周芳成,刘少军,田光辉,等,2024. 基于随机森林模型的南海大气 CO₂ 柱浓度估算模型构建及其检验与应用[J]. 气象,50 (12):1542-1550. Zhou F C,Liu S J,Tian G H,et al,2024. Construction,test and application of atmospheric CO₂ column concentration estimation model over the South China Sea based on random forest model[J]. Meteor Mon,50(12):1542-1550(in Chinese).

基于随机森林模型的南海大气 CO₂ 柱浓度 估算模型构建及其检验与应用*

周芳成^{1,2} 刘少军^{3,4,5} 田光辉^{3,4,5} 韩秀珍^{1,2} 甘业星^{3,4,5}

1 国家卫星气象中心/国家空间天气监测预警中心,北京 100081

2 许健民气象卫星创新中心,北京 100081

3 海南省气象科学研究所,海南省南海气象防灾减灾重点实验室,海口 570203

4 中国气象局三沙海洋气象野外科学试验基地,海南,三沙 573199

5 海南省南海海洋气象野外科学观测研究站,海南,三沙 573199

提 要:利用多源宽幅卫星的叶绿素 a 浓度、瞬时光和有效辐射、颗粒无机碳、颗粒有机碳、海面温度、风速、风向 7 个参数, 基于随机森林模型建立了南海大气 CO₂ 柱浓度估算模型,以 2020 年数据验证模型精度,偏差为 0.27 ppm(1 ppm=10⁻⁶),决 定系数为 0.59,均方根误差为 1.00 ppm,整体精度较高。研究发现,南海大气 CO₂ 柱浓度呈现明显的季节特征,表现为春季> 夏季>冬季>秋季。造成南海大气 CO₂ 柱浓度季节差异的主要影响因素呈随时间变化特征,风向是 1 月和 4 月的主要影响 因素,风速和风向是影响 7 月最大的 2 个因素,海温成为 10 月最主要影响因素。基于宽幅多源遥感数据建立的方法,可实现 对南海大气 CO₂ 柱浓度的高频次、全覆盖监测。

关键词: 南海,随机森林模型,大气 CO₂ 柱浓度,估算模型,季节变化特征 中图分类号: P412,TP181 **文献标志码:** A **DOI**: 10.7519/j.issn.1000-0526.2024.061701

Construction, Test and Application of Atmospheric CO₂ Column Concentration Estimation Model over the South China Sea Based on Random Forest Model

ZHOU Fangcheng^{1,2} LIU Shaojun^{3,4,5} TIAN Guanghui^{3,4,5} HAN Xiuzhen^{1,2} GAN Yexing^{3,4,5}

1National Satellite Meteorological Centre/National Center for Space Weather, Beijing 100081

2 Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081

3 Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Hainan Institute of Meteorological Science, Haikou 570203

4 Sansha Marine Meteorology Field Experiment Station of CMA, Hainan, Sansha 573199

5 South China Sea Marine Meteorology Hainan Observation and Research Station, Hainan, Sansha 573199

Abstract: In this study, a random-forest-based model of atmospheric CO_2 column concentration over the South China Sea was built with the data of chlorophyll-a concentration, instantaneous photosynthetically

^{*} 国家自然科学基金青年基金项目(42001309)、中国气象局风云卫星应用先行计划(2022)(FY-APP-2022.0308)和海南省气象局科研项目 (HNQXJS202214)共同资助

²⁰²³年12月24日收稿; 2024年8月22日收修定稿

第一作者:周芳成,主要从事生态气象应用研究. E-mail: zhoufc@cma.gov.cn

通讯作者:刘少军,主要从事卫星遥感应用研究. E-mail:cdutlsj@163.com

active radiation, particulate inorganic carbon, particulate organic carbon, sea surface temperature, wind speed and wind direction, which were from multisource satellite remote sensing data. The accuracy of the model was verified by the data in 2020, with Bias being 0. 27 ppm, R^2 being 0. 59 and RMSE being 1.00 ppm. The results show that the atmospheric CO₂ column concentration in the South China Sea presents obvious seasonal characteristics, with the highest value in spring, followed by that in summer, winter and autumn in sequence. Moreover, the main impact factors for the seasonal differences of atmospheric CO₂ column concentration in the South China Sea vary with time. In January and April, it is affected mainly by wind direction. In July, wind speed and wind direction are the two major impact factors. In October, sea surface temperature is the major factor. This method established based on the multisource satellite remote sensing data can realize the high-frequency and full-coverage monitoring of atmospheric CO₂ column

concentration in the South China Sea.

