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提  要：利用 2021—2024 年欧洲中期天气预报中心(ECMWF)模式预报产品及西安城区站点 2m 温度实况，11 

针对西安关键点温度预报构建了多模型集成预报订正流程及方案。2021 年 9 月 1 日至 2023 年 12 月 31 日12 

数据作为训练集，用于因子筛选、参数调优与模型集成，2024 年 1 月 1 日至 4 月 30 日数据作为测试集，13 

用于评估数值模式及不同训练方案下模型的预报性能。通过主观经验筛选与时滞相关分析，优选了与温度14 

变化密切相关的7个模式预报物理量以及不同时效高空关键区变量等特征因子，采用XGBoost、LightGBM、15 

CatBoost 三种梯度提升树模型进行单模型偏差订正，最终通过 Stacking 集成实现模型融合优化。结果表明： 16 

ECMWF 模式对西安温度预报存在系统性冷偏差，夜间误差显著大于白天，降温降水过程中冷偏差加剧。17 

三种机器学习模型经贝叶斯优化调参后(均方根误差分别降低 0.039℃、0.030℃、0.027℃)均能有效订正模18 

式偏差。优选特征因子后，单模型均方根误差平均降低约 0.25℃。Stacking 集成较传统加权集成表现更优，19 

集成后均方根误差降低 0.034℃，2℃内预报准确率提升 3.1%，在明显降温降水天气过程中均方根误差较单20 

模型最大减小 0.491℃。 21 

 22 

关键词：气象保障，温度预报，机器学习，集成订正 23 

中图分类号：P456，P457               文献标志码：Ａ                24 

DOI: 10.7519/j.issn.1000-0526.2025.072902 25 

Experimental Study on the Temperature Refined Forecasting in Large 26 

City Based on Multiple Machine Learning Methods 27 

   LIU Jiahuimin
1,2  

ZHAO Shengrong
3
 LIN Jian

3
  TANG Jian

3
  WANG Qingxia

4
  SHANG 28 

Ke
5
 29 

1 Shaanxi Meteorological Observatory, Xi’an 710014 30 

2 Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau, Xi’an 710016 31 

3   National Meteorological Centre  , Beijing 100081 32 

                                                   
* 中国气象局复盘总结专项(FPZJ2024-131)、中国气象局创新发展专项(CXFZ2025Q020)、秦岭和黄土高原生态环境气象重点实验室重点

课题(2023K-2)、陕西省科技计划项目(2025JC-YBMS-331)、国家自然科学基金(42205037)共同资助 

   第一作者：刘嘉慧敏，主要从事数值预报模式客观订正预报研究.E-mail:857392276@qq.com 

   通讯作者：赵声蓉，主要从事数值预报产品释用方法研究.E-mail:zhaosr@cma.gov.cn
 



 

2 

 

4 Hunan Meteorological Observatory, Changsha 410118 33 

5 School of Civil Aviation, Xi’an Aeronautical Institute, Xi’an 710077 34 

 35 

Key words: meteorological support, temperature forecast, machine learning, ensemble correction 36 

A multi-model integrated forecast correction process and scheme are constructed for 2 m 37 

temperature forecasts at Xi'an Station based on the 2021-2024 European Centre for 38 

Medium-Range Weather Forecasts (ECMWF) model forecasts and the 2 m temperature 39 

observations from Xi’an Station.  The data from 1 September 2021 to 31 December 2023 is used 40 

as the training set for factor screening, parameter tuning, and model ensemble, while the data from 41 

1 January to 30 April 2024 are taken as the test set to assess the forecast performance of numerical 42 

models and models trained under different schemes. Through subjective experience screening and 43 

time-lag correlation analysis, seven model prediction physical variables closely related to 44 

temperature changes, as well as different lead-time high-altitude key zone variables and other 45 

characteristic factors get optimized. XGBoost, LightGBM and CatBoost are used for single model 46 

bias correction, and finally model fusion optimization is achieved through Stacking ensemble. The 47 

results show that ECMWF model exhibits a systematic cold bias in temperature forecasts at Xi'an 48 

Station, with the error being significantly greater at night than during the day and the cold bias 49 

intensifying during cooling and precipitation processes. After Bayesian optimization and 50 

parameter tuning, all the three machine learning models are able to effectively correct mode bias 51 

with root mean square errors (RMSE) reduced by 0.039℃, 0.030℃, and 0.027℃, respectively. 52 

Subsequent feature factor optimization further improves the single-model forecast accuracy by 53 

approximately 0.25pi. The Stacking ensemble surpasses the traditional weighted ensemble. After 54 

ensemble, the RMSE of temperature forecasts is reduced by 0.034℃, and the forecast accuracy 55 

within 2℃ is improved by 3.1%. During the significant cooling and precipitation process, the 56 

forecast RMSE has a maximum reduction of 0.491℃ compared to that by the single-factor 57 

model. 58 

Key words: meteorological support, temperature forecast, machine learning, ensemble correction 59 

