傅新姝,彭杰,王晓峰,等,2023. 地基微波辐射计探测质量综合分析[J]. 气象,49(10):1235-1245. Fu X S, Peng J, Wang X F, et al,2023. Comprehensive analysis on accuracy of ground-based microwave radiometer measurements[J]. Meteor Mon,49(10): 1235-1245(in Chinese).

地基微波辐射计探测质量综合分析*

傅新姝1 彭 杰1 王晓峰1 张燕燕2 陈 哲2 吴峻石2 薛 吴3 陈浩君3

1上海市生态气象和卫星遥感中心,上海 200030

2 上海市宝山区气象局,上海 201901

3 上海市气象信息与技术支持中心,上海 200030

提 要:利用 2018 年 7 月至 2019 年 7 月上海宝山站地基微波辐射计亮温数据和探空资料,评估微波辐射计的探测质量,并 讨论定标、天线罩性能等对探测质量的影响。结果表明:晴空条件下,微波辐射计实测亮温与模拟亮温一致性高,所有通道相 关系数均超过 0.96,均方根误差为 0.15~2.68 K,其中氧气通道的探测准确性高于水汽通道。各通道偏差主要包括随机偏 差、系统性偏差和季节性偏差三类,液氮定标能明显减少大部分水汽通道的系统性偏差,但对氧气通道的影响相对较小。更换新 型材质天线罩有助于明显降低降水天气各通道的亮温偏差,明显缩短受降水影响后的亮温恢复时长,效果维持 4 个月左右。 关键词:地基微波辐射计,亮温,评估,定标

中图分类号: P414 文献标志码: A DOI: 10.7519/j.issn. 1000-0526. 2023. 021502

Comprehensive Analysis on Accuracy of Ground-Based Microwave Radiometer Measurements

FU Xinshu¹ PENG Jie¹ WANG Xiaofeng¹ ZHANG Yanyan² CHEN Zhe² WU Junshi² XUE Hao³ CHEN Haojun³

1 Shanghai Ecological Forecasting and Remote Sensing Center, Shanghai 200030

2 Shanghai Baoshan Meteorological Office, Shanghai 201901

3 Shanghai Meteorological Information and Technological Support Center, Shanghai 200030

Abstract: The accuracies of microwave radiometer (MWR) measurements obtained at Baoshan Station of Shanghai from July 2018 to July 2019 are evaluated by comparing brightness temperature of MWR against those calculated from radiosonde soundings at the same site with radiative transfer model. Beyond that, the performances of the MWR calibration techniques and the effects of radome replacement are estimated. The results show that the observed brightness temperature from MWR agrees well with the simulated ones from radiosonde soundings in clear-sky conditions. The correlation coefficients between the two datasets are over 0.96 in all channels, with root mean square errors being 0.15-2.68 K. The performances of the V-band channels are better than those of K-band channels. Moreover, the features of brightness temperature bias vary with channels, including random deviations, systematic biases and biases with significantly reduce the systematic bias in most of K-band channels. But the brightness temperature from V-band channels

2022年9月30日收稿; 2023年1月12日收修定稿

第一作者:傅新妹,主要从事城市观测资料质量控制与综合应用研究. E-mail:fxshu366@163.com

^{*} 国家重点研发计划(2017YFC1501902)、上海市青年科技英才扬帆计划(20YF1443400)、国家自然科学基金项目(41905007)和国家重点研 发计划(2017YFC1501701)共同资助

通讯作者:彭杰,主要从事城市观测资料质量分析与综合应用研究.E-mail:pjay163@163.com

do not change obviously after calibration. By replacing the radome periodically, brightness temperature biases in rainy conditions might be reduced significantly. And the recovery time of brightness temperature in rainy conditions might also be shortened. The results also indicate that the radome made of new material used in this study is more efficient than the original one in reducing the negative impacts of precipitation in MWR accuracy. It works for about 4 months.

Key words: ground-based microwave radiometer, brightness temperature, evaluation, calibration

引 言

地基微波辐射计能够 24 小时持续观测、获得分 钟级的温湿度廓线,是对常规探空的有益补充,在高 影响天气过程监测及研究、人工影响天气、数值预报 等方面有重要的应用价值(Cimini et al,2014;Jiang et al,2018;Madhulatha et al,2013;Matrosov and Turner,2018;Caumont et al,2016;李金辉等,2022; 丁虹鑫等,2018;黄治勇等,2014;杨文霞等,2019)。 但是,受仪器自身及周围环境等多种因素的影响,地 基微波辐射计资料的质量不稳定(Xu et al,2015;李 青等,2014;王振会等,2014a),极大地限制了其在业 务科研工作中的应用。对微波辐射计加强维护,并 针对其探测资料开展系统质量评估与质量控制(傅 新姝和谈建国,2017;刘红燕,2011;马丽娜等, 2018),提高资料的可用性,是提高其应用能力的关 键环节。

国内外学者对微波辐射计探测资料的精度、偏差产生原因等开展了很多研究(Sánchez et al, 2013;Bao et al, 2018;王志诚等, 2018;邹荣士等, 2021;杨世昆等, 2023)。一些研究指出,天气条件是影响探测精度的重要因素(Xu et al, 2015;Zhang et al, 2017;车云飞等, 2015;王志诚等, 2018;孔凡超等, 2021);降水条件下天线罩附着水层或雨滴粒子对微波信号的影响导致降水天气探测资料偏差较大(Ware et al, 2004)。但是,即使是在晴空条件下,微波辐射计观测精度仍会受到工作环境温度变化、硬件性能下降等其他因素的影响(Li et al, 2019;李青等, 2014;王振会等, 2014b),导致资料质量波动以及数据不连续。加强设备维护可以提高微波辐射计探测质量及其稳定性。