Key words: the South China Sea, random forest model, atmospheric CO₂ column concentration, estimation model, seasonal variation characteristic

引 言

工业革命以来,化石燃料大量使用、森林砍伐、 城市建设等因素已经深刻影响了地球的碳循环过 程,大气中 CO₂ 浓度不断上升,温室效应加剧、极端 天气事件频发(Tian et al,2016;乔年等,2023)。为 了积极应对气候变化,推进生态优先、节约集约、绿 色低碳发展,我国提出了"碳达峰、碳中和"目标。在 目标的实现过程中,准确掌握大气中 CO₂ 含量及其 变化规律具有重要意义。

大气中 CO₂ 含量的探测可分为地基和空基两 种方法。地基探测方法具有较高的精度,如全球碳 柱总量观测网(TCCON, Wunch et al, 2011; 2015), 是一个由地基傅里叶变换光谱仪组建的观测网络, 可进行 CO₂、CH₄ 等要素的精密测量,但其缺点是 站点数非常少,在全球范围内稀疏分布,无法反映大 区域连续大气内 CO₂ 的分布趋势。空基探测一般 是基于某些专用于大气温室气体探测的卫星,如日 本的温室气体观测卫星 GOSAT 和 GOSAT2,美国 的轨道碳观测卫星 OCO-2 和 OCO-3,我国的碳卫 星、高分五号卫星等(叶函函等,2021; Schneising et al, 2011; Crisp et al, 2017; Hakkarainen et al, 2016;邓安健等,2020;白文广等,2010;葛钰洁和肖 钟湧,2022),利用其携带的短波红外波段对大气 CO2 进行探测,最大优点是随着卫星的绕地运动具 有了全球覆盖的探测能力,但是通道特性决定了其 幅宽窄、重访周期长,无法实现每日全球覆盖探测。

温室气体探测卫星对大气 CO2 含量的探测多

采用物理反演方法,利用辐射传输方程模拟整个光 学路径,求解过程相对复杂(张炳炎等,2021)。大气 CO2 含量除了受人类活动影响外,还与下垫面生物 活动(如光合作用、呼吸作用等)有着密切关系,而生 物活动又受到环境的温湿度等因素影响(加亦瑱等, 2022)。因此,大气 CO₂ 含量与下垫面生物种类、丰 度、环境温湿度等因素有直接关系(He et al, 2017)。 基于此,不少学者提出,通过对大气 CO2 含量的影 响要素筛选,建立从影响要素到大气 CO2 含量的回 归关系,从而直接估算大气 CO2 含量。例如 Guo et al (2012)利用中分辨率成像光谱仪(MODIS)的地表 温度(LST)、归一化植被指数(NDVI)、叶面积指数 (LAI)、净初级生产力(NPP)、总初级生产力等产 品,建立与 GOSAT 探测的大气 CO₂ 柱浓度的多元 线性回归方程,分别在全球建立不同回归方程,精度 为-2.56~3.14 ppm(1 ppm=10⁻⁶)。之后 Guo et al (2015)将该方法进一步按照不同月份建立回归关 系,应用于东亚的植被生长季节(5-10月)。也有 学者利用神经网络、随机森林(RF)等机器学习方 法,建立了新型的回归模型。如 Li et al(2022)选择 植被覆盖度、LAI、NPP、蒸散、温度、相对湿度、风向 和风速共 8 个要素,利用极限树方法建立与大气 CO2 柱浓度回归关系。He et al (2023)利用高程 (DEM)、人口密度、土地利用、NDVI、气象再分析 (ERA5)数据,讨论了多种机器学习方法(随机森 林、极限树等)对大气 CO2 柱浓度的预测精度,结果 显示随机森林方法精度最高。李静波等(2023)利用 NDVI、ERA5、DEM、气溶胶光学厚度和地表反射率 数据,采用决策树和集成学习方法对大气 CO2 柱浓