引  言 60 

随着社会经济的发展和城市化进程的加快，大城市举办的外事活动、国际会议、体育赛61 

事等重大活动呈现出大型化、室外化的特点(唐钧等，2021；轩春怡等，2022；漆梁波，2025)，62 

这些重大活动社会关注度较高，受天气因素制约大，因此气象保障成为大城市重大活动组织63 

实施和运行体系中必不可少的重要部分(甘璐等，2021)。西安近年来承办了如 2021 年第十64 

四届全国运动会，2023 年 5 月中国-中亚峰会等高规格的重大活动(刘华等，2023)。这些重65 

大活动室外保障点多，气象保障要求高精度、高响应，给大城市气象保障带来巨大挑战。因66 

此，开展大城市气象要素客观预报技术研究与应用，为重大活动气象保障提供精细化的客观67 

预报产品支撑具有迫切需求。 68 

温度与降水的精细化预报对重大活动气象保障同样至关重要。一方面对于滑雪、马拉松、69 

马术和山地自行车等运动室外活动，温度的急剧变化会直接影响活动的顺利举行(李嘉睿,70 

等,2022；王在文等，2023；张芳等，2024)；另一方面极端温度会影响设备性能，同样会对71 

活动造成重大影响。然而，由于初值场的不确定性、物理过程参数化方案的局限性及大气混72 

沌性等诸多原因，即便是最先进的气象预报数值模式，其预报精度仍然有限，温度预报与实73 

际观测值间会产生明显偏差(李妮娜等，2024；沈学顺等，2025)，特别是在复杂地形区，随74 

着地形高度增加，模式温度预报偏差一般呈增大趋势(智协飞等，2019；秦庆昌等，2022)。75 
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例如，北京冬奥会期间，ECMWF、中国气象局区域数值天气预报(CMA-MESO)温度预报在76 

京津冀地区北部山区和平原地区均存在明显暖偏差，预报较实况均偏高 4℃以上(佟华等，77 

2022) 。因此，模式直接的温度预报必须经过偏差订正才能满足重大活动气象保障需求，亟78 

需研发更精准的订正方法以提升预报性能。 79 

MOS 方法(model output statistics，Glahn and Lowry，1972)在模式要素预报偏差订正中80 

得到广泛应用，其最常用的统计方法是线性回归方法，包括一元线性回归、多元线性回归、81 

逐步回归。同时，在经典的 MOS 方法基础上还进一步发展了最优子集回归、递减回归、准82 

对称滑动回归等一系列线性统计后处理方法(钱莉等，2010；Cui et al，2012；吴启树等，2016；83 

曾晓青等，2019)。上述方法均是通过建立预报对象(如温度)和多个预报因子(模式输出的温、84 

压、湿、风等要素场)之间的定量线性关系，对原始数值预报结果进行统计订正，适用于在85 

一定时间和空间范围内气温连续变化与预报因子呈线性相关的场景，能够有效订正模式预报86 

的系统性偏差。近年来随着计算技术快速发展，神经网络、随机森林等机器学习方法在气象87 

要素预报偏差订正中发挥了较大作用，订正效果较 MOS 等传统统计方法有一定优势(朱育雷88 

等，2024)。刘杰等(2024)利用随机森林算法订正 ECMWF 模式 72h 内温度预报，并将其与89 

传统 MOS 订正方法和主观预报产品进行对比分析发现，随机森林对最高温度预报改进效果90 

明显。XGBoost(extreme gradient boosting)、LightGBM(light gradient boosting machine)和91 

