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Abstract : To systematically investigate the evolution characteristics and mechanisms of squall lines descending

mountains in Northern Shanxi, this article utilizes North China regional mosaic composite reflectivity radar
products, single-site radar data from Northern Shanxi, ERA5 reanalysis data, and surface observation data collected
in the warm season (May-September) of 2021-2023, and conducts statistical analyses on the changing
characteristics of squall lines descending mountains in this region. The results show that a total of 29 squall lines
are identified, and, following the moving directions of the squall lines, they are classified into four types:
west-moving, northwest-moving, north-moving, and basin-originating. Then, based on their intensity changes when
descending mountains, they are classified into three types: intensifying, weakening, and maintaining types, of
which the weakening type is the most common, accounting for 67% of the total. All west-moving squall lines
belong to the weakening type upon descent, while all north-moving types of squall lines are of the intensifying type.
The northwest-moving type includes squall lines that intensify, weaken or maintain their intensity upon descent.
Analysis of the environmental background ahead of the descending path for intensifying and weakening types
within the northwest-moving squall lines reveals that, compared to weakening squall lines, the intensifying ones
exhibit slightly stronger dynamic conditions (850 hPa divergence), while conditions related to moisture (850 hPa
specific humidity, vertically integrated precipitable water), convective available potential energy (CAPE) and
vertical wind shear are comparable or slightly poorer. Therefore, accurately predicting whether a squall line will
intensify or weaken upon descent based solely on the environmental conditions ahead of its path is difficult. For
short-time nowecasting, radar data can be used to predict whether a squall line will intensify or weaken upon
descent. The intensifying squall lines upon descent typically exhibit stronger echo intensity, with moving speed
around 17 m s~ L-Large gradient zone of reflectivity factor is concentrated in the front section of a squall line, with
an overall bow-shaped squall line accompanied by a gust front. Radial velocity cross-section shows a distinct
organized structure with forward inflow ascending slantwise along the rear inflow. In contrast, the weakening
squall lines upon descent typically have weak to moderate echo intensity, and their moving speeds are generally
below 10 m s~ %-Large gradient zone of reflectivity factor appears at the rear part of a squall line, which has overall
a straighter shape, not accompanied by gust front. On the radial velocity cross-section, there is no distinct organized

structure with forward inflow ascending slantwise along the rear inflow.

Key words : northern Shanxi Province, squall line, descend mountain, comparison analysis
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Fig.4 Box plots of the average values of various physical quantities in the Datong Basin within 0-1 h  before squall line
descending mountain  from May to September in 2021-2023.
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5 JELTILAT 0~1h W (a~c) 500hPa iy (S5, #4i: dagpm) ,  (d~f) 700hPa A7 CRCFD) RIXIEA 2K
frfig (B ,  (g~i) 850hPa LhiE BUEAMSEMHLZ) » (J~1) 0~3km EENYIZE ORRABLE)
(a,d, g j ) 20234F6 H 19 HM (b, e, h, k) 2023 £ 8 6 H FIIgRAL, (¢, f,1,1) 2023 4E8 H 7 HF Lg%
Fig.5 (a—c) 500 hPa geopotential height (contour, unit: dagpm), (d—f) 700 hPa wind field (barb) and CAPE (colored),
(g—1i) 850 hPa specific humidity (colored and contour), and (j~1) 0-3 km vertical wind shear (vector and colored) within
0-1h before squall line descent
(a,d,g,j, b,e,n,k> The intensifying squall lines upon descenton (a, d, g, j) 19 June 2023and (b, e, h, k) 6 August 2023,
(e, f,1, 1) the weakening squall lines upon descent on 7 August 2023
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AT WL ARG gEfy (£ W15, 2012) o 19: 11 IR SIBER (B 6c) » UL 0.5° Wit
FEIFFAERE 30 m « ™ IRR CIEINE ) o 2023 4F 8 J 6 H T Il S ALt A2 10 5 LR BT VA S S 36 DR R K
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Fig.6 Datong radar reflectivity factor at 1.5<elevation and radial velocity at 0.5elevation on (a—d) 19 June, (e-h) 6 August , (i-1)

7 August 2023, (m-p) cross-section of (m, o) reflectivity factor and (n, p) radial velocity along the red lines in Fig. 6b and Fig.

6j respectively
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