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提  要:强对流大风(以下简称强风)发生频次随风速的增大而急剧减少(样本严重不平衡)现象是导致现有7 

各类算法难以分级识别强风的主要原因。为了解决该问题，将不可微分命中率(POD)作为卷积神经网络8 

(CNN)的损失函数，偏差(Bias)为其约束条件，然后利用多目标优化的免疫进化算法(MOIEA)优化 CNN9 

的所有模型参数，提出了一种针对 17.2、20.8、24.5 m·s-1 以上强风的分级识别算法(Severe convective 10 

Wind Identification Network，SCWINet)。SCWINet 利用 2022—2024 年浙江省雷达垂直液态水含量、三维11 

雷达反射率、闪电定位仪、分钟级地面自动观测站资料，实现了时间分辨率为 6 min，空间分辨率为 0.01°12 

的强风分级识别，并与两种损失函数进行对比，分别为加权均方误差可微分损失函数和平衡均方误差可微13 

分损失函数，模型结构均一致。然后基于邻域法(扫描半径为 5 km)的 TS 评分、Bias、POD、虚警率和强14 

风平面分布特征探讨了 SCWINet 的适用性。主要结果如下:SCWINet 能有效分级识别出系统性和分散性强15 

对流系统对应的 17.2、20.8、24.5 m·s-1以上强风，其中对系统性强对流触发的强风分级识别效果要优于分16 

散性强对流。此外，分级识别效果总体随强风风速的增大而降低，空报和漏报的增大是造成上述现象的主17 

要原因。加权均方误差和平衡均方误差损失函数则没有任何识别能力，其识别强风均小于 17.2 m•s-1。不18 

过，本文所使用的数据在特征及数据量等并不全面，未来通过增加雷达径向速度、差分传播相移率、差分19 

反射率因子、卫星等特征和数据量，可进一步增强其识别准确性，并可推广至更强风速。 20 
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Abstract: The serious imbalance in sample distribution, characterized by a sharp drop in the 40 

frequency of severe convective winds with increasing wind speeds, is identified as the 41 

predominant factor hindering the accurate intensity-based classification of severe convective 42 

winds by various existing algorithms.To address this problem, in this study the non-differentiable 43 

Probability of Detection (POD) is proposed to be the loss function for a Convolutional Neural 44 

Network (CNN) and Bias to be its constraint condition. Subsequently, the Multi-objective 45 

Optimization Immune Evolution Algorithm (MOIEA) is employed to optimize all the model 46 

parameters of the CNN. This contributes to the development of a novel identification algorithm, 47 

which is named Severe Convective Wind Identification Network (SCWINet), for identifying 48 

severe convective winds at the speeds of 17.2 m•s
-1

, 20.8 m•s
-1

, 24.5 m•s
-1

 and above. SCWINet 49 

leverages the radar vertical liquid water content, three-dimensional radar reflectivity, lightning 50 

location data and minutely surface automatic observation station data in Zhejiang Province during 51 

2022-2024, achieving different levels of severe convective wind identification with temporal 52 

resolution of 6 min and spatial resolution of 0.01°. Then, the performance of SCWINet is 53 

compared to the two approaches, i.e., Weighted Mean Squared Error (WMSE) and Balanced Mean 54 

Squared Error (BMSE), which use the same CNN structure but have differentiable loss functions. 55 

The applicability of SCWINet is then assessed based on the Threat Score (TS),Bias, POD, False 56 

Alarm Ratio (FAR) that uses the neighborhood method (with a scanning radius of 5 km),and the 57 

planar distribution characteristics of severe convective winds. The main results are as follows: 58 

SCWINet can effectively identify severe convective winds of 17.2 m•s
-1

, 20.8 m•s
-1

, 24.5 m•s
-1

 59 

and above corresponding to systematic and scattered severe convective systems, with better 60 

performance observed in identifying severe convective winds triggered by systematic convection 61 

than those triggered by scattered convection. However, the identification effectiveness of SCWINet 62 

generally decreases as wind speed increases, with increased false alarms and missed detections 63 

being the primary causes of this phenomenon. By contrast, the commonly used WMSE and BMSE 64 

approaches fail to identify severe convective winds, and all severe convective winds they identify 65 

are below 17.2 m•s
-1.Nevertheless, the data used in this study are  somewhat limited in terms of 66 

the feature completeness and volume. Future enhancements in identification accuracy of severe 67 

convective winds could be achieved by incorporating additional features and data, such as radar 68 

radial velocity, Specific Differential Phase (KDP), Differential Reflectivity (ZDR), and satellite data. 69 