度进行预测,准确率超过90%。

当前对 CO₂ 柱浓度的关注重点在陆地上空(蔡 大鑫等,2023),对海洋上空则关注较少。海洋是一 个巨大的碳库,人类每年产生的人为 CO₂ 约有一半 停留在大气中,其余的 CO_2 被海洋吸收 (Manabe and Stouffer, 1993; 詹滨秋和赵永平, 1989; 张远辉 等,2000),对海上大气 CO2 含量的研究对于预测全 球大气 CO₂ 含量乃至气候变化具有重要意义。海 洋上空的 CO₂ 柱浓度受到海气多种因素共同影响, 边缘海上空的 CO₂ 柱浓度还会受到陆地因素影响, 属于多要素复杂非线性问题,面对这样的问题,以随 机森林为代表的机器学习方法表现出了与传统统计 回归方法相比更高的精度。本文以中国南海 CO2 柱浓度为研究对象,假设 OCO-2 的大气 CO₂ 柱浓 度为真实值,筛洗与 OCO-2 同时间讨境的多源卫星 谣感大气和海洋参数,利用随机森林算法建立大气 和海洋参数与大气 CO2 柱浓度的回归关系,在此基 础上估算海洋大范围连续大气 CO2 柱浓度,并开展 大气 CO₂ 柱浓度季节变化特征分析。

1 研究区与数据源

1.1 研究区概况

南海常年盛行季风,冬季受强大的东北季风影 响,夏季则受西南季风影响,并受到由季风控制的环 流影响。作为边缘海,南海海上大气 CO₂ 柱浓度的 时空变化除了受海气 CO₂ 分压差影响外,还受其他 因素影响(如陆地大气 CO₂ 浓度,风向、风速,海面 温度,水中浮游植物数量,水产养殖种类和规模等), 对照这些影响因素本文选择了相应的遥感数据(详 见 1.3 和 1.4 节)作为输入数据。

1.2 OCO-2 数据

美国于 2014 年 7 月发射 OCO-2 卫星,轨道高 度 705 km,幅宽 10.6 km,升轨过境时间为地方时 13:36,空间分辨率 2.2 km×1.29 km,时间分辨率 16 d(Liang et al,2017a)。OCO-2 是当前国际主要 的碳监测卫星之一,与 TCCON 数据对比,精度优于 1 ppm(Liang et al,2017b)。OCO-2 共有 3 个谱段, 分别是 O₂A 吸收的 0.76 μ m、弱 CO₂ 吸收的 1.61 μ m 和强 CO₂ 吸收的 2.06 μ m,根据这 3 个谱 段可反演大气 CO₂ 柱浓度。本文使用经过偏差校 正的 2020 年 L2 级 Lite 产品,为保证数据的可靠 性,参与随机森林训练和验证的数据均为质量标志 QF=0(质量为优)(Liang et al,2017b)。为了与其 他遥感数据的空间分辨率一致,使用三次样条插值 法将其空间分辨率重采样至 0.05°×0.05°(为确保 真值可靠性,仅对有值像元分辨率进行重采样,无值 像元仍为无值)。

1.3 先进散射计数据

欧洲气象卫星应用组织(EUMETSAT)分别于 2006年、2012年、2018年发射了MetOp-A、MetOp-B、MetOp-C极轨卫星,轨道高度817km,其上搭载 的先进散射计(ASCAT)是一台拥有3个垂直极化 天线的C波段(5.2GHz)微波散射计。ASCAT可 被用于测量海面风场(等效10m)、极地冰、土壤水 分等。田光辉等(2020)用南海浮标站对风速、风向产 品进行了精度检验,平均绝对偏差分别为0.59m・ s^{-1} 和16.23°。本文使用的是MetOp-C星2020年 0.25°空间分辨率的网格化日产品,选取海面风速和 风向2个参数。使用三次样条插值法将其空间分辨 率重采样至0.05°×0.05°,以与其他遥感数据的空 间分辨率一致。MetOp-C星的过境时间为地方时 09:30,与OCO-2升轨过境时相差约4h,本文假设 大气CO₂柱浓度在这段时间内的变化可忽略。

