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Abstract: Based on the optimal typhoon track data of National Meteorological Centre (NMC) in
1979-2023, the NMC real-time typhoon track and intensity data in 2024 and the monthly ERAS5
reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we
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analyze and reveal the different features of typhoons generated over western North Pacific in
summer and autumn of 2024 from the following three aspects: their generation, activity and
making landfall. The results show that the number of typhoons formed in western North Pacific in
the summer of 2024 was smaller than normal, their generation sources were more northward and
eastward, and their maximum intensities were weaker. No typhoons were generated in the early
summer from 1 June to 18 July, but typhoons occurred frequently in midsummer, mostly
following northwest- and north-direction tracks. The typhoons making landfall in China were
fewer than usual, and their landfall intensities were relatively weak. However, they were more
active in autumn. The number of the autumn typhoons ranked the third highest in history, their
generation sources were more northward and westward, and their intensities were unusually strong.
The autumn typhoon activities were characterized by distinct periodicity and clustering, with most
following the westward or northwestward tracks. The landfall typhoons got more thag normal, and
at the same time their landfall intensities were above the average. Further agalySis suggests that
the significant differences between the summer and autumn typhoon

correlated to the multiple factors including the lag effect of sea surface tem year
following El Nifb, the abnormal western Pacific subtropical he,phidse tragsition of the
tropical intraseasonal oscillation, the onset and withdrawal, of in the South

China Sea, and so on.

Key words: typhoon generation, typhoon activity, typhoon lafifall, &ifferéft characteristics of

typhoons in summer and autumn, air-sea system
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2024 4F, PEILRPIEG RARESRE (RPAE IR R ) Bk s, AR fE 5 S 0
WA ATRFAE, s B AR IR & RN TR E , HRIUON & RIS BH A 7 1
b (B 8a). 26 NG T I E BRI Jy 36.7m/s (12 40), BH4ETH (37.3 mis, 1340
5 0.6 m/s (& 1. I 8 NG RUIRMA RS FMR S MK, Hrh 2411 S EK “BER”
2024 FHEG R (68m/s, 17 LA F).

2024 EH T, PG RIAESEE N 34.0 mis (12 4%, BT (35.2mis, 12 40
95 1.2 mis (& 8b). By KRR AEE R & KR BT S R %

s KBRS 0.7 4>, B XZD 2.3 4>, iR E Kkl 0.9 4

37.5%, FHWHETH) (51.3%) BHEAMRIK, #a RED S g
P s FIHASE 6. J
78, i 9.6 m/s, 13 Z)

7.
2024 KT, PG KARAE R 405 mis (13 L4 i)

{5 0.9 mis (B 8c). o, #ii MR, 5’%%%&%@%&%@5&@%%% (1.9

AL 014 334D, T E KMEAEE K il (0.4 4, 1.6 1Mo HKFEG KL

EIEEEY 60.0%, BHAEEY (65.8%) WA, ARG 46.7%, BUEFT

¥ (45.2%) fir, A 6 46 K R TR G AR L g, 14 40%,

91979 A DRI S A 4.

W73 R AR P Bl Nifio S84 1 55 DR A1 I

: %@%% AT B R R, 5 h T4
TSR AL, IR o RN A RAORTIES), 6

A BB S5 BN AS E (Wang et al, 2018). J34t, HITEK & XA AL EAHE T 2 6 X 4R,
PR i b 2 A A SO, AT ARG GRS . B, KRR IR T XU
SR IR, LU AK G RS R 2R RS2 D, IR KT & AR K, (B B AR FRE5 74

WART G EE95 (B REAZ B, 2023).

12024 FRIAKFFERNLESR
Table 1 List of typhoons generated in western North Pacific in 2024

EE TR YA A2 B 7] AL E W AE RS
2401 YR 5 A 26 H 11 it 141N, 121.5€ 38 mis
2402 713 5H 31 H 14 i} 20.3N, 111.9E 18 m/s
2403 e 7 A 20 H 14 15} 15.6N, 127.7E 58 m/s
2404 IR 7 A 21 H 05 i 16.4N, 111.4E 30 m/s
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2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

HHIL
i
%l
it

nHE

A

8 H 8 H 05
8 H 11 H 20 A}
8 J113 H 02 #}
8 J113 H 14 #}
8 J119 H 05 H}
8 H22 H o2
91 1H 23
9J15H 148
9 J110 H 20 #}
9 J115 H 20 H}
9 H 19 H 08 i
9 /125 H 141
9 H 27 H 141
9 H 28 H 08 i
10 H9 H 14 1
10 A 22 H 02 i}
10 A 25 H 08 it}
11 7 4 H 05 I
11 A9 H 141
11 A 9H 141
11 4 02 I
12

