliminary model validation[J]. Mon Wea Rev, 129(4): 587-604.
- Du Y,Rotunno R,2014. A simple analytical model of the nocturnal low-level jet over the great plains of the United States[J]. J Atmos Sci,71(10):3674-3683.
- Dudhia J,1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci,46(20):3077-3107.
- Fromm M D, Servranckx R, 2003. Transport of forest fire smoke above the tropopause by supercell convection[J]. Geophys Res Lett, 30(10):1542.
- Gadde S N, Stevens R J A M, 2021. Interaction between low-level jets and wind farms in a stable atmospheric boundary layer[J]. Phys Rev Fluids,6(1):014603.
- Garratt J R, 1994. Review: the atmospheric boundary layer [J]. Earth-Sci Rev, 37(1/2):89-134.
- Goualt J,1938. Vents en altitude a fort Lamy(Tchad)[J]. Ann Phys du Globe de la France d'Outre-Mer,5:70-91.
- Hoecker Jr W H,1963. Three southerly low-level jet systems delineated by the Weather Bureau Special Pibal Network of 1961[J]. Mon Wea Rev,91(10):573-582.
- Holton J R,1967. The diurnal boundary layer wind oscillation above sloping terrain[J]. Tellus,19(2):199-205.
- Hong S Y, Dudhia J, Chen S H, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 132(1):103-120.

- Hu X M,Klein P M,Xue M, et al,2013. Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City[J]. J Appl Meteor Climatol,52(8):1779-1802.
- Jiang X N,Lau N C,Held I M,et al,2007. Mechanisms of the great plains low-level jet as simulated in an AGCM[J]. J Atmos Sci, 64(2):532-547.
- Kain J S,2004. The Kain-Fritsch convective parameterization: an update[J]. J Appl Meteor,43(1):170-181.
- Klein P M,Hu X M,Shapiro A,et al,2016. Linkages between boundarylayer structure and the development of nocturnal low-level jets in central Oklahoma[J]. Bound-Layer Meteor,158(3):383-408.
- Klein P M, Hu X M, Xue M, 2014. Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations[J]. Bound-Layer Meteor, 150(1):107-130.
- Lin Y, Wang C G, Yan J D, et al, 2022. Observation and simulation of low-level jet impacts on 3D urban heat islands in Beijing; a case study[J]. J Atmos Sci, 79(8): 2059-2073.
- Lundquist J K, Mirocha J D, 2008. Interaction of nocturnal low-level jets with urban geometries as seen in Joint URBAN 2003 data

[J]. J Appl Meteor Climatol, 47(1):44-58.

- Mellor G L, Yamada T, 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Rev Geophys, 20(4): 851-875.
- Miao S, Chen F, LeMone M A, et al, 2009. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing[J]. J Appl Meteor Climatol,48(3):484-501.
- Mlawer E J, Taubman S J, Brown P D, et al, 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res: Atmos, 102(D14): 16663-16682.
- Storm B, Dudhia J, Basu S, et al, 2009. Evaluation of the weather research and forecasting model on forecasting low-level jets:implications for wind energy[J]. Wind Energy, 12(1):81-90.
- Uccellini L W, Petersen R A, Kocin P J, et al, 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone[J]. Mon Wea Rev, 115(10):2227-2261.

(本文责编:侯翠梅)