CatBoost(categorical boosting)作为高效的梯度提升树机器学习算法，可以将多个弱学习器组92 

合成一个强学习器，通过不断地训练和调整多个弱学习器，然后将其组合起来，以提高整体93 

的预测精度(Chen and Guestrin，2016；Cui et al，2021；杨璐等，2021)。在要素偏差订正中，94 

XGBoost 可以通过自定义损失函数和正则化项，提高预报的准确性和稳定性；LightGBM 通95 

过直方图优化策略，可以显著提高训练速度和预报精度；CatBoost 可以自动处理类别特征，96 

减少数据预处理的复杂性。徐景峰等(2023)针对冬奥会复杂山地百米尺度 10m 风速预报采用97 

XGBoost 设计订正试验，发现根据风速等级表归类，针对每个分类单独构建 XGBoost 模型，98 

每个区间模型合并后形成的 L-XGBoost 较原始风速预报误差最大可减少 73.28%。将99 

LightGBM 框架应用于温度精细化预报订正算法中，对雨雪天气中温度预报质量有明显改进100 

(谭江红等，2018)。王珊珊等(2022)发现基于 CatBoost 的长江中游降水相态预报模型对雨、101 

雪、冻雨有较好的分类和预报效果。 102 

相比于单模型，多模型集成不仅可以发挥各模型的预报优势，且不会因某个模型性能调103 

整而导致最终结果出现较大变动。常用多模型集成技术主要有集合平均法、权重分配法、104 

BP 神经网络等(赵声蓉，2006；智协飞等，2015)。相较传统集成方法，机器学习 Stacking105 

模型将多个单模型堆叠在一起，利用预测结果作为新特征来训练一个新的模型，其通过多层106 

学习结构和模型多样性的结合，动态调整基础模型和元模型的参数，提高模型的适应性107 

(Wolpert，1992；苏刚等，2021)。韩念霏等(2022)基于 Stacking 模型构建了适合于误差分析108 

的集成学习订正模型，发现该方法对京津冀地区 4 个季节的风温湿要素预报效果改善最明显。 109 

为提高重大活动大城市温度精细化预报服务能力，采用 XGBoost、LightGBM、CatBoost110 

等 3 种梯度提升树机器学习算法，结合主观先验知识，利用时滞相关分析法挖掘不同预报时111 

效的高空区域特征因子构建西安大城市关键点 2m 温度预报订正模型，再基于机器学习112 

Stacking 集成方法融合单模型的预报优势，探索机器学习方法在大城市温度预报误差订正方113 

面的作用和效果，为业务应用提供参考。 114 

 115 

1 数据集构建 116 

实况数据为西安城区方新气象观测站（以下简称西安站）地面 2m 温度观测资料，该站117 

是西安重大活动气象保障的关键站点。模式数据使用 ECMWF 模式地面和高空预报产品，118 
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空间分辨率分别为 0.125°×0.125°、0.25°×0.25°，时间分辨率为 3h。本文预报起报时间为 00:00 119 