1.4 MODIS 产品

海面温度日产品(SST):过境时间为白天,空间 分辨率为4km,覆盖全球海洋;SST 能显著影响海 洋生物的新陈代谢,进而影响浮游植物的呼吸和光 合作用。叶绿素 a 浓度日产品(Chl-a):过境时间白 天,空间分辨率为4km,覆盖全球海洋;叶绿素 a 浓 度的高低与水体中浮游植物的种类、数量以及水环 境质量等高度相关,可以在一定程度上反映水质状 况(孙军等,2003)。瞬时光合有效辐射日产品 (IPAR):过境时间为白天,空间分辨率为4 km,覆 盖全球海洋;浮游植物吸收太阳辐射中可见光波段 的光谱进行光合作用,该波段的太阳光被称为光合 有效辐射;植物通过叶绿素将这些光谱能量转化为 植物生长所需的生物化学能量,此过程会吸收 CO₂ 并造成水中 CO₂ 分压变化。颗粒有机碳日产品 (POC):过境时间为白天,空间分辨率为4km,覆盖 全球海洋;海水吸收的 CO₂ 通过真光层内浮游植物 的光合作用被转化为有生命的颗粒有机碳,表层海

洋的 POC 沉降作为海洋生物泵的重要组成部分,提 供了一种深海固碳机制;真光层底颗粒有机碳通量 能够可反映深海固碳效率。颗粒无机碳日产品 (PIC):过境时间为白天,空间分辨率为4km,覆盖 全球海洋;PIC 被认为是表征海水中颗石藻产量的 指标,在海洋碳循环过程中,颗石藻是主要的初级生 产者和碳酸盐生产者;现代开放大洋中,约一半的碳 酸盐沉积来自颗石藻的贡献,在海洋碳循环中扮演 着重要的角色。

以上 MODIS 产品参数下载自 https://oceancolor.gsfc.nasa.gov/,数据时间为 2020 年,使用三 次样条插值法将产品重采样至 0.05°×0.05°。 MODIS/AQUA 卫星升轨的过境时间为地方时 13:30,与 OCO-2 升轨过境时相差约 6 min,在此假 设大气 CO_2 柱浓度在这段时间内没有明显变化。

2 研究方法

2.1 随机森林模型

随机森林模型是一种基于决策树集成的机器学 习算法,有着对多要素、大数据量、复杂非线性问题 求解的优势,可用于解决复杂的分类和回归问题,应 用广泛(Breiman,2001;王可心等,2021;杭鑫等, 2021)。在对陆上大气 CO₂ 柱浓度的预测中,随机 森林方法相较其他机器学习方法,显示了更高的精 度(He et al,2023)。随机森林中的每棵树都通过随 机且有放回的方法在原始的训练集中抽取 2/3 训练 实例,根据生成的样本集构建决策树,所有单个决策 树的结果通过聚合得到最终的预测结果。对于每棵 树,未被抽取到训练集中的 1/3 的数据叫做袋外数 据(OOB),可以用来评估所构建的模型精度,即 OOB 特征重要性。

2.2 模型验证

随机森林模型对海上大气 CO₂ 柱浓度的估算 精度由 OCO-2 卫星监测数据作为真值进行检验,具 体指标为决定系数(*R*²)、偏差(Bias)和均方根误差 (RMSE),还需计算模型的均方误差(MSE)。

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - X_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{X})^{2}}$$

$$Bias = \frac{\sum_{i=1}^{n} (Y_i - X_i)}{n}$$
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - Y_i)^2}$$
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (X_i - Y_i)^2$$

式中: X_i 为OCO-2卫星监测到的大气CO₂柱浓度, \overline{X} 为 X_i 的平均值, Y_i 为经过随机森林模型估算的 大气CO₂柱浓度,单位为 ppm。

3 结果与讨论

3.1 随机森林模型设置

随机森林模型需要设置叶子和树的数目,为确 定两者的最优数目,分别设置叶子数为5、10、20、 50、100、200、500,树的数目为1~200,计算模型的 MSE。结果如图1所示,当叶子数目为5或10时 MSE值相对最低,本文取最优的叶子数为5;当树 的数目达到80时MSE处于最小并基本稳定,即最 优的树的数目是80。