This could be also applied to identify even higher wind speeds. 70 

Key words: nowcasting, severe convective wind, identification of winds at different scales, deep 71 

learning, loss function, radar 72 

 73 
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引  言 74 

强对流大风(以下简称强风)指瞬时风力达到或超过 17.2 m•s
-1的地面大风并伴有雷暴时的大75 

风天气，其中 17.2、20.8、24.5 m•s
-1以上的强风分别对应于 8、9、10 级以上，由于其极强的76 

突发性和致灾性，现已严重威胁国民生命财产安全与社会经济发展(郑永光等，2016a；2016b；77 

樊李苗和俞小鼎，2020)。然而，目前全球业务数值预报模式、中尺度数值模式对强风的预报能78 

力仍然有限(杨新林等，2017；高帆等，2023)，因此，临近预报预警成为业务部门应对强对流79 

大风的最主要手段。虽然全国观测网的自动化及其时空精细化程度不断增加，临近预警技术不80 

断完善，但仍很难满足强风的预报需求(郑永光等，2018)。因此，发展针对强风的预报预警技81 

术具有重大现实意义(彭霞云等，2022)。 82 

现有强风的识别技术主要基于气象领域专家总结的典型雷达特征展开，其主要可分为以模83 

糊逻辑(李国翠等，2013)、支持向量机(杨璐等，2018)等传统识别算法和以全连接神经网络、84 

卷积神经网络、循环卷积神经网络等的深度神经网络算法(周康辉等，2017；李海峰，2018)，85 

上述方法在识别强风中取得了一定的成效，但它们目前仅能区分是否发生强对流大风。迄今为86 

止，针对强风的分级识别，尤其是针对 17.2、20.8、24.5 m•s
-1 及以上强风的识别研究与业务87 

应用极为少见。造成该问题的主要原因在于:第一，传统客观识别方法本身性能有限，很难捕获88 

引发强风的复杂非线性机制，其识别效果往往较差(方翀等，2014；周康辉等，2021；杨绚等，89 

2022；王婷婷等，2023)。第二，强风存在严重，乃至极端的样本不平衡问题，如 24.5 m•s
-1以90 

上大风相对较为少见，这也严重制约了各类客观算法的适用性。 91 

为解决上述强对流大风分级客观识别中所存在的问题，进而为强对流大风预报预警能力提92 

供科学支撑。本文提出了一种针对 17.2、20.8、24.5 m•s
-1 以上强风的分级识别算法(Severe 93 

Convective Wind Identification Network,SCWINet)。该算法采用不可微分的命中率（POD）作为94 

卷积神经网络（CNN）的损失函数，以偏差(Bias)为其约束条件，通过多目标优化的免疫进化算95 

法(MOIEA)，优化了 CNN 的所有模型参数。据此，使用了 2022—2024 年浙江省多源观测数据。96 

为验证算法性能，将 SCWINet 与采用相同 CNN 结构的两种方案进行了对比:加权均方误差97 

(WMSE)可微分损失函数和平衡均方误差(BMSE)可微分损失函数方案。基于邻域法(扫描半径98 

为 5 km)，通过 TS 评分、Bias、POD、虚警率(FAR)等指标和强风平面分布特征，探讨了99 

SCWINet 的适用性。 100 

1 资料与方法 101 

1.1 资料 102 

本研究选用了 2022—2024 年浙江省雷达垂直液态水含量、三维雷达反射率、闪电定位仪和103 

分钟级地面自动观测站资料等多源观测数据。其中，浙江省三维雷达反射率通过 8 部 S 波段双104 

偏振雷达组网得到，其时间分辨率为 6 min，空间分辨率为 0.01°，S 波段双偏振雷达编号及其105 
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地理位置信息见表 1 所示。在组网拼图前，采用了基于深度学习的雷达质控方法，该质控方法106 

