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An Identification Method of Different Levels of Severe Convective
Winds with Convolutional Neural Networks Optimized by Immune

Evolutionary Algorithm and Its Application

LUO Ling ZHANG Zhicha ZHAO Junping CHEN Lie HUANG Xuanxuan WANG
Liying LI Wenjuan LUO Ran PENG Xiayun HUANG Juan
Zhejiang Meteorological Observatory, Hangzhou 310017

Abstract: The serious imbalance in sample distribution, characterized by a sharp drop in the
frequency of severe convective winds with increasing wind speeds, is identified as the
predominant factor hindering the accurate intensity-based classification of severe convective
winds by various existing algorithms. To address this problem, in this study the non-differentiable
Probability of Detection (POD) is proposed to be the loss function for a Convolutional Neural
Network (CNN) and Bias to be its constraint condition. Subsequently, the Multi-objective
Optimization Immune Evolution Algorithm (MOIEA) is employed to optimize all the model
parameters of the CNN. This contributes to the development of a novel identification algorithm,
which is named Severe Convective Wind Identification Network (SCWINet), for identifying
severe convective winds at the speeds of 17.2 mes™, 20.8 m*s™, 24.5 mes™ and above. SCWINet
leverages the radar vertical liquid water content, three-dimensional radar reflectivity, lightning
location data and minutely surface automatic observation station data in Zhejiang Province during
2022-2024, achieving different levels of severe convective wind identification with temporal
resolution of 6 min and spatial resolution of 0.01< Then, the performance of SCWINet is
compared to the two approaches, i.e., Weighted Mean Squared Error (WMSE) and Balanced Mean
Squared Error (BMSE), which use the same CNN structure but have differentiable loss functions.
The applicability of SCWINet is then assessed based on the Threat Score (TS), Bias, POD, False
Alarm Ratio (FAR) that uses the neighborhood method (with a scanning radius of 5 km), and the
planar distribution characteristics of severe convective winds. The main results are as follows:
SCWINet can effectively identify severe convective winds of 17.2 mes™, 20.8 mes™, 24.5 mes™
and above corresponding to systematic and scattered severe convective systems, with better
performance observed in identifying severe convective winds triggered by systematic convection
than those triggered by scattered convection. However, the identification effectiveness of SCWINet
generally decreases as wind speed increases, with increased false alarms and missed detections
being the primary causes of this phenomenon. By contrast, the commonly used WMSE and BMSE
approaches fail to identify severe convective winds, and all severe convective winds they identify
are below 17. 2 mes™. Nevertheless, the data used in this study are somewhat limited in terms of
the feature completeness and volume. Future enhancements in identification accuracy of severe
convective winds could be achieved by incorporating additional features and data, such as radar
radial velocity, Specific Differential Phase (Kpp), Differential Reflectivity (Zpgr), and satellite data.
This could be also applied to identify even higher wind speeds.

Key words: nowcasting, severe convective wind, identification of winds at different scales, deep

learning, loss function, radar



74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102
103
104
105

50 5

SR UL TR RR 3 R Fi I A 7 I8 BB 17, 2 mes™ (R T K RIFAE AT 8 BRI K
WRA, Hrh 17.2, 20.8, 24.5 mes™ DL R GBI T 8 94 10 LA b, B psR Y
RORMEMBUIRAE, I C ™ B [ [ AR i 7= 22 4 Ak s 2 5 A e G kOG5, 2016a;  2016b;
BEASRAAT/NG, 2020) o SRTAT,  H AT 4Bkl 25 BUE BRI, rh ROBEBUEAS R B XU TR B
VPR ABR (M #i ks, 2017; s, 2023), Bk, NG R 0 s Ak 553 1T R0 a6t i
KA e F 2T B BAR A EDULIN I 1) B Bh 4k S LI 2 RG 4B AG R FEAN TG n, i 3 P BR A
75 3, AR AR A 5 XU IR 75 R G OGRS, 2018) o BRIk, A R S0 i JXURA TOU4R T3 4
AREAERIELE X (RS, 2022).