(世界时，下同)。由于 ECMWF 数据获取时间滞后于模式起报时间，故将前一日 ECMWF12:00120 

起报的 12～36h 预报产品截断 12h 作为当日 00:00 起报的 0～24h 预报。文中温度若无特殊121 

说明均指 2m 温度。 122 

对于 ECMWF 预报数据，当同一起报时次同一预报要素预报时效缺失达到或超过 4 个、123 

第一时效或最后一个时效缺测时，则认为该起报时次缺测，否则缺测时效以相邻预报时效数124 

据插值代替。若一条样本的预报或实况数据之一缺测则剔除该样本。 125 

由于建模所需的特征因子来自于模式不同类别的预报变量，存在量级和量纲差异，因此126 

在训练模型前，需要对原始预报变量进行标准化处理，便于不同量级或量纲的特征值进行比127 

较，以提升模型收敛速度和精度。本文使用数据标准化对原始变量进行变换，将其变换到均128 

值为 0，标准差为 1 的范围内： 129 

𝑧𝑖 =
𝑥𝑖−𝜇

𝜎
        (1) 130 

式(1)中，𝑧𝑖为预处理后的数据，𝑥𝑖为原始数据，𝜇为平均值，𝜎为标准差。 131 

本文使用 2021 年 9 月 1 日至 2023 年 12 月 31 日数据作为训练集，用于模型训练，剔132 

除无效样本后得到训练样本 66172 组。由于 1—4 月为冬季向春季的过渡阶段，冷空气活动133 

频繁且强度多变。此阶段气温波动剧烈，数值模式对气温的转折点及升降幅度的预报偏差较134 

大。因此，选取 2024 年 1 月 1 日至 4 月 30 日数据作为测试集，用于模型预报性能测试及评135 

估，测试样本 7533 组。为提高模型的泛化能力，通过交叉验证方法选择 10 次训练中误差最136 

小的参数作为模型最优参数(姜红等，2021)。 137 

2 ECMWF 模式预报评估 138 

在评估不同预报订正模型性能之前，首先检验 ECMWF模式对西安站温度的预报性能，139 

分析模式温度预报的整体效果及在明显天气过程中的温度预报表现，作为模型对比评估的基140 

础。 141 

2.1 评估方法 142 

评估方法适用于数值模式评估和订正模型评估。采用平均绝对误差(MAE)、均方根误差143 

(RMSE)、2℃以内预报准确率(AUC)和决定系数(R
2
)等指标(贾俊平，2019；薛谌彬等，2019；144 

闫文杰等，2022)对模型具体预报效果进行评估。平均绝对误差(MAE)是预报与实况值偏差145 

的绝对值的平均，均方根误差(RMSE)是检验模式与实况的离散程度。2℃以内预报准确率146 

(AUC)是计算两组数据的误差绝对值小于 2℃的比例，检验模式与实况资料的准确度。决定147 

系数(R
2
)表示回归模型可以解释因变量的方差占比，数值越接近 1，拟合越好。 148 

 149 

2.2 整体评估 150 

从西安站逐 3h 温度实况与 ECMWF 温度预报的散点回归分布及时序演变可见(图 1)，151 

模式温度预报趋势整体上与实况变化较为一致，R
2为 0.903，RMSE 和 MAE 分别为 2.558℃、152 

2.055℃。散点密度大值区有 2 个区间，即 10～20℃、-2～8℃，在这 2 个区间内预报较实况153 

偏低。进一步对比 ECMWF 模式各时效温度预报与实况的差异(图 2)，发现模式温度预报误154 

差存在白天小夜间大的日变化特征。3h 时效模式温度预报表现最好，RMSE 和 AUC 分别为155 

1.370℃、0.860(图略)。18h 时效模式预报偏差最大，RMSE 达 3.206℃，AUC 仅为 0.355(图156 

2d)。 157 
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 158 
注：散点颜色代表其核密度，红色表示在对应区间数据分布密度大，蓝色则相反，下同；黑色线为实况与预报拟合线。 159 

图 1 2024 年 1 月 1 日至 4 月 30 日西安站温度实况和 ECMWF 预报散点回归 160 

Fig.1 Scatter regression  of  temperature observations at  Xi’an Station and  forecasts  by ECMWF    from 161 

1 January  to 30 April   2024 162 

 163 

 164 

图 2  2024 年 1 月 1 日至 4 月 30 日（a）00:00 和（b）18:00 西安站温度实况与 ECMWF 预报的时间序列 165 

Fig.2 Time series of temperature observations at Xi'an Station and forecasts by ECMWF from 1 January  to 30 166 

April   2024 167 

 168 

2.3 个例表现 169 

选取 2024年 2月 15—16日降温过程(简称 0215过程)和 3月 9—11日降水过程(简称 0309170 

过程)分析 ECMWF 模式预报在典型天气过程中的表现。前一次过程受 500hPa 冷涡东移南下171 

影响，西安站日平均气温最大降幅达 5℃以上，后一次过程受短波槽东移影响，西安城区出172 

现了明显降水过程，降水持续近 6 h，西安站日平均气温最大降幅达 5.2℃。 173 

从 2 次过程西安站逐 3h 气温与 ECMWF 预报的对比演变来看(图 3)，模式对温度降幅174 

存在较大的预报偏差。0215 过程中，降温阶段模式温度预报表现为明显冷偏差。特别是在175 

夜间偏差更明显，2 月 15 日 18:00 温度预报较实况偏低 8.5℃(图 3a)。该过程 ECMWF 预报176 

RMSE 达 3.693℃，AUC 仅为 0.333。在 0309 过程中，ECMWF 预报偏差较 0215 过程有所177 

减小，但仍表现为冷偏差，偏差最大达 6.5℃(图 3b)，整个过程 ECMWF 预报 RMSE 和 AUC178 

分别为 3.102℃、0.407。 179 
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 180 
图 3  2024 年(a) 2 月 15—16 日、(b)2024 年 3 月 9—11 日西安站温度实况与 ECMWF 预报的时间序列 181 

Fig.3 Time series of temperature observations at Xi'an Station and forecasts by ECMWF during (a) 15－16 182 