基于 U-Net 模型架构，人工选取了 2019 年 7—8 月共计 5000 例单帧质控前雷达反射率，故模型107 

的输入为单帧雷达反射率，其输出的对应真值标签为人工标记的非降水回波。将该数据集按顺108 

序划分为 4000 例训练集和 1000 例测试集。在训练阶段，初始学习率为 0.001，模型共迭代 100109 

次，训练期间对学习率采用等间隔衰减策略以确保模型收敛至最优状态。最终，该质控方法对110 

1000 例测试集中非降水回波的识别精度达到 80%。 111 

表 1 三维雷达组网拼图所用 8 部 S 波段双偏振雷达信息 112 

Table 1 Information of eight S-band dual-polarization radars used in 3D radar network mosaics  113 

雷达编号 纬度 经度 

Z9570 29.0852 118.7025 

Z9571 30.2732 120.3375 

Z9572 30.8380 120.2052 

Z9573 30.7392 120.7611 

Z9574 30.0697 121.5093 

Z9577 27.8956 120.7456 

Z9578 28.5445 119.9274 

Z9579 29.2188 119.6450 

 114 

由于实际业务中观测资料可能存在 6~12 min 延迟，因此本文采用过去两个相邻时刻(6、12 115 

min 或 12、18 min)的资料来训练强风分级识别模型。其中，真实极大风资料为分钟级地面自动116 

观测站取逐 6 min 时段内的极大风，并用闪电定位仪对极大风数据进行质量控制(详见表 2)。 117 

数据处理包含两个主要步骤:空间插值和特征提取。首先，将自动站站点资料根据最邻近方118 

法插值到格点上，若同一个格点存在多个站点风速，便取最大的风速值。然后，对数据进行质119 

量控制(表 2)。诸多研究表明，基于雷达三维资料可提取出与强对流大风发生所密切相关的垂120 

直和水平空间特征(杨璐等，2018；沈杭锋等，2019；刘娜等，2021；周康辉等，2021)。为此，121 

参照李海峰(2018)的研究方案，从三维雷达组网资料中提取了上述空间特征作为分级识别强风122 

的因变量(表 3)。 123 

质量控制后，用于模型训练的样本总数为 11625。每个样本包含输入特征和标签风速，其124 

中输入特征的数据维度为 10×5×5，代表 10 种特征在 5×5 的格点区域的分布，标签风速为 5×5125 

区域中心点处的自动站风速。训练样本总数中 17.2 m•s
-1 以上各风速阈值区间内样本数分布如126 

图 1。从图 1 可见，强风样本频数随风速等级的增大而迅速降低，28.5 m•s
-1以上极端强对流大127 

风样本占比仅为 0.59%。测试数据来自 2024 年 3—4 月的 6 d 强对流过程，共计 119 个时次(间128 

隔为 6 min)，每个时次覆盖 716×814 的网格区域，空间分辨率为 0.01°。 129 

 130 

表 2 强对流大风样本筛选方法 131 

Table 2 Filtering methods for severe convective wind samples 132 

筛选方法描述 说明 

剔除冷空气、台风、低空急流等非强对流大风 非强对流大风的加入会干扰模型的训练，这里通过人工筛选的方法，避开出
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的样本 现非强对流大风的天数 

剔除相邻时刻强对流大风重复率≥90%的样本 过高的资料重复会造成强对流过程的样本不平衡，干扰模型训练 

剔除沿海地区样本 沿海地区大风易受温压场、下垫面等因素影响，出现非强对流大风，该筛选

通过图像标记软件 labelme 完成，即根据人工主观认知，首先基于行政边界数

据，在 714×761 的网格区域内按照 0.05°×0.05°标记出属于浙江省的区域(图 1

中白色区域)。然后通过人工主观选择出沿海封闭区作为非强对流大风的滤除

区(图 1 中红线区域)，即该区域的大风被滤除，其他区域不滤除 

剔除无闪电观测站点周围的 2°×2°区域内样本 避免混入杂波、非强对流大风 

剔除 5×5 网格区域内 50 dBz 以上雷达组合反

射率因子个数≤2 的样本 

避免混入杂波、非强对流大风 

 133 

 134 
 135 

注:白色区域为浙江省区域。 136 

图 1 基于 Shap 的浙江省行政边界和 Labelme 标注非强对流大风滤除区域(红线区域) 137 

Fig. 1 Shap-based Zhejiang Province boundary and Labelme-annotated non-severe convective wind exclusion zones (red polygons) 138 