3.2 模型精度验证

随机选取 2020 年 4/5 的数据作为随机森林模 型的训练数据集,1/5 的数据作为验证数据集,总数 据量为 1774,符合随机森林方法对样本数量的需求, 验证结果如图 2 所示。由图可知,验证数据集的实际 大气 CO₂ 柱浓度变化范围约为 407.4~414.7 ppm, 随机森林模型的估算范围为 410.0~413.6 ppm,模

模型精度验证

Fig. 2 Scatter plot for accuracy verification of random-forest-based model of atmospheric CO_2 column concentration over the South China Sea

型表现出 0. 27 ppm 的高估,高估主要出现在 CO₂ 柱浓度低值区,而在高值区则表现出一定的低估,大 气 CO₂ 柱浓度在 413 ppm 附近时模型的精度相对 较高。模型的 R^2 为 0. 59, RMSE 为 1. 00 ppm,较 Guo et al(2015)陆地上空 CO₂ 柱浓度估算精度(R^2 为 0. 00~0. 59, RMSE 为 1. 17~1. 79 ppm)更高, 这也与南海海上 CO₂ 柱浓度年内变化幅度弱于陆 地上空有一定关系。

分别选取 1 月、4 月、7 月、10 月作为冬季、春季、夏季、秋季的代表月份对模型精度进行验证,结果见表 1。由表可见,模型在春、夏两季精度较高, R^2 最高达到 0.65,RMSE最小达到 0.70 ppm;在秋、冬两季精度略差, R^2 最低为 0.49,RMSE最大达到 1.24 ppm。从单月南海大气 CO₂ 柱浓度平均值对比来看,也是春、夏两季精度较高,相差均为 0.05 ppm,秋、冬两季分别相差 0.07 ppm 和 0.10 ppm。

表 1 不同李节南海大气 CO₂ 柱浓度随机森林模 3	型精度验证

Cable 1 Accuracy verification table of random-forest-based model of attraction	nospheric
--	-----------

CO ₂ column concentration	over the S	South China	Sea in	different seasons
--------------------------------------	------------	-------------	--------	-------------------

指标	冬季	春季	夏季	秋季
R^2	0.49	0.65	0.57	0.50
RMSE/ppm	1.19	0.83	0.70	1.24
OCO-2 监测平均值/ppm	411.81	413.83	412.56	410.90
随机森林模型估算平均值/ppm	411.91	413.78	412.61	410.83

3.3 季节分布特征

基于宽幅多源卫星构建的南海大气 CO₂ 柱浓 度随机森林模型具有高重访周期的优势,以此构建 的月或季平均大气 CO2 柱浓度数据基本可实现对 南海区域的空间全覆盖,相较于 OCO-2 卫星的窄幅 数据,能够更好地反映南海大气 CO2 柱浓度的空间 分布特征(图 3)。图 3a 展示了 OCO-2 卫星于 2020 年4月南海大气 CO2 柱浓度的分布,图 3b~3e 分 别展示了基于宽幅多源卫星数据的南海区域在 2020年的大气 CO2 柱浓度随季节变化的分布特征, 具体表现为南海大气 CO2 柱浓度春季>夏季>冬 季>秋季。如图 3b~3e 所示,春季南海大气 CO₂ 柱浓度整体较高,南海北部海域特别是近海岸带附 近高值达到 415~417 ppm,南海西部和南部的大气 CO₂ 柱浓度相对略低,低值区为 412~413 ppm;夏 季大气 CO₂ 柱浓度有所降低,高值区在北部湾、海 南岛西海岸、南海东北部,低值区为南海西部、南部 和东南部;秋季大气 CO₂ 柱浓度整体在全年属于最低,海盆区域高于近海岸附近,南海北部特别是近海岸带附近值最低,低值达到 407~410 ppm;冬季大气 CO₂ 柱浓度出现高低值相差较大的情况,北部和西北部海岸带附近、东南部海域值较高,高值达到 414~416 ppm,而南部近海岸带附近出现 408~410 ppm 的低值。