February  and (b) 9－11 March 2024 183 

 184 

由上述分析可见，尽管 ECMWF 温度预报整体上与西安站实况演变趋势一致，但在夜185 

间预报误差较白天偏大。特别是在明显天气过程中，模式温度预报不能较好地反映关键点温186 

度的降幅，存在显著冷偏差。 187 

 188 

3 模型训练 189 

在评估 ECMWF 模式的基础上，尝试利用 XGBoost(简称 XGB)、LightGBM(简称 LGB)190 

和 CatBoost(简称 CAT)三种机器学习算法对模式预报进行订正，以提高西安大城市关键点温191 

度预报效果。XGB 是一种集成学习决策树模型，是基于梯度提升树算法的树结构增强模型192 

(杨璐等，2021)，其将多个弱回归树模型集成形成一个强分类器，回归树每次迭代可减少上193 

次迭代的残差，并在残差减少的梯度方向上训练新的模型。LGB 是基于梯度提升决策树框194 

架提出的改进模型。相较 XGB 算法，LGB 拥有训练效率高、内存使用低、准确率高、支持195 

并行化学习等优点(Ke et al，2017)。该算法使用基于直方图的分割算法取代了传统的预排序196 

遍历算法，能有效防止过拟合。CAT 也是基于梯度提升决策树的机器学习框架，该算法的197 

改进之处就在于在学习的时候处理这些特征，而不是在数据预处理阶段，不需要任何显式的198 

预处理来将类别转换为数字(宋慧娟等，2022)。本文主要应用这 3 种机器学习算法从超参数199 

调优、优选特征因子两方面进行模型训练。 200 

3.1 超参数调优 201 

超参数调优是机器学习模型训练的重要部分。通过优化超参数，可以增强模型泛化能力，202 

显著提高模型性能。常见的超参数调优方法包括网格搜索、随机搜索、贝叶斯优化和进化算203 

法等(Nguyen，2019；刘佳星，2022)。贝叶斯优化通过构建概率模型来估计超参数与模型性204 

能之间的关系，选择最有可能提高性能的超参数进行试验，逐步逼近最优解，适用于各种类205 

型的超参数调优，且能动态调整策略，高效利用计算资源加速优化流程(Li et al，2017)。基206 

于 ECMWF 模式温度预报单一特征因子，分别构建 3 种单模型输入方案，定量评估参数优207 

化前后各模型预报性能的改进程度。 208 

    图4给出了2024年1月1日至4月30日3种方法超参数优化前后整体的预报效果对比。209 

直接建模对模式预报性能有一定改进，RMSE 降至 2℃以内。通过贝叶斯优化超参数，3 种210 

方法预报误差可进一步降低，RMSE 分别由 1.956℃、1.949℃、1.937℃降至 1.917℃、1.919℃、211 

1.910℃，较 ECMWF 模式最大降低 0.648℃。 212 

从不同预报时效的改进效果可见(图 5)，3 种方法超参数优化后对夜间温度预报误差较213 
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ECMWF 模式有明显降低。以 XGB 模型为例(图 5a)，优化参数后在 0、12、15、18、21、214 

24h 时效误差降幅最大，RMSE 减小率达 22.8%～46.6%，这与 LGB 和 CAT 模型调参后得到215 

的定性结果一致。另外，3 种方法调参前后在 3、6、9h 时效的预报误差均较 ECMWF 模式216 

偏高。这一现象可能揭示了模型在特定时段面临的物理复杂性挑战。这些时效对应着白天边217 

界层的发展阶段，湍流混合增强，局地环流(如城市热岛环流、山谷风)具有高度的非线性特218 

征(朱丽等，2020；王倩倩等，2022)。单一的模式温度预报因子虽然包含了模式对这些过程219 

的模拟结果，但其本身是一个高度集成的输出量，并未体现驱动这些变化的关键物理信息，220 

机器学习模型难以充分捕捉这些复杂非线性物理过程的内在关联和变化规律，更容易陷入欠221 

拟合或过拟合。因此，超参数只是影响模型质量的重要因素之一，合理优选特征因子能否进222 

一步改进模型性能？这将在下文进行分析。 223 

 224 

图 4  2024 年 1 月 1 日至 4 月 30 日 3 种模型调参前后温度预报的平均 RMSE 225 

Fig.4  The average RMSE of the temperature forecasts by three models before and after hyperparameter tuning 226 

from January 1 to April 30 2024 227 

 228 

 229 

图 5  2024 年 1 月 1 日—4 月 30 日 (a)XGB，(b)LGB，(c)CAT 模型调参前后及 ECMWF 不同预报时效温度230 

预报的平均 RMSE 231 

Fig.5 The average RMSE of the temperature forecasts by (a)XGB, (b)LGB, and  (c)CAT models before and after 232 

hyperparameter tuning and ECMWF with different  forecastlead times  from January 1 to April 30 2024 233 

 234 

3.2 优选特征因子 235 

在机器学习算法确定的情况下，如何选取特征因子对提高模型质量至关重要。尽管输入236 

海量的特征因子能够使模型更好地捕捉数据的内在规律，但过量的特征因子可能带来特征冗237 

余、数据噪声等问题(Chandrashekar and Sahin，2014)。就温度预报订正模型而言，在构建地238 

面和高空区域特征因子时，如何挖掘出各个预报时效上对应的重要区域因子，是影响模型质239 
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量的关键。 240 