 139 

表 3 用于分级识别强对流大风的因变量 140 

Table 3 The dependent variables used for identifying severe convective winds of different scales  141 

特征类型 因变量名称 单位 特征数量 

水平特征 
相邻时刻的雷达组合反射率因子强度 dBz 2 

相邻时刻的雷达组合反射率因子在 x和 y 方向上的水平梯度 dBz 2 

垂直特征 

相邻时刻的最强反射率因子高度 km 2 

最强反射率因子高度下降速度 km·min
-1

 1 

相邻时刻的垂直液态水含量 kg·m
-2

 2 

垂直液态水含量变化速度 kg·m
-2

·min
-1

 1 

 142 
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图 2 不同风速等级强风的频率分布 144 

Fig. 2 Frequency distribution of severe convective winds at different wind speed levels 145 

 146 

1.2 基于“面对点”识别方案的数据集构建 147 

现有针对强风识别的数据集构建方案主要有三种(表 4):“点对点”“面对点”“面对面”。148 

由于强风的发生与对流系统的小微尺度时空特征密切相关(杨璐等，2018；沈杭锋等，2019；刘149 

娜等，2021；周康辉等，2021)。因无法提取空间特征，首先不采用“点对点”方案；其次，本150 

研究因仅有站点观测的强风资料，而缺少格点化的强风资料，因此未采用基于格点化资料的151 

“面对面”方案，而是主要参考李海峰(2018)的研究，选择“面对点”方案，以 5×5 的格点区152 

域来分级识别中心点的强风风速。 153 

 154 

表 4 不同数据构建方案的对比 155 

Table 4 Comparison of different data construction schemes 156 

识别方案 方案描述 优点 缺点 

点对点 
将大风风速与其他自变量最近邻插值至格点或站点,仅采用风

速格点处的自变量来识别强风 

①计算量少 

②识别算法相对简单 

①无法学习变量之间的

空间信息 

面对点 
将大风风速与其他自变量最近邻插值到格点,用方形区域内

N×N 个格点的自变量来识别中心点强风 

①能学习变量之间的

空间信息 

②输入和标签真值均

为真实场景下所采集

数据 

①输入变量特征图像大

小与识别效果关系较

大。需依赖多次试验确

定最优图像大小 

②业务部署阶段，需将

目标识别区大小划分成

多个子区域，过大的子

区域会导致计算量较大 

面对面 
大风风速真实值和其他自变量均为格点化数据，用多种格点

化的区域自变量资料来识别一个区域内每个格点的强风 

①能提取出变量之间

更复杂的时空关系 

①训练阶段计算量最大 

②网络结构最复杂，模

型参数最多 

③对数据集质量要求最

大 
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1.3 检验方法 157 

根据中国气象局智能预报技术方法竞赛检验方案，采用“面对点”检验方法，即以实况站158 

点为中心点，扫描半径为 5 km。检验评估指标采用 TS 评分、POD、FAR、Bias 来评估针对强159 

风的识别效果，上述指标能有效检验存在样本严重不平衡问题的强风分级识别能力。其计算方160 

法流程为:首先定义一组风速把最终的预测结果分解成多个二分类问题(大于阈值的点设为正例，161 

反之设为负例)，然后根据二分类混淆矩阵计算评分。假设检验的强风阈值为 K(m•s
-1)，TP 表162 

示观测不小于 K 且预测也不小于 K 的次数，FN 表示观测不小于 K 而预测小于 K 的次数，FP 表163 

示观测小于 K 而预测不小于 K 的次数，TN 表示观测小于 K 且预测小于 K 的次数。本试验使用164 

的 K 分别为 17.2、20.8、24.5 m•s
-1

: 165 

TP
=

TP+FN+FP
TS                                                                    (1) 166 

TP
POD=

TP+FN
                                                                     (2) 167 

FP
FAR=

TP+FP
                                                                     (3) 168 