PUA 58 XU R AR 3 B TS AR 5 45 1 M B TR IR AR A R, LA AT 4y A LA
WIEH (FERS, 2013) . SCREENL (IS, 2018) 2544 Gik il Sk A LA i 35 4 22 ) 4%
BRI R TR 20 I 4 555 (¥ % FE 442 I 2% B0 (F eSS, 2017 ZRiig 0%, 2018),
IR IEAE R SR R RS T Sk, EE AT H R RE X o 1 R AR R KR 3e A
1k, BEXEBRIR S GEAR A, JCHSEA X 17,20 20.8. 24.5 mes™ f2 UL SR KRR BT 5000 5%
PR W o 3 i 0] R R R T 58—, RSB MARA T EAR S VEREA IR, IR A 3k
SUR BRI E A AR RPN, HAR BOR AR (O e, 2014, I REMSE, 2021 #4h%%,
2022; TGS, 2023). BB, SRAAELETCE, JYERIGFEAS AT, W 24.5 mes™ LA
ERRAART B W, 3™ 2 T 4% 8 A 1 I F 1

SR U b 3R SRR IR IR 2 L VR ) e TR A 1 ) R, AT g SR U R X TR T e 4
BERbE S . ARSI T A e 17.20 208, 24.5 mes™ LU 55 K4 97 R B 53 (Severe
Convective Wind Identification Network, SCWINet) . %532 K F A4 b2 (POD) 1N
LA L (CNND- B RS, DA 22 (Bias) AL 2 46, i3t 2 H AR AL i S s ot Ah 55
% (MOIEA), fitfb 77 CNN HIpTA M S5, Hatk, ] T 2022—2024 SEHTTAE 2 U500 U 54 -
IR EEERE, 4 SCWINet 5K FHAHIR] CNN 584 IR Fh 77 R AT 17 XF Lo n A 3% 77 1 22
(WMSE) A {7345 2k B R ~F- 1 34 J7 1% 25 (BMSE) Al o 1 2k BT 6. 36 T4 (k12
9 5 km), i@id TS >, Bias. POD. k%% (FAR) %545 br A5 KF 1 70 A7 RFAE, #R0F T
SCWINet 3 i 7% .

1 BRIk
1.1 888

ABEFCILER T 2022—2024 SEHLA THIATE EIRAKE B Z4EHRIA A, TN HE A
Iy B I B St TR S 2 IR Bl . b, WL =4EERIA R RIE 8 #f S BB

ik L AL NG E], LR #E%08 6 min, ZE[E 2 HFF N 0.01° , S WEBU IR &S 5 L
3



106
107
108
109
110

111

112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132

I EERNE 1 Fon. EAMPHERT, KA TETRES INEIERENE, ZRETE
T U-Net BERI4E ), AT IEHCT 2019 4F 7—8 H 3Lit 5000 fil Buyi i 2 i 75 i S i 26, s Y
(I N SR T A S S B, FUA S 0] B BB AR S N ARG AR R E R o 12 a4
F14 9 4000 Bi)IIZR42 A 1000 BIIAEE . FEUIZRM BL, WIUR I35 A 0.001, FAIIEZEAL 100
U, IR BT 27 50 2 SR P 46 1] o) 2 ok SR s A R B R ISR e IOIRAS o ek, s o ioxt
1000 510 1 £E Hh =l B K TRl PR IR ) R B2 A 21 80%.

P 1 = YE ISP T 8 35 S BB R o ik 1

Table 1 Information of eight S-band dual-polarization radars used in 3D radar network mosaics

EERES ) iz 2
79570 29.0852 118.7025
79571 30.2732 120.3375
79572 30.8380 120.2052
79573 30.7392 120.7611
79574 30.0697 121.5093
79577 27.8956 120.7456
79578 28.5445 119.9274
79579 29.2188 119.6450

F TS Bl 25 oo B RL AT BEAEAE 6~12 min ZEIR, DRIMAR SCR A I 25 B AR AR %1 (6. 12
min 5¢ 12, 18 min) BB RRIIZRE A FOR MR . Horbr,  ESEHCOR RBTRE Ay 73 2% 3 18T 5 5
ML L2 6 min I B A IR, I F DA FL s AR R B 2 A7 o e s ) (P L3R 2) .