3.2.1 方案设计 241 

在温度精细化预报建模中，除数值模式输出的温度预报产品外，还需综合考虑大尺度环242 

流异常、水汽分布等相关物理量场特征。500hPa 位势高度场的槽脊异常通过冷暖平流机制243 

直接影响地面温度，槽区冷平流导致地面降温，脊区暖平流导致地面增温。850hPa 比湿则244 

直接影响低层水汽含量，进而通过影响云和辐射过程来改变地面温度。因此，本文设计了 2245 

组对比试验。试验 1 将模式 2m 温度预报临近点插值到西安站作为唯一特征因子，即单因子246 

方法。试验2为多因子方法，根据主观先验知识在试验1的基础上增加了两类优选特征因子：247 

第一类是由模式预报临近点插值到西安站点的物理量场，包括总云量、低云量、10m 纬向风、248 

10m 经向风、850hPa 温度、700hPa 温度；第二类为通过时滞相关分析法筛选得到的模式不249 

同预报时效的关键区平均值，涵盖 500hPa 位势高度和 850hPa 比湿。 250 

时滞相关分析是通过计算站点实况与不同时效模式预报场的相关，选取通过显著性检验251 

(𝛼≤0.001)的区域作为关键区域，提取该区域的平均值作为预报特征因子。以西安站 00:00252 

起报的 0h 预报为例，图 6 给出了 2021 年 9 月 1 日至 2023 年 12 月 31 日该站 00:00 温度实253 

况与 ECMWF 模式不同时效的 500hPa 位势高度场的相关分布，发现在内蒙古中部—陕西北254 

部、东北亚存在 2 个高相关区。对不同时效内 2 个高相关区进行区域平均后再与 00:00 温度255 

实况序列进行相关分析，发现与 ECMWF 模式零场的相关系数最大，分别达到 0.915、0.892，256 

故将模式零场作为该站 0h 预报 500hPa 位势高度因子的关键时效。以此类推，西安站 00:00257 

起报的其他时效同样按照此方法，对每一个时效单独进行时滞相关分析，最终获得西安站未258 

来 24h 内不同预报时效的高空区域因子(图略)。 259 

 260 

注：填色区域分别表示通过 α=0.01、α=0.005 和 α=0.001 显著性水平检验的区域。 261 

图 6  2021 年 9 月 1 日至 2023 年 12 月 31 日西安站 00:00 温度实况与 ECMWF 模式前一日 12:00 起报的不262 

同预报时效 500hPa 位势高度场的相关系数 263 

Fig.6 Correlation between  temperature observation at 00:00 UTC of   Xi'an Station and the 500hPa 264 

geopotential height field forecasted by ECMWF initiated at 12:00 UTC of the previous day from 1 September 265 

2021 to 31 December 2023 266 
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 267 

图 7 基于时滞相关分析法和主观先验知识确立的不同预报时效的特征因子 268 

Fig.7 Characteristic factors for each forecast lead time established based on the time-lag correlation analysis 269 

method and subjective prior knowledge 270 

 271 

3.2.2 预报效果对比 272 

由图 8 可见，3 种方法优选特征因子后在 2024 年 1 月 1 日至 4 月 30 日整体时段的预报273 

效果均有所提升，XGB、LGB、CAT 模型 R
2 分别由 0.946、0.945、0.946 提升至 0.959、0.958、274 

0.960，RMSE 和 MAE 分别下降了 0.250℃、0.241℃、0.263℃和 0.200℃、0.193℃、0.201℃。275 

从不同时效预报表现可见(图 9)，3 种方法优选特征因子后在夜间较单因子方法预报误差进276 

一步降低。以 XGB 模型为例(图 9a)，12～24h 时效 RMSE 平均减小 0.156℃，特别是在 3、277 

6、9h 时效均有明显改进，RMSE 低于 ECMWF 和单因子模型预报。以 6h 时效为例，XGB、278 

LGB、CAT 方法 RMSE 分别较 ECMWF 预报降低了 0.16℃、0.16℃、0.21℃。 279 

  280 
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图 8 2024 年 1 月 1 日至 4 月 30 日实况和 (a,c,e)单因子与(b,d,f)多因子建模预报散点回归 281 

(a,b)XGB、(c,d)LGB、(e,f)CAT 282 

Fig.8 Scatter regression  between observations and (a,c,e)  single-factor ，and (b,d,f) multi-factor  modeling for  283 

(a,b) XGB, (c,d) LGB, and (e,f) CAT from 1 January  to 30 April 2024 284 

 285 

 286 
图 9  2024 年 1 月 1 日至 4 月 30 日 (a)XGB、(b)LGB、(c)CAT 模型单因子与多因子建模及 ECMWF 不同287 

预报时效温度预报的平均 RMSE 288 

Fig.9 The average RMSE of temperature forecast with different forecast lead times by ECMWF and single-factor 289 

and multi-factor modeling for (a) XGB, (b) LGB, and (c) CAT models  from 1 January  to 30 April 2024 290 