TP+FP
BIAS=

TP+FN
                                                                     (4) 169 

1.4 SCWINet 170 

每一层的卷积核在提取输入特征的空间特征时，均会导致特征空间尺度的缩小，而用于分171 

级识别强风的因变量空间大小仅为 5×5，因此无法构建过深的卷积层。故本文以图 3 的 CNN 框172 

架用于分级识别强风，其参数量仅为 8529，低于强风的训练样本量(11625)，以此尽可能保证173 

模型的计算效率与泛化性。根据表 2，CNN 的输入特征数为 10，输入特征的空间区域大小为174 

5×5，此后经过两次卷积与 ReLU 激活函数(Krizhevsky et al，2017)，将特征的通道数(C)分别扩175 

展为 32 和 16，特征空间尺度则分别缩小为 3×3 和 1×1(H×W)，然后经过 2 个维度(Dim)为 16 的176 

全连接层与 ReLU 激活函数，最后输出强风风速。 177 

 178 

 179 

图 3 用于强风识别的 CNN结构 180 

Fig. 3 The framework of CNN  for  severe convective wind identification 181 
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SCWINet 将不可微分的 POD 和 Bias 分别作为损失函数和约束条件。其中，以 POD 作182 

为损失函数，代表模型在训练过程中的目标为仅提升 POD，这虽能解决样本不平衡导致的强风183 

难识别问题，但很可能会导致过大的空报，即 Bias 很大。为了约束空报问题，设置了 Bias 约束184 

条件，使得 POD 和 Bias 相互制约。然而，POD 和 Bias 不可微分，因此无法基于梯度下降法来185 

更新 CNN 的所有参数。为了解决该问题，利用 MOIEA 代替梯度下降法来优化 CNN 的所有参186 

数。 187 

IEA 训练 SCWINet 的具体实现流程如下。 188 

1

1
( ) 1 (POD )

j

k

K

j=

F x
k

                                                       (5) 189 

 max BIAS 1
jK                                                              (6) 190 

17.2, =1

= 20.8, =2

24.5, =3

k

k

K k

k







                                                                  (7) 191 

式中：F(x)为 SCWINet 的损失函数；x 是待优化的参数，其对应为 SCWINet 的所有参数。当192 

F(x)达到最小时且满足式(6)的 Bias 约束条件时，SCWINet 识别的 17.2、20.8、24.5 m•s
-1 以上193 

强风 POD 均值最高，此时其参数即为最优参数。MOIEA 的原理详见(倪长健等，2003；钟琦等，194 

2024)，本文不再赘述。在本文测试阶段和业务化应用部署时，对表 1 质控后格点仍存在雷达组195 

合反射率因子在 50 dBz 以上且过去 6 min 仍出现 17.2 m•s
-1以上强风，但 SCWINet 未识别的，196 

将该强风也作为当前识别强风。 197 

1.5 基于加权均方误差(WMSE)损失函数的对比模型 198 

常用的深度学习方法多采用可微的损失函数，基于梯度下降法来更新模型参数。为了解决199 

该条件下分级识别强风的样本严重不平衡问题，对比模型基于相同神经网络框架(图 3)，其损200 

失函数则采用了 WMSE 损失函数(Hu et al，2017；Zhang et al，2017； Fang et al，2020)。 201 

WMSE 相比于常规的均方误差(MSE)损失函数而言，其在计算损失时考虑了目标值的大小。202 

通过根据目标值的大小动态调整损失函数中各个样本的权重，使得大目标值和小目标值对损失203 

的贡献相对平衡。因此，WMSE 被广泛地运用于解决样本不平衡问题，以提高模型在处理不同204 

范围目标值时的性能表现。 205 

2

, , ,

=1

1
WMSE ( )( )

N

i j i j i j

i

= w O P -O
N
                            

      