259N, 143.1€
28.8N, 155.0E
23.6N, 136.8E
27.9N, 150.0€
25.0N, 125.9€
16.9N, 142.1E
14.3N, 123.9E
33.1N, 1458
12.4N, 145.4E
13.5N, 143.9E
17.6N, 108.3E
28.1N, 133.9E
18.2N, 145.0
18.6N, 1
275N, 1495

12.8N,"135.0E

112N, 112.6E
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AR R SAAT DU, 2350 MT B JE AR ARG R A= KA R - MT B 2252 WNPSH

15



5 MT fIAREAERM, #GSBERERE MT 4 EREmMER, AZHBTRE. LAR%
WNPSH. SAH Ml MT fISL[RIFEN, o Uit A A BT P8 B R A AR B R EE A X e R
JRGBE RS DA R 3, R U R AR T AR R T o 2R RO T AL TP R R e R
HIRAE SR Z ) PE R RN E IR RIRBEN (Guetal, 2024).

2024 FHERIE) EEER=AMB: B—MBRVIEL A N4, 2024446 7 1 H
7 A 18 H3k 48 R G KA, & 1979 FE LRI E K, X/l T 6 AR 7 A LA WNPSH
v, e 6 A7 H A WNPSH PAHFREE 735l 1979 4R LUk Py s2 [R5 — %5 =, MO
AT AFITF G AR 2~3 A S8 (B 4a); 55 B2 7 H 20-21 H, 2203 5 &R “I%
%7 152404 5 ER “UREE” TR 2024 SR A AT T, 3 7\ NPSH
I ARIR, R ERGRERRA G BEMBUE 8 H 822 H, 15K (78 g R
P25 R 1 AE R, BERFHMER, X504 R TR BT %E
JXHRF BRI B A PR 0 ! %

2024 FRKERIESN LRI A =AM B P2 ﬂha‘ fI0 L FHFITF &
AR 6~7 Al (B 4b), 7E 9 H 10-28 HI 19 RNARL T 6 Wt X, T 3.2 KA 1
;BB 2420 SR “HET 5
2421 S ER YR TR “WEIL ; Kot 11 H WNPSH #52 [R5 ¥ i 22,
fr B se BAmih, F30E 11 A
272828 SEN CTIH ), 24
KA L ANER,

12 H 4 ME XS

422 5 G R RA . 2423 S H ARk
R AAERL, 9 RWAER 4N ER, T 23
T MR AT R E R & K. J0H, 11 H
, A 1949 FHRGICFKUKZH B E IR, EEE
1959 4 FINL988 1) 11 H HIlid “ =& 38" .

42 BEEBKX £, RESRNSATMAELITER

SR E ) & KRR ) B AR S VAT R AT . PEALERAR AN M kA . AR, PEALRF
TG RS B 2B RS R P AN AR 5 A s %S (Kossin etal, 2016; Sunetal, 2019;
Wuetal, 2005; Yokoi and Takayabu, 2013). WMWK, ERIAEFEILATFE, HEANE
R VAT R AR LA S 140 DLZRI AL ER AR A T2l M1 G AL D5 [ ¥ 3l Jra) 2R T A Y
BAZE NG ATt £ (He etal, 2015; Tuet al, 2009; Wu et al, 2005; Yokoi and Takayabu, 2013).

2024 4, PYALKCFAEIAT 4 DB XONPEATERE, 10 N6 KOPEIE T ES1R, 2 N6 KONTEEE
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& KEEFR BT A B HIRFAE, 7R E0E— M. 2024 3840 7 A6 X AR, Hrf,

BRI 8 MERH, BAERBAREE (B 9b); ML 15 e, 774
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SRR G XA (8.0 ) BEEERIM (7.2 49 W% 0.8 A (B 11a), ki kBl 30.8%,
BRI (28.5%) (i, BT T 2019 4 LRIES: 5 b A KA HRE SR D 1 L
Hrp, KEBRHARMNEL THES, 2024 FEEEHRA NN 34D, BHFERY (4.7
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(1) 2024 SFPHIL RS 26 MG KA, BURFFmZ 0.9 4 & AL R
WAwPEmIL, A 7 ANEREMRT 25N &L, BEFEFRPRZ 521, 2% 68X
WRAR o FE AR 55, (H Py KR AR5 & MR BRCR -V W2 & KIS Bk, #Ek
PERHFIERON R, I T 2 JORE KRR 1 kD & RE &R E AT AT 12,
A 8 A KGR E, B EFBHE 0.8 4, i 1 A 2019 4L
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R 3 2024 FEFMMEEREHHES L
Table 3 Summary of activity characteristics of typhoons in summer and autumn of 2024
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