4 模型评估 291 

    基于先验知识和时滞相关分析优选特征因子后，通过贝叶斯超参数优化对单模型预报效292 

果有明显改进。但由于不同单模型存在一定的局限性，因而在模型训练的基础上采用293 

Stacking 集成方法，通过融合三种单模型输出有效降低对单一模型的依赖，最终实现预报精294 

度的进一步提升。 295 

4.1 集成方案设计 296 

为了评估 Stacking 集成方法对预报效果的影响，设计 2 组对比试验。试验 1：加权平均，297 

计算前 20 天优选特征因子后的 XGB、LGB 和 CAT 预报的均方根误差，利用均方根误差倒298 

数对 3 种方法预报进行加权平均得到集成预报结果，具体见式(2)。试验 2：采用 Stacking 方299 

法对优选特征后的 XGB、LGB 和 CAT 单模型进行集成，对比评估两组集成方案模型预报性300 

能。 301 

                              𝐽𝑄 =  
𝑀𝑋×

1

𝑅𝑀𝑆𝐸𝑋
+𝑀𝐿×

1

𝑅𝑀𝑆𝐸𝐿
+𝑀𝐶×

1

𝑅𝑀𝑆𝐸𝐶
1

𝑅𝑀𝑆𝐸𝑋
+

1

𝑅𝑀𝑆𝐸𝐿
+

1

𝑅𝑀𝑆𝐸𝐶

   (2) 302 

 303 

式中：𝐽𝑄为加权集成模型预报，𝑀X、𝑀L、𝑀C分别为 XGB、LGB 和 CAT 模型预报，304 

RMSEX、RMSEL、RMSEC分别为 XGB、LGB 和 CAT 模型前 20d 预报均方根误差。由于加权305 

平均法是取前 20d 单模式均方根误差倒数进行集成，故文中模型集成部分测试集取 2024 年306 

1 月 23 日至 4 月 30 日数据，有效测试样本 6318 组。 307 

4.2 结果评估 308 

图 10a 给出了 2024 年 1 月 23 日至 4 月 30 日加权集成和 Stacking 集成方案与西安西安309 

站温度实况的整体对比，可以看出在测试集整体时段内西安站温度在 8～20℃数据密度高，310 

即此处样本更为密集，温度最低、最高值分别为-8.5℃、30.2℃。ECMWF 温度预报样本密311 

集区间值整体较实况略偏低，但极端温度预报强度较实况偏强，即极端高(低)温较实况偏高312 
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(低)，2 种集成预报方案温度整体分布与实况较为一致。2 种集成方案温度预报与实况变化313 

趋势基本一致，但 Stacking 集成方案预报效果优于加权集成方案，其 RMSE 和 AUC 分别为314 

1.601℃、0.836，低(高)于后者对应指标(图 10b)。 315 

 316 

图 10  2024 年 1 月 23 日至 4 月 30 日西安站温度实况和预报的(a)小提琴图 及 (b)时间序列 317 

Fig.10 (a) Violin plots and （b）time series of   temperature observations at Xi'an  Station   and forecasts from 318 

23 January  to 30 April 2024 319 

进一步对比 Stacking 集成模型在不同时效的预报指标及其与单模型的差异可见(图 11)，320 

Stacking 集成模型不同预报时效的预报误差均小于单模型预报，特别是夜间预报偏差较单模321 

型及 ECMWF 进一步降低，对于模式预报偏差最大的 21h，Stacking 集成模型预报 RMSE 为322 

1.70℃，较 ECMWF、XGB、LGB、CAT 模型预报分别减小 1.44℃、0.125℃、0.014℃、0.119℃。323 

从整体时段检验来看(图 12)，Stacking 集成模型预报效果优于单模型，RMSE 和 AUC 为324 

1.611℃、0.832，RMSE(AUC)较单模型最大降低(提高)0.034℃(0.031)。 325 

 326 

图11  2024年1月23日至4月30日 Stacking集成与ECMWF和单模型不同预报时效温度预报平均RMSE327 

的差值 328 

Fig.11 Difference of the average RMSE for temperature forecasts with different forecast lead times between the 329 

Stacking ensemble   and ECMWF  and single model   from 23 January  to 30 April 2024 330 

 331 

 332 

图 12  2024 年 1 月 23 日至 4 月 30 日温度预报平均(a )RMSE,、(b)AUC 对比 333 

Fig.12 Comparison of the average (a) RMSE and (b) AUC for temperatureforecasts from 23 January  to 30 April 334 

2024 335 

 336 
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5 模型应用 337 

上述分析表明，Stacking 集成模型能够有效提升单模型在整体时段的温度预报效果，特338 

别是西安夜间温度预报偏差较单模型及 ECMWF 大幅降低。本节基于前文选取的 0215 降温339 

过程和 0309 降水过程，进一步评估 Stacking 集成模型在明显天气过程中温度预报的改进效340 

果。 341 

由图 13 可见，尽管 Stacking 集成对 2 次过程西安关键点温度预报整体较实况略偏低(图342 

13a,c)，但相较 ECMWF 模式和单模型，Stacking 集成预报效果有明显提升。在 0215 降温过343 

程中，15日夜间模式较实况温度预报显著偏低，Stacking集成预报值较模式预报升高 2～3℃，344 

更接近实况(图 13b)。从 2 次过程整体预报表现来看(图 14)，ECMWF 预报误差最大，RMSE345 

超过 3℃，3 种单模型与 Stacking 集成分别较 ECMWF 预报有明显改善，Stacking 集成误差346 

减小幅度最大。2 次过程中 Stacking 集成模型 RMSE 较 ECMWF分别降低了 2.18℃、1.57℃，347 

AUC 分别提高了 0.47、0.48(图 14a,14c)。0309 降水过程 Stacking 集成 AUC 最高，达 0.8(图348 

14b,d)。 349 

综上所述，在明显天气过程中，Stacking 集成能够一定程度上改进模式温度预报偏低的350 

问题。因此，Stacking 集成模型应用于西安大城市关键点温度精细化预报中，可为重大活动351 

温度预报提供客观支撑。 352 

 353 

图 13  2024年(a,b)2月 15—16日， (c,d)3月 9—11日 (a,c)西安站温度实况和Stacking集成预报散点回归 ，354 

(b,d)西安站温度实况和预报的时间序列 355 

Fig.13 (a,c) Scatter plots with regression line for temperature observations at Xi'an  Station and forecasts by 356 