      (8) 206 

,
( )=

i j

j

N
w O

N
                                                                          (9) 207 
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式中：N 为总样本数，Oi，j为第 i 个观测强风样本的风速，其对应为 j 的风速等级；Pi，j为第 i 个208 

识别大风风速，其对应为 j 的风速等级；w(Oi，j)为对应风速等级时的权重系数；N 为样本总数；209 

Nj为 j 风速等级时的样本总数，其详见图 1 所示。 210 

1.6 基于平衡均方误差(BMSE)损失函数的对比模型 211 

研究表明(Ren et al，2022)，当训练数据不平衡时，MSE 会被标签分布所影响而倾向于预212 

测常见的标签。为了解决回归问题中所存在的样本不平衡问题，基于极大似然估计法，得到可213 

自适应不平衡数据分布回归问题的 BMSE 损失函数(Ren et al，2022)，如下所示: 214 

2 2

2 2

, ,

1

exp( ( ) / (2 ))
log

exp( ( ) / (2 ))
B

B k B k

k

O P
L

O P






 
 

 

                            (10) 215 

式中：O 为所有样本的风速值；P 为所有样本对应的模型识别值；
,B kO 为每一次训练过程中所216 

使用到的 O 的子集， B 为此时子集中的样本数； 为该损失函数的可学习性参数，基于梯度下217 

降法， 与模型参数一起参与模型训练而得到更新优化。 218 

2 检验结果 219 

2.1 综合检验 220 

WMSE 和 BMSE 目前虽被广泛应用于缓解样本不平衡问题，但在本文训练和测试环节均发221 

现，WMSE 和 BMSE 的最强识别风速均小于 17.2 m•s
-1，表明这两种损失函数所训练的模型均222 

无法识别出强风，识别结果明显偏低。故接下来仅分析 SCWINet 在测试集中的识别效果。 223 

在 5 km 邻域检验半径的条件下(表 5)可见，SCWINet 识别效果较好。不过，SCWINet 分级224 

识别效果随强风风速的增大而逐渐降低，空报率的增大和命中率的降低是主要原因。为进一步225 

评估 SCWINet 的适用性，结合了综合评分和强风平面分布对 2024 年 3 月 25 日 14:12—17:12(北226 

京时，下同)的 17.2、20.8、24.5 m•s
-1以上强风过程进行检验。 227 

 228 

表 5 SCWINet 的测试集检验结果 229 

Table 5 Test results of SCWINet in test set 230 

评估指标 
强风风速(等级) 

≥17.2 m•s
-1 (8 级) ≥20.8 m•s

-1 (9 级) ≥24.5 m•s
-1 (10 级) 

TS 0.123 0.075 0.044 

POD 0.415 0.379 0.361 

FAR 0.852 0.915 0.952 

Bias 2.793 4.437 7.526 

2.2  2024年3月25日14:12—17:12强风过程个例检验 231 

受高空槽、低涡切变、西南暖湿气流和冷空气共同影响，2024 年 3 月 25 日 14:12—17:12，232 

浙江出现大范围强对流过程，并伴有 8~13 级分散性与系统性强风。从图 4 和图 5a1~5d1可见，233 

此次强风过程主要自西北向东南方向移动，最初为局地分散性强对流系统所引发的分散性强风234 

(14:12—15:12)。此后随着系统发展，逐渐演化为线状对流所引发的系统性大范围强风(15:12—235 
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17:12)。另外，在绍兴东部等地仍伴有分散性强对流引发的强风(图 5b1)。在非强组合反射率区236 