3.4 季节变化原因分析

南海大气 CO₂ 柱浓度季节变化的主要原因有 三点:一是"生物泵"随季节变化,即南海真光层的浮 游植物的数量、分布和生产效率都随季节发生变化, 南海作为陆架边缘海,大陆河流携带的泥沙、污染 物、营养盐等进入南海,为浮游植物的繁殖提供了基 础,但是不同季节温度的变化、汛期多云对太阳的遮 挡等因素又会影响浮游植物的生产效率;二是"溶解 度泵"随季节变化,即海面温度本身随季节的变化改 变了海气CO₂ 分压差,南海会呈现季节性的源-汇

1547

转化;三是陆架上空大气 CO₂ 对边缘海的影响,随 着季节性风速风向的变化,大陆的高浓度 CO₂ 会被 风吹到南海上空,或者原本应由"生物泵"和"溶解度 泵"影响而产生的 CO₂ 柱浓度差异,在风的影响下 产生了空间移位,进而更加复杂地影响海气 CO₂ 分 压。 在不同季节,南海大气 CO₂ 柱浓度受多种因素 共同影响,形成明显的季节特征,为了对其季节变化 原因进行分析,本文利用随机森林模型内置的 OOB 特征重要性参数(MODIS 产品详见 1.4 节)来排序 每个影响因素对结果影响的重要程度,结果见图 4。 如图所示,1月和4月南海大气CO₂柱浓度的第一

影响因素是风向,此时盛行东北季风,来自大陆的高 浓度 CO₂ 随东北季风进入南海区域,提高了南海大 气 CO₂ 柱浓度,图 3 中展现出的 CO₂ 柱浓度存在明 显的北部近海岸>中心海盆的这一规律也印证了上 述分析;1 月颗粒无机碳是第二重要影响因素,其多 来自陆源输入,所以1 月北部近海岸带附近的大气 CO₂ 柱浓度较中心海盆明显偏高;7 月风速和风向 是影响最大的 2 个因素,此时南海盛行西南季风,但 是北部湾仍以偏北风为主(王春乙,2014),且北部湾 的风速大于其他海域,叠加因素造成北部湾区域 CO₂ 柱浓度较高;10 月海温成为最主要影响因素, 此时中心海盆温度高,北部近海岸带温度较低,大气 CO₂ 桂浓度也表现出中部高、北部低的特征。

4 结 论

基于随机森林模型对多参数、非线性、回归问题 的计算优势,提出了一种利用多源卫星的叶绿素 a 浓度、瞬时光和有效辐射、颗粒无机碳、颗粒有机碳、 海面温度、风速、风向 7 个参数估算南海大气 CO₂ 柱浓度的方法,假设 OCO-2 卫星获得的数据为真 值,以 2020 年南海数据对模型精度验证,Bias 为 0.27 ppm, R² 为 0.59, RMSE 为 1.00 ppm, 整体精 度令人满意。

基于宽幅多源遥感数据构建的南海大气 CO₂ 柱浓度估算方法,可以在月或者季的尺度上实现对 南海区域的空间全覆盖监测,相较于 OCO-2 卫星的 窄幅数据,能够更好地反映南海大气 CO₂ 柱浓度的 空间分布特征。南海大气 CO₂ 柱浓度呈现明显的 季节特征,具体表现为春季>夏季>冬季>秋季。 在不同的月份,造成南海大气 CO₂ 柱浓度季节差异 的主要影响因素是不同的。在 1 月和 4 月,主要影 响因素是风向,7 月风速和风向是影响最大的 2 个 因素,10 月海温成为最主要影响因素。考虑影响南 海大气 CO₂ 柱浓度的主要因素呈随时间变化特征, 下一步拟开展针对不同季节/月份的随机森林南海