Stacking ensemble, and (b,d) time series of observations at Xi'an  Station and forecasts during (a,b)  15－16 357 

February  and  (b,d)  9—11  March  2024 358 

 359 
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 360 

图 14  2024 年(a,b)2 月 15—16 日， (c,d)3 月 9—11 日温度预报 平均(a,c) RMSE、 (c,f) AUC 对比 361 

Fig.14 Comparison of the average (a,c)  RMSE and (b,d) AUC of temperature forecasts  during (a,b)  15－16 362 

February  and  (b,d)  9—11  March  2024 363 

 364 

6 结论与讨论 365 

利用西安城区站点温度实况和 ECMWF 模式高空和地面预报数据，基于 XGB、LGB、366 

CAT 模型和 Stacking 集成方法，建立了西安大城市关键点未来 24h 温度预报集成模型。通367 

过对模型预报效果进行评估，得到以下结论： 368 

(1)ECMWF 模式对西安关键点温度预报整体上与实况变化趋势较为一致，但在 10～369 

20℃、-2～8℃这 2 个区间预报较实况明显偏低。模式温度预报误差存在日变化特征，即白370 

天小夜间大。在明显天气过程中，模式温度预报不能较好地反映西安关键点温度的变化，存371 

在显著冷偏差。 372 

(2)基于 ECMWF 模式温度预报单一特征构建的 XGB、LGB 和 CAT 模型能够有效降低373 

模式对西安大城市关键点温度预报偏差，且夜间均方根误差减小明显。采用贝叶斯方案优化374 

超参数后 3 种模型夜间温度预报误差可进一步降低。以 XGB 模型为例，优化超参数后夜间375 

温度预报 RMSE 减小率达 22.8%～46.6%。 376 

(3)基于主观经验确立模式 2m 温度、总云量、低云量、10m 纬向风、10m 经向风、850hPa377 

温度、700hPa 温度等 7 个直接预报特征因子，利用时滞相关分析方法确立不同预报时效的378 

高空区域特征因子(500hPa 位势高度、850hPa 比湿）。优选特征因子后 3 种方法在整体时段379 

上预报效果均有所提升，RMSE 分别下降了 0.250℃、0.241℃、0.263℃。在不同预报时效 3380 

种方法温度预报偏差均小于原始模式。 381 

(4)基于 Stacking 方法对 3 种方法预报进行集成，测试集整体时段内 RMSE(AUC)低(高)382 

于加权集成方案相应指标值，预报效果优于后者。特别是夜间 Stacking 集成温度预报模型偏383 

差较单模型大幅降低。相较单模型，Stacking 集成可以进一步降低西安城区明显天气过程温384 

度预报误差。 385 

本研究通过筛选优化特征因子、调整目标区域的贝叶斯超参数，采用 Stacking 集成融合386 

优化单模型预报结果，为西安大城市关键点温度预报提供了一种客观参考方法。预报订正流387 

程和方案具有一定的普适性，可以移植推广到其他站点，具备潜在的业务应用价值。本文构388 

建的基于机器学习的站点尺度温度精细化预报模型在冬春过渡期展现出一定优势，其性能可389 

能得益于该季节冷空气活动频繁且大尺度环流相对稳定的特点。然而，不同季节主导温度变390 

化的大尺度环流系统及物理过程存在显著差异：夏季高温热浪与西太平洋副热带高压位置强391 
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度、大陆高压与伊朗高压的阶段性合并有关；秋季晴空辐射降温主要受夜间边界层逆温发展392 

影响。这些差异可能导致模型在不同季节的误差来源和预报订正难度不同，其优势能否稳定393 

推广至其他季节仍需通过纳入全年代表性样本进行交叉验证。另外，在样本数较少的极端转394 

折性天气过程中，该模型的订正能力有限。一方面是因为机器学习模型性能与训练样本数量395 

密切相关，过少的样本数使得模型无法学习到有效特征；另一方面与机器学习集成模型自身396 

算法框架有关。因此，后期需要在数据增强、深度学习建模等方面（代刊等，2025；金荣花397 

等，2025）深入研究以提高不同大气环流背景下模型温度预报精度。 398 

致谢：感谢国家气象中心天气预报技术研发室对本文的数据支持和技术指导。 399 
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