的高山站点则还有混合性大风(图 5 a1)。 237 

从图 4 可见，SCWINet 能有效识别出强风的发生区域，但范围上有所空报。具体而言，在238 

14:12，衢州、杭州西部等地有分散性强对流(图 4a)，其中衢州出现 8~10 级、杭州西部出现 8239 

级强风(图 5a1)。15:12 分散性强对流进一步发展，强度和范围明显增大(图 4b)，衢州东部出现240 

8~11 级，杭州西北部出现 8~12 级强风，杭州南部出现 8 级强风(图 5b1)。16:12 浙江西部出现241 

线状对流，绍兴等地出现分散性强对流(图 4c)，在线状对流区域出现 8~11 级强风，主要位于242 

丽水、金华等地(图 5c1)。17:12 西南-东北向线状对流(图 4d)所在的丽水、金华、宁波等地观243 

测到大范围 8~12 级强风(图 5d1)。对于上述实况出现强风区域，SCWINet 均识别出 8~10 级以244 

上强风，识别区域和强度与实况总体一致。 245 

在此次过程中，SCWINet 也表现出了一定的提前识别预警能力，其能提前识别出绍兴地区246 

分散性强对流所触发的强风，提前时效总体可达 20 min 以上，主要表现为 16:12 实况无强风(图247 

5c1)，但 SCWINet 识别出 8~9 级强风，个别为 10 级(图 5c2)，此时可能会被认为空报。然而，248 

该系统在东移过程中强度维持稳定，在 16:32 观测到 8~9 级强风，然后在 16:42—17:06 观测到249 

10 级以上强风(图略)，可见，16:12 可考虑为提前预警。不过，SCWINet 易漏报线状对流的前250 

方强风区，这主要原因在于，根据“面对点”的建模方案，SCWINet 仅能识别强对流系统区域251 

内的强风，而线状对流前方的漏报强风区很可能是由阵风锋、下垫面狭管效应所致(沈杭锋等，252 

2019)，该类强风预警可能更需要通过强风临近外推或“面对面”的识别策略予以解决。 253 

图 6 是 14:12—17:12 期间逐 6 min 的各评分时间序列，对应共 40 个时次，可见 SCWINet 对254 

各级强风具有较好的识别能力，但随着强风风速的增大，其识别效果与稳定性逐渐降低。此外，255 

强对流类型的不同也是影响 SCWINet 识别效果的重要因素，即在分散性强对流为主的时段256 

(14:12—15:12，0~10 时间序列)，TS 评分(图 6a)相对更低，Bias(图 6b)、POD(图 6c)和257 

FAR(图 6d)相对更大。而此后各评分表现则总体相反，说明 SCWINet 更适用于线状对流等系258 

统性强对流所触发的强风，而对分散性强对流所触发的强风相对更易空报。 259 

此外，从 SCWINet 的识别图中也可见，识别强风还可达到 10 级以上，但考虑到 11 级以上260 

强风样本相对极少，对数据质量控制要求更为严格，因此针对 11 级以上强风的分级识别研究仍261 

有待进一步深入，本文并未对其展开分析研究。但只要具备更多的 11 级以上强风样本，对式(7)262 

加入 28.5、32.7 m•s
-1的风速阈值，也可完成针对 11 级以上极端强风的分级识别。 263 
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 264 

 265 

 266 

图 4 2024 年 3 月 25 日雷达组合反射率因子平面分布 267 

(a) 14:12，( b)15:12，; ( c)16:12， (d) 17:12 268 

Fig. 4 Plane  distributions of radar composite reflectivity at (a) 14:12 BT, (b) 15:12 BT, (c) 16:12 BT and  (d) 269 

17:12 BT 25  March 2024 270 

 271 

(a) (b) 

(c) (d) 

(a1) (a2) 
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 272 

 273 

 274 

 275 

图 5 观测强风、SCWINet 识别强风的平面分布 276 

(a1-d1)观测，（a2-d2): SCWINet. 277 

(b1) 

(c1) 

(d1) 

(b2) 

(c2) 

(d2) 
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Fig. 5 (a1-d1) Plane observations of observed severe convective winds and (a2-d2) SCWINet-identified severe convective winds 278 
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图 6 SCWINet 对 8-10 级以上强风的识别评分时间序列 281 

(a)TS 评分，( b)POD， (c)FAR， (d)Bias 282 

Fig. 6 Time series of  the identification scores of  SCWINet for severe convective winds above scales 8-10 283 