B A3 A A R BOD IR S R A AR AR SR . 10, KE 1 Bl s BORIAR R B 41T Ty
VERRE B R L, R — AN LR 2l X, ORI KO A . SRS, AR AT
EEHIGE 2) . WEPIRRY, BT HE 4R TOR AT L 5 3R KRR AR T D) AR 5% 1 3
FLAKSF 23 [ RRE (B B 55, 2018 JLAUEESE, 2019; XGRS, 2021; JERERESE, 2021). Ak,
Z: 824270 (2018) A L 5 %8, M= 4R A 4 I B REFR SR T 10 2 [ RRAE A DR 23 2 i) 52 X
(PR AL & (K 3) «

FREEHE, ATERIZRREA BN 11625, SR REA A &3 NFHIE AR S Kod, H
AN IE BB AERE Sy 105656, R 10 FHRHIEIE 556 MRS s 40 A, A28 RUE N 556
DX 33 F O s AL ) Bl 3 R o I RREAS BB rh 17, 2 mes™ DA b 4% XU BRI X [1) P B A B0 A1
B 1o MEED LRI, S RURE AR ST B X A5 2 1 38 D IR IS, 28. 5 mes™ B AR 3R 6K
AFEA 5 EEACA 0.59%. IHAHHE K B 2024 4F 3—4 H1 6 d sxfimid 2, it 119 ASmf k(i8]
BE > 6 min), FENICE B 7165814 HIKS X IR, A5 43 HE% N 0.01° .

e 2 BRI R KRR AR L T V5
Table 2 Filtering methods for severe convective wind samples
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G 556 M IXIEP 50 dBz LA LiEIAH &R BERIBAZRDE . ESRX R R

SR T2 R A

133
134
135
136 e O T AR X
137 B 1 BT Shap (LA 1T BEL TR Labelme ARy 3l 5 i K R B [X 3 (2045 X 43k)
138 Fig. 1 Shap-based Zhejiang Province boundary and Labelme-annotated non-severe convective wind exclusion zones (red polygons)
139
140 ¢ 3 FT 73 ZR AR B R A [l A%
141 Table 3 The dependent variables used for identifying severe convective winds of different scales
RHEZRA [Rl A & 44 LA FHEECE
KA HH AT I 220 ) T A2 4 S S 6 (R iR i dBz 2
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Fig. 2 Frequency distribution of severe convective winds at different wind speed levels
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Table 4 Comparison of different data construction schemes
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AR o S G R B BE TR B AR 7 158 S B0 7 2, SR TN A7 R IG T, B DSk
ROAHG R, FREEAE 5 kme BGPTSR R TS 1740, POD. FAR. Bias HiITAlEF X1 5%
PR TR, E 3 i A R A 50K 60 A7 1 R A ™ B S ST 48 ) R 7 5 A2 R e g LIRS
VR R 1 e S LR B £ 1 TN 45 B i B 2 A 4 8 I R T R ) A8 IE A1,
RZ ARG , SRIGIRYE Ay BRI PRSPy . BRI IR A K(mes™), TP %
LA N T K B A A NT K RE, PN R SIAS N T K fiil T K ks, FP &
RN T KA T KB, TN il T K BTN T K. A5 A8
(11 K 53 17. 2. 20. 8. 24.5mes™

TS=L 5]
TP+FN+FP
OD= TP (2
TP+FN
FAR= " (3)
TP+FP
BIAS= TP+FP (4)
TP+FN

1. 4 SCWINet

B — 2 B0 BUZAE R U N AL 1 23 [RVRRAE B, 32 S SO AAE 2 R0 RUBE (0 48 /0, 1 T4
AR 58RI DR AR 23 [ K /MUY 558, IR IR B TR I AE . A SC AR 3 (F) CNINAE
BT R, SR 8529, KT HRKIIYI G A & (11625) , LALR AT BB LRIIE
A TH BRIz . IR 2, CNN [ NRFIESCH 10, i NRRAE 1 25 18] X SR /N Ay
55, MJE4E PR RelLU B0F B3 (Krizhevsky et al, 2017), EHASAERIEIE %L (C) 20513
J#N 32 Al 16, RRAEAS (AU U434 /R 33 Rl 1L (HXW) , SRJE4 2 A4k (Dim) A4 16 (1)
AFERZ S ReLU SR BRAL,  H5c i 5 XX o