海上大气 CO2 柱浓度估算方法研究。

参考文献

- 白文广,张兴赢,张鹏,2010. 卫星遥感监测中国地区对流层二氧化碳 时空变化特征分析[J]. 科学通报,55(30):2953-2960. Bai W G, Zhang X Y,Zhang P,2010. Temporal and distribution of tropospheric CO₂ over China based on satellite observation[J]. Chinese Sci Bull,55(30):2953-2960(in Chinese).
- 蔡大鑫,刘少军,佟金鹤,等,2023. 基于卫星遥感的南海海-气 CO₂ 通量研究[J]. 热带气象学报,39(4):462-473. Cai D X, Liu S J, Tong J H, et al, 2023. Study on air-sea CO₂ flux in the South China Sea based on satellite remote sensing[J]. J Trop Meteorol,39(4):462-473(in Chinese).
- 邓安健,郭海波,胡洁,等,2020. GOSAT 卫星数据监测中国大陆上 空 CO₂ 浓度时空变化特征[J]. 遥感学报,24(3):319-325. Deng A J,Guo H B,Hu J,et al,2020. Analysis of temporal and distribution characteristic of CO₂ concentration over China based on GOSAT satellite data[J]. J Remote Sens, 24(3): 319-325 (in Chinese).
- 葛钰洁,肖钟湧,2022. 基于 GOSAT 卫星的中国 CO2 浓度时空特征 分析[J]. 中国环境监测,38(5):96-108. Ge Y J,Xiao Z Y,2022. Analysis on the spatial and temporal characteristics of CO2 concentration in China based on GOSAT satellite[J]. Environ Monitor China,38(5):96-108(in Chinese).
- 杭鑫,曹云,杭蓉蓉,等,2021.基于随机森林算法与高分观测的太湖 叶绿素 a 浓度估算模型[J]. 气象,47(12):1525-1536. Hang X, Cao Y,Hang R R,et al,2021. Estimation model of chlorophyll-a concentration in Taihu Lake based on random forest algorithm and Gaofen observations[J]. Meteor Mon,47(12):1525-1536(in Chinese).
- 加亦瑱,陶明辉,丁思佳,等,2022. 基于卫星遥感的中国地区 XCO₂ 和 XCH4 时空分布研究[J]. 大气与环境光学学报,17(6):679-692. Jia Y Z, Tao M H, Ding S J, et al, 2022. Spatial and temporal distribution of XCO₂ and XCH₄ in China based on satellite remote sensing[J]. J Atmos Environ Optics, 17(6):679-692(in Chinese).
- 李静波,张莹,盖荣丽,2023. 基于机器学习的星载短波红外 CO₂ 柱 浓度估算[J]. 中国环境科学,43(4):1499-1509. Li J B, Zhang Y, Gai R L,2023. Estimation of the column concentration of carbon dioxide using spaceborne shortwave infrared spectrometer [J]. China Environ Sci,43(4):1499-1509(in Chinese).
- 乔年,卢楚翰,管兆勇,等,2023. CMIP6 模式大气中南北半球水汽质量反相变化:不同温室气体排放情景差异[J]. 气象学报,81(5): 776-787. Qiao N,Lu C H,Guan Z Y,et al,2023. Anti-phase relation of water vapor mass between the Northern and Southern Hemispheres in CMIP6 models: differences under different greenhouse gas emission scenarios[J]. Acta Meteor Sin,81(5): 776-787(in Chinese).
- 孙军,刘东艳,冯士筰,2003. 近海生态系统动力学研究中浮游植物采 样及分析策略[J]. 海洋与湖沼,34(2):224-232. Sun J,Liu DY,

Feng S Z, 2003. Preliminary study on marine phytoplankton sampling and analysis strategy for ecosystem dynamic research in coastal waters[J]. Oceanol Limnol Sin, 34(2): 224-232(in Chinese).