(a)TS,  (b) POD,  (c) FAR, (d) Bias 284 

 285 

3 结论与讨论 286 

利用 2022—2024 年浙江省雷达垂直液态水含量、三维雷达反射率、闪电定位仪、分钟级地287 

面自动观测站资料，将不可微分 POD 作为 CNN 的损失函数，Bias 为其约束条件，然后利用288 

MOIEA 优化 CNN 的所有模型参数，据此提出了一种针对 17.2、20.8、24.5 m•s
-1以上强风的分289 

级识别算法(Severe Convective Wind Identification Network，SCWINet)，其识别时间分辨率为 6 290 

min，空间分辨率为 1 km。将 SCWINet 与采用相同 CNN 结构的 WMSE 可微分损失函数， 291 

BMSE 可微分损失函数方案进行对比，最后基于邻域法(扫描半径为 5 km)的 TS 评分、Bias、292 

POD、FAR 和图像分布特征探讨了 SCWINet 的适用性: 293 

(1)  SCWINet 能有效识别出系统性和分散性强对流系统所触发的 17.2、20.8、24.5 m•s
-1 以294 

上强风，其中对系统性强对流所触发的强风分级识别效果要优于分散性强对流。分级识别效果295 
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总体随强风风速的增大而降低，空报的增大是造成上述现象的主要原因。相比之下，WMSE 和296 

BMSE 识别结果均小于 17.2m•s
-1，表明这两种可微分损失函数在强风分级识别中的应用难度相297 

对较大。 298 

(2)  强风数据集的构建仍存在一定的不准确，例如剔除非强对流大风样本，一定程度上也299 

剔除了有利于消空的信息。虽然本文强对流大风样本已存在严重乃至极端的不平衡问题，但该300 

占比在实际中仍是明显偏高的。当强风样本占比极低，存在严重的类别不平衡的时候，在业务301 

应用中漏报可能造成严重损失，可以容忍一定程度的空报。传统的加权损失函数(如 WMSE)通302 

过调整样本权重来平衡各类别的贡献，但权重的选择往往依赖经验。平衡损失函数(如 BMSE)303 

试图在类别层面实现平衡，但可能忽视了业务需求中对漏报和空报的非对称要求。相比之下，304 

POD 和 Bias 组合直接针对业务关心的指标进行优化，通过 POD 优化保证对强风事件的较高305 

POD，同时通过 Bias 约束维持预测的空间分布合理性。更强的大风往往与更复杂的天气系统相306 

关。强对流系统在发展到产生极端大风时，常常伴随多尺度天气系统的相互作用，如中尺度对307 

流系统与局地地形、边界层结构的耦合等。本文所选用的雷达特征可能不足以完整刻画这些复308 

杂的物理过程。特别是在系统快速发展阶段，现有特征可能无法充分捕捉到导致风速快速增强309 

的关键因素，因此，针对强风客观识别及外推算法的研究中，未来应引入更多观测数据，例如310 

速度场、差分传播相移率（KDP）、差分反射率因子（ZDR）以及卫星观测资料等，以丰富模型输入311 

特。另外需要特别注意的是，受制于自动站观测网在山区，乃至城区密集程度不够，以及下垫312 

面环境因素阻挡等原因，实际可触发致灾性强风的对流系统可能观测不到强风出现，但算法可313 

能会做出提前识别，这也可能会被认定为空报。因此，对于此种现象如何对强风数据做出科学314 

判识标记，构造更准确的数据集，进而强化算法学习能力。 315 

(3)  本文探索了一种有效缓解样本不平衡问题的优化策略，以提升强风分级识别的准确性。316 

在气象领域，尤其是强风分级识别任务中，样本不平衡问题常常导致模型难以准确捕捉少数类317 

别的特征，进而影响预测的整体性能。尽管 BMSE 与 WMSE 等损失函数试图通过赋予少数类318 

别更高权重来缓解这一问题，但在本文是无效的。此外，气象专家凭借多年的实践积累，能够319 

在复杂的天气模式识别中发挥关键作用。因此，在气象领域应用人工智能技术时，将气象专家320 

的主观预报经验与数学物理机制相结合是有效的优化策略，可以为人工智能模型提供更为精准321 

的指导和约束，从而提升模型在处理样本不平衡问题时的鲁棒性和准确性。 322 
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