HEEG 3%3 BRI 3x3 LEE: 3x3
Wi EE: Relu HiE Y Relu m WidE G Reln
N N

[ > [

G AREGE: 10X5%5 CxHxW=32 x3 x3 CxHxW=16 %1 x1

Dim=16 Dim=16
P 3 T 3RS A CNN 45 4

Fig. 3 The framework of CNN for severe convective wind identification
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SCWINet K AN AT i 73] POD A Bias 7 AI/E i 2k BB A RSk F. Horhr, BL POD 1E
NBVR KB, ARFERLE NIRRT 1 B AR IR T POD, X B RE AR R A AT S 301 38 X
MR, (HAR T R S BOL KA, B Bias RK. N T AR IRINE, %E T Bias 4
%A%, fiif3 POD Al Bias M H.#11%1. 481, POD 1 Bias Aa[ sy, KULTCILTE THEEE R ERIIK
B CNN [T 240 AT vz, FIF MOIEA B LR TRkt CNN 1IFTH 2

IEA JIlZk SCWINet FJ R A& SCHIRAR IR .

k

F(%) :1—%><Z(PODKJ_) (5)
=

max BIAS, <1 ()
17.2k=1

K,=1{20.8,k=2 (7)
24.5k=3

h: FO)Jy SCWINet KRG x AR RIS E, HXIRN SCWINet KIS %, 24
F (x) 15 25/ FL 2 20 (6) 1) Bias £934I, SCWINet 51 17.2, 20.8, 24.5 mes™ LA |
58X POD M fic i, Ui HSHRU ATt S 5. MOIEA [ R EVE WL (K %%, 2003; #FH%E,
2024) , ASCATECIR . TEAR ST BANE 5 AR HIEB T, XF3R 1 T4 5 i A/ TR Ik 4
H RS RN FAE 50 dBz LA L Hit 2 6 min 5L 17. 2 mes™ DL 38)X, {H SCWINet £ iR 5,
Kz KA A 2 TR 5 K
1. 5 FEF B R 2 (WMSE) 157 25 B8 B 7 L AR R

R B2 S AL R R AT I B R R, FE T RE R PR ORI R S 8. A T ik
TS AE R 20 AR 50 5 R P R A B S P (), o BB TR R T R R HE A (B 3), L
KEHONKF 7 WMSE #5124 (Huetal, 2017; Zhangetal, 2017; Fangetal, 2020) .

WMSE #HEE T #3975 3 2 (MSE) 40k 3 5, HAETHE AR 2 1T HARMA R RN
I AR HARE AN S A SR B SRR, AR K HARE A/ B AR 12K
UTTERAE P4 BRI, WMSE B 32 #32 F T MR AR A Al ) 7, DASRE s MR 7E A B AN )
10 | B bR B P e R I

WMSE = %iw(oi,j)(pi,j 0, (8)
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AF s NABFEARE, O A5 TSR AREA I XUE, X R jRIRGESED: Py A% i
PAIR KRR, XN j B RGEES ;. w0y, j) xd B RGH S I AL R 88 N O B3
N; A j RUE S RS S 8, v W 1 s .
1. 6 TP 5% % (BMSE) Bk R E it AR

WL (Ren et al, 2022), ZIZREHE AT HN, MSE 2 #bR2% 7 A B 5t i i 6 e -1 751
D WHIARAS o DA T R [ U i) R b B A7 AE IR REAS AN e el B T ROR LR TH0%, 73 30 W]
36 AN T i 540 407 [ 1) /5L ) BMSE 22k e 31 (Ren et al, 2022) , #1 R FiR:
exp(~(0-P)*/ (25%)) (10)

B

ZeXp(_(OB,k - PB,k)z / (20_2))

L=-log

X: O APFTAHEARINGEE: P AT FEAX MR UIE: O, R I ZRid R i

EAZIR O M T4, B NN THRBIHEAL: o NIZBURREKI A IS, SETHET
Bk, o SEBESHES SEAIZGRm A2 R iit.

