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of the Cold Wave from 6 to 8 January 2021

NIU Ning'? REN Suling”®* QIN Danyu**"*
1 CMA Training Centre, Beijing 100081
2 National Satellite Meteorological Centre/National Centre for Space Weather. Beijing 100081
3 Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081

4 Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, Beijing 100081

Abstract. Using the FY-4A satellite water vapor images and geostationary interferometric infrared sounder
(GIIRS) products combined with potential vorticity products, the cold wave in central and eastern China
from 6 to 8 January in 2021 is analyzed, based on the interpretation principle of meteorological satellite im-
ages and basic theory of potential vorticity conservation. It is found that this cold wave event was affected
mainly by the high-altitude cold vortex and the surface cold high. The low-level cold air moved from the
south of Baikal Lake to southeast and strengthened at 08:00 BT 5 January. By 20:00 BT 8, it weakened.
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The comparison of 850 hPa 24 h temperature changes of FY-4A/GIIRS and ERA5 shows that the charac-
teristics of the low troposphere cold air moving to southeast and the cold and warm temperature change re-
gional distribution monitored by FY-4A/GIIRS are basically consistent with the ERA5 data. The 24 h negative
temperature change center at 850 hPa and the location of 0°C isallotherm by FY-4A/GIIRS were similar to
the ERA5 data. The intensity of the 24 h temperature change center at 850 hPa by FY-4A/GIIRS was
slightly higher than that of ERA5. The increase of high-level potential vorticity near the enhancement of
the dark area of the water vapor image triggered the enhancement of the subsidence movement behind the
high-level cyclonic circulation, and the dry air subsidence caused the enhancement of the surface high pres-
sure. The increase of absolute vorticity near the center of 500 hPa cold vortex was one of the reasons for
the enhancement of cold air. During the period of sharp strengthening of cold air, the increase of vortices
in the middle and lower layers resulted in the accumulation of cold air on the ground and the enhancement
of cold wave. The analysis result of potential vorticity theory on the enhancement mechanism of cold air is
consistent with the development characteristic of cold wave movement of FY-4A/GIIRS temperature data.
This indicates that the application of FY-4A/GIIRS temperature data can be effectively used to analyze the
evolution characteristics of cold wave.
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