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Abstract: In this paper, the performance of the forecasting system of short-term multi-category convective

phenomena in the event that happened on 13 June 2022 is analyzed first. Then, based on the objective
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probability forecasts of thunderstorm, short-time severe rainfall, thunderstorm gale and hail events in 2022
as well as available multi-category severe convective monitoring data, the performance of objective proba-
bility forecast products of the four types of severe convective weather provided by the short-term forecas-
ting system is evaluated in detail by adopting the spatial test methods used in the severe convection forecast
operations and the indices that indicate deterministic and probabilistic properties. The evaluated forecast
period of the forecast products initiated at 08:00 BT from 1 April to 30 September 2022 is 96 h with inter-
val of 12 h. Case studies show that the potential area of the four different convective phenomena could be
well forecasted 24 h in advance. Statistical verification results show that the short-time severe rainfall fore-
cast has the best performance among the four convective weather phenomena, followed by the forecast of
thunderstorm. The forecast of the thunderstorm gale has certain applicability as well. There are obvious
problems of overestimation in all the four convective weather phenomena compared to the observations.
The diurnal variations of thunderstorm, short-time severe rainfall and thunderstorm gale forecasts are re-
lated to the forecast coverage time. These evaluation results are beneficial to subsequent improvement and
development of forecast model and system, and could provide a useful reference for the operational applica-
tion of multi-category severe convection forecast results based on the fusion of physical understanding and
fuzzy logic artificial intelligence.

Key words: physical understanding, fuzzy logic artificial intelligence, multi-category convective phenome-

non, short-term forecasting system, deterministic property, probabilistic property
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Fig. 2 Forecasting synoptic pattern and parameter field valid at 20:00 BT 13 that initiated
at 20:00 BT 12 June 2022 provided by NCEP-GFS
(a) 500 hPa geopotential height (black contour, unit: dagpm), temperature (red contour, unit;: C) and
850 hPa wind field (barb), (b) precipitable water, (c¢) temperature difference at 850 hPa and
500 hPa (colored) and best lifted index (contour, unit: C), (d) 0C layer height (colored and
contour, unit; m), (e) 500 hPa relative humidity, (f) 850 hPa relative humidity
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Fig. 7 Reliability diagram for four convective weather phenomena with different lead times
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