2 Far e 4h R

2. 1 GRERE

WMSE #1 BMSE H i 8472 B TSR MRREAS A4 1) /8, HAEA SO ZRAINAIA T 1
Bl, WMSE I BMSE [ iR i XU/ T 17. 2 mes™, 28 WIS Fldb 2 R 55 VI 5 O A 5 24
TE R R, R A5 R ARG, W RS AT SCWINet 78 I 4R Hh 1 R0 R -

76 5 km AB3AG 50 A2 264 (GR 5) iT L, SCWINet U R 80 hf . ANk, SCWINet 43 2%
TR A0 SR i X RS ) 38 KT T BRI, S TR I 38 KR i b SR A R R . Ayt —2b
PEAf SCWINet (& 1%, 456 1 276 V5 s X T 40 A 6 2024 47 3 F 25 H 14:12—17:12(k
FN, RN 17.20 208, 24.5 mes™ PLF g K R idE AT A0 56

5 SCWINet (15 Gkt 46 45 5
Table 5 Test results of SCWINet in test set

Gk i o AR (S5 2%)
>17.2 mes™ (8 4%) >20.8 mes™ (9 2%) >24.5mes™ (10 %)
TS 0.123 0.075 0. 044
POD 0. 415 0.379 0. 361
FAR 0. 852 0.915 0. 952
Bias 2.793 4.437 7.526

2.2 20244E3 4 25H 14:12—17:1258 R RN i
SR R YIAE . PR BRI AN AL, 2024 4F 3 1] 25 H 14:12—17:12,
WL BUORYE s i i, R 8~13 it s RGethaE X . AEl 4 A&l 5a,~5d; AT,
BEVR SR R FE R VAL AR R T R BN, SR R A O SR A R B I 51K I 4 B R R
(14:12—15:12) . WLJSHEH RGURIE, BEHE A BRI T 51 K 1) R Gi M KT 58 X (15:12—
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(g v Ll 2 R VR A PERX (B 5 ay) o

ME 4 T7, SCWINet e 20 A H 3R M R A X8k, HYEIE B prsik. BAIME, 1E
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8~11 2%, MUMIPEILESHIL 8~12 oA, B FE i I0 8 Zus X (¥ Bby) o 16:12 WYL VG & H1 I
LRIRXFI, AP H I B ST (B 4e), EZRRITIR X I B 8~11 s X, EBALT
AN7K . G5 (B 5cy) o 17:12 FEFg-ZRACFAZORXNR (B 4d) FIERIIEK . B, T35
MEIRVEH 8~12 Zism X (B 5dy) o AT IR SEH I3 KX, SCWINet #3875 8~10 24 LA
AR, R DX AR 3 s AR — B

FERCVGEFE S, SCWINet HRILH T — & MR AT IR A FUERE /7, H AL AT A4 X
S B B LT A TR X, SR AT USRI IR 20 min DL L, SEERIN 16:12 L8R K (K
5¢;), {H SCWINet IR 5 H 8~9 5@, A 10 2% (B 5cy) , SEif A e N2 Hi. R0,
ZRGERB TR PR R, 16 16:32 WIF] 8~9 unK, RISTE 16:42—17:06 W F)
10 LA bam)d (Elng) , AT, 16:12 W5 REONIR AT T . Ad, SCWINet 5 R &R Xt ity i
JroRRIX, X FEEEAE T, AR TR A7 MBS, SCWINet {XAE IR SRR RS IX 1
P RRISER A, T 2R AHAT AT 75 AU A DX AR TR R AR T 3R TR B A 280 P 33 (TR B 5
2019) , ZISHRATIE AT AE B 5 HOE I SR AU I S B TR R SRS T DA

6 /T 14:12—17:12 JY]IAJiZ 6 min {18 PF 70 (] 5741, Xf S22k 40 AR, AT WL SCWINet Xf
BRI BABUFIRARE ST, HBEA SRR 3R, U AUR 5 e YW MK, BE4t,
SRR U S Y AN TR A 2 I SCWINet PRI R (1 s B R 32, RIVFE 23 M0 5 xd Jd oy == 1R e B
(14:12—15:12, 0~10 W [a]fF51) , TS 1¥4r (Kl 6a) XS AL, Bias(& 6b) . POD (& 6c) M
FAR (& 6d) #IXT K. ik fE & P RIS AR I, B SCWINet 53 A T 2R i 55 &
G s U B R R X, TN 43 P SR S BT A R 1 R AR X B 5 R
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