- 田光辉,刘少军,李伟光,等,2020. ASCAT 风场在南海的适用性分 析[J]. 广东气象,42(5):39-43. Tian G H, Liu S J, Li W G, et al,2020. Analysis of the applicability of ASCAT-derived wind field in the South China Sea[J]. Guangdong Meteor,42(5):39-43(in Chinese).
- 王春乙,2014. 海南气候[M]. 北京:气象出版社. Wang C Y,2014. Hainan Climate[M]. Beijing: China Meteorological Press (in Chinese).
- 王可心,包云轩,朱承瑛,等,2021.随机森林回归法在冬季路面温度 预报中的应用[J]. 气象,47(1):82-93. Wang K X,Bao Y X,Zhu C Y,et al.2021. Forecasts of road surface temperature in winter based on random forests regression[J]. Meteor Mon,47(1):82-93(in Chinese).
- 叶函函,王先华,吴时超,等,2021. 高分五号卫星 GMI 大气 CO₂ 反 演方法[J]. 大气与环境光学学报,16(3):231-238. Ye H H, Wang X H, Wu S C, et al, 2021. Atmospheric CO₂ retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5[J]. J Atmos Environ Optics, 16(3):231-238(in Chinese).
- 詹滨秋,赵永平,1989. 二氧化碳,海洋与气候[J]. 海洋与湖沼,20
 (1):92-99. Zhan B Q, Zhao Y P,1989. CO₂ oceans and climate
 [J]. Oceanol Limnol Sin,20(1):92-99(in Chinese).
- 张炳炎, 闫召爱, 郭文杰, 等, 2021. 基于 CO₂ 测量数据的大气辐射传 输模型 LBLRTM 优化[J]. 空间科学学报, 41(6): 905-910. Zhang B Y, Yan Z A, Guo W J, et al, 2021. Optimization of atmospheric radiative transfer model LBLRTM based on measured CO₂ data[J]. Chin J Space Sci, 41(6): 905-910(in Chinese).
- 张远辉,王伟强,陈立奇,2000.海洋二氧化碳的研究进展[J].地球科 学进展,15(5):559-564. Zhang Y H, Wang W Q, Chen L Q, 2000. Advances in studies of oceanic carbon dioxide[J]. Adv Earth Sci,15(5):559-564(in Chinese).
- Breiman L,2001. Random Forests[J]. Mach Learn,45(1):5-32.
- Crisp D, Pollock H R, Rosenberg R, et al, 2017. The on-orbit performance of the Orbiting Carbon Observatory-2(OCO-2) instrument and its radiometrically calibrated products [J]. Atmos Meas Tech, 10(1):59-81.
- Guo M, Wang X F, Li J, et al. 2012. Assessment of global carbon dioxide concentration using MODIS and GOSAT data[J]. Sensors, 12(12):16368-16389.
- Guo M,Xu J W,Wang X F,et al.2015. Estimating CO₂ concentration during the growing season from MODIS and GOSAT in East Asia[J]. Int J Remote Sens, 36(17):4363-4383.
- Hakkarainen J, Ialongo I, Tamminen J, 2016. Direct space-based observations of anthropogenic CO₂ emission areas from OCO-2 [J]. Geophys Res Lett, 43(21):11400-11406.
- He S C, Yuan Y B, Wang Z H, et al, 2023. Machine learning modelbased estimation of XCO₂ with high spatiotemporal resolution in

China[J]. Atmosphere, 14(3): 436.

- He Z H,Zeng Z C,Lei L P, et al, 2017. A data-driven assessment of biosphere-atmosphere interaction impact on seasonal cycle patterns of XCO₂ using GOSAT and MODIS observations[J]. Remote Sens, 9(3):251.
- Li J, Jia K, Wei X Q, et al, 2022. High-spatiotemporal resolution mapping of spatiotemporally continuous atmospheric CO₂ concentrations over the global continent[J]. Int J Appl Earth Obs Geoinf,108:102743.
- Liang A L, Gong W, Han G, et al, 2017a. Comparison of satelliteobserved XCO₂ from GOSAT, OCO-2, and ground-based TCCON[J]. Remote Sens,9(10):1033.
- Liang A L, Han G, Gong W, et al, 2017b. Comparison of global XCO₂ concentrations from OCO-2 with TCCON data in terms of latitude zones[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 10 (6):2491-2498.

Manabe S, Stouffer R J, 1993. Century-scale effects of increased

atmospheric CO₂ on the ocean-atmosphere system[J]. Nature, 364(6434):215-218.

- Schneising O.Buchwitz M.Reuter M.et al.2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY[J]. Atmos Chem Phys, 11(6): 2863-2880.
- Tian H Q, Lu C Q, Ciais P, et al, 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 531(7593):225-228.
- Wunch D, Toon G C, Blavier J F L, et al, 2011. The total carbon column observing network [J]. Phil Trans R Soc A: Math, Phys Eng Sci, 369(1943): 2087-2112.
- Wunch D. Toon G C, Sherlock V, et al, 2015. The total carbon column observing network's GGG2014 data version [M]. Oak Ridge:Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

(本文责编:何晓欢)