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Abstract: This study is based on LiDAR wind profiler data and uses the Wind Profile Exponent (WPE)
method to calculate the wind profile exponent within the 50-500 meter height range under different surface
wind conditions. The results were validated using data from 50 meteorological stations, each with
observation heights exceeding 40 meters. The findings indicate that the LiDAR wind profile exponent
suffers from a systematic overestimation, with errors closely related to the building density and height
characteristics of the observation area. To address this issue, the study introduces parameters of gridded
building density and building height to construct a multi-factor-driven dynamic correction algorithm for the

wind profile exponent, thereby overcoming the limitation of traditional methods that rely solely on a single
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roughness parameter. After correction, 91.7% of the wind force calculation errors were confined within the
range of £1 Beaufort scale level, with 50.1% showing zero error. Building upon this, a three-dimensional
high-altitude wind field reconstruction model tailored for urban complex building environments was further
developed. This model has a horizontal resolution of 100 meters and vertical coverage from 50 to 500 meters,
enabling real-time monitoring every 5 minutes and forecast outputs up to 168 hours. The model provides a
low-cost, high-precision wind disaster prevention and control technology pathway for urban high-altitude

operations, offering significant business application potential and engineering value.

Keywords: Wind-measuring lidar, Wind Profile Exponent, Building density, Building height, Near-surface

elevated Wind Field Monitoring and Forecasting, Wind Disaster Prevention
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Table 1 Main Observational Parameters of the WindPrint S4000 Coherent Doppler Wind LiDAR
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Table 2 Wind Profile Exponents Under Various Terrain Roughness Conditions
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#3 FREMER DN EEERBANELLER (a_lidar)F
Table 3 Lidar-derived wind profile exponents(a_lidar) corresponding to surface wind conditions across

stratified altitude layers
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338 0.62 0.27 0.16 0.11 0.09 0.06
364 0.62 0.27 0.16 0.11 0.09 0.07
390 0.61 0.27 0.16 0.11 0.1 0.07
416 0.61 0.27 0.16 0.11 0.1 0.07
442 0.6 0.27 0.17 0.11 0.1 0.07
468 0.6 0.27 0.17 0.12 0.1 0.07
494 0.6 0.27 0.17 0.12 0.1 0.07

3 WOERERLIEEIIE

WY a_lidarfERE, ARSI 50 AR RERT 40m (BT Sk, H43L 2020-2024
LI KT 53 T o_Lidar O SR EAT R LU UE . SRR AT, bl B 30 B 0 B
AL - WL R SR, USENIIR %<1 GUOREA & Hoik 870 (Lot 0 iR by



36. 3%, 1 ZiRZE G 50. T%). EAFENGEAAFEEEZR (B 2a): 300m LA EMIBSGRZEST FFEAR
AR 60% (O iR 7 d7 b2y 20%. 1 2R 7 &7 H2 40% ) T 300m LA Nl i 72 <1 ZeAE AR Lu 5 Ay
80% (0 ZLim7: 7 Lb2y 30%, 1 Figze o Hhy 50%) . 1 B LT~ 1l [ IRV 30 b 2 oo 2 IRV I 7 Ve B
300m LA R38R, EURE Gk, 300m LAR AT 2 20 sl P HE A 2R LK

R TR ZE IR, AR SCRE T RETOU LI Bt T 55 1 R Ttk (¥ AUBR 2 F5 48 Ca_obs), FF 2l
T a_lidar Sa_obsHIZAEAELE (K 3), KBla_lidarkiiia_obsEI ARGVl aE, H % 2 [0
FZEMHAE 100 K UL MR /N 100 KLU AIRTEEK . HEWTiZEL R — 5 1 5T P9 O 2R 50 000 J5 22 )
ZESt, TSI 06 WOl R IAAG T FFRE X8, a0, kTR g O
H<100m 350 552 8 s st R R, I XU /) o IS TERRBE PR, AR SR 4
A 300m PAT PSR AERA A AR A It RGEFE SRR ISATIRS ML . 458K, 4 Ik
FIBATIES, BEESARE, WERZE FEAR TN EEHER, JUHR 1L 50 55 i A R AR AE
(2. BRI S, s 1-3 ATZER 100m+100m P4 P, P35 g 5025 FE 43 il 28. 8% 19. 6%F1 5. 5%,
SRR FE 4 AR 90m, 72m A1 108m (A TS ML S R, @ATHES Uy o AR k- P R AR T
], I T KA (CREF RO R KT 45° , TR BRI RS . Wk 4 f i BE s T4,
(EHARMARIT LA, SARIG-TER AT, SN ESKIE RERO RAEIL 90° , INER T H
S BRI O o [FIINE, 4 AWt S PR SRR o il 57 T S e, Mb AP IR T PR . Wl 5
Sl LI PR 58 2 SN N BE RS, 4 NS 80% LA AR AR LE NI S X3 oK T S bWl A 77 1)
22, BT WL DN HCHE S R KUER AR B BN T O KB 4R 2 (R 4).

(a) R EREAEEIN DUERES T (b)ITIERBRERIEEIX IINEIRE ST
DHREOR L TIRE VR G [HRE2R G [ IRE3RA L St WIREOR AL HIRERALL 1IRE2R AL DIREIRILE AL
100% ywrr e R TR LRI R R AR T CRRR LTRR R NAR TRRN N 100% ¢ rmmame rRnfimEHAnaAanE AT aR G IRRTERE
80% 80% ﬂ
& 60% £ 60%
2 40% N H N w 2 40% N
o o
20% 20%
0% 0%
RCR388IRRNRRIIIIIGRIRRAINS MCR3S3IRRNRRIIIIICRRRANNG
MR (K) NENBUEE (5K)

2 RAMBEIRZESF: (a) a lidarPEIRZE (b) a_revised M H iR %E
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exponent (a_revised) with environmental correction



Table4. Estimation error metrics and environmental parameters of selected representative stations
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Fig.4 Gridded spatial distributions of building density(a) and mean building height(b) at 100-meter
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Table 5 Correction coefficients (B) for lidar—derived wind profile exponents incorporating building

environmental parameters
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