定标、更换天线罩是目前主要维护手段,定期开展定标是获得高精度亮温数据的基础,提高天线罩性能有助于提高降水前后探测资料的质量。但是,已有研究指出(Küchler et al,2016;Löhnert and Maier,2012),定标时标定靶表面或辐射计天线罩上

水汽凝结、周围环境等多种因素,导致液氮定标本身 也会存在较大不确定性,使得探测资料出现不连续 现象。王振会等(2014b)指出,即使定标时误差较 小,后期仍然会因为工作环境变化产生偏差。因此, 为获得质量稳定的长期探测资料,在开展定期维护 的基础上,仍需要开展亮温质量系统性评估,深入分 析数据不连续、偏差变化等现象及其成因,并探讨定 标、天线罩更换等操作的影响及其改进措施。

上海市气象局经过多年发展,特别是参与超大 城市垂直综合气象观测技术研究及试验(以下简称 为超大城市试验)以来,逐步布设了多台地基微波辐 射计。微波辐射计探测质量如何,如何获得质量稳 定的探测资料,也是此次超大城市试验的研究目标 之一。因此,本文以上海宝山站的微波辐射计为例, 针对超大城市试验期间获得的亮温资料(一级数据) 开展系统质量评估,深入分析偏差的分布特征及产 生原因,并结合定期维护以及淋水试验资料,探讨定 标、天线罩选材及其更换等对各通道探测准确性的 影响。

1 资料和方法

1.1 资料

本评估试验选用安装在上海宝山站的 RPG-HATPRO-G5型42通道微波辐射计(通道信息如表1所示),其中第1~第21通道位于水汽主要吸收波段(K波段22.235GHz附近),第22~第42通道位于氧气主要吸收波段(V波段60GHz附近)。 接收机技术方面,该设备采用多路直接检波体制。 为充分认识该设备的性能和探测精度,于2018年 7月至2019年7月(2018年7月7—10日、26—29日 缺测)超大城市试验期间开展了设备评估试验。评估试验期间数据获取率如图1所示。除2018年 7月外,绝大部分月份数据获取率超过90%,设备运行稳定。与同站点探空资料对比时,选用08:00— 08:30(北京时,下同)和20:00—20:30的平均亮温

Table 1	Table 1 The central frequency of 42 channels of microwave radiometer used in this study (unit: GHz)						
通道序号	中心频率	通道序号	中心频率	通道序号	中心频率	通道序号	中心频率
1	22.24	12	25.98	23	51.51	34	54.94
2	22.51	13	26.24	24	51.76	35	55.44
3	22.78	14	26.77	25	52.01	36	55.84
4	23.04	15	27.30	26	52.28	37	56.66
5	23.31	16	27.84	27	52.53	38	56.91
6	23.58	17	28.37	28	52.78	39	57.16
7	23.84	18	28.90	29	53.03	40	57.30
8	24.37	19	30.00	30	53.28	41	57.55
9	24.90	20	31.40	31	53.86	42	58.00
10	25.44	21	31.93	32	54.26		
11	25.71	22	51.26	33	54.66		

表1 微波辐射计各通道中心频率(单位:GHz)

图 1 2018 年 7 月至 2019 年 7 月评估试验 期间宝山站各月份数据获取率 Fig. 1 The data acquisition rate of microwave radiometer at Baoshan Station in each month from July 2018 to July 2019

分别代表 08 时和 20 时的观测。

为确保资料可靠性,试验期间定期开展天线罩 更换、外部液氮定标等工作,如表2所示。评估试验 期间,液氮定标两次,更换天线罩共三次(更换天线 罩材质一次)。液氮定标即外置一个注入液氮的定 标靶作为冷辐射源,与机箱内部的热辐射源配合完 成绝对定标。通过对比两次定标前后的亮温偏差, 定量评估定标效果。此外,通过对比原有材质和新 型材质的天线罩更换效果,探讨天线罩材质对微波 辐射计探测精度的影响。

参考资料为同站点同期每日两次(08时和 20时)的探空数据,上述资料已完成台站级质量控 制。为挑选降水样本,采用同址同期的地面雨量计 资料,时间分辨率为1min。

Paashan Station from July 2018 to July 2010							
Table 2	LN2 calibration and maintenance times of microwave radiometer at						
12 4	2010年7月至2017年7月至山山陂灰福初月足协及年11 记录						

2018 年 7 日本 2010 年 7 日宁山赴微速桓射计宁圩及维拉记寻

Baoshan Station from July 2010 to July 2019						
序号	日期/(年/月/日)	液氮定标及维护记录	开始时间/BT	结束时间/BT		
1	2018/8/28	更换天线罩液氮定标	09:00	15:00		
2	2019/1/3	更换天线罩(选用新型材质:白膜) 加装鼓风机导风塑料条	09:00	12:00		
3	2019/4/17	液氮定标	09:30	12:30		
4	2019/7/24	更换天线罩(白膜)	13:30	16:00		

1.2 评估方法

首先,基于探空资料,利用 MonoRTM 辐射传 输模型(Boukabara et al,2001;Clough et al,2005), 计算微波辐射计 42 个通道的模拟亮温。该模型由 美国 AER 公司开发,采用 Voigt 线型,相关参数(水 汽的压力加宽系数、温度加宽系数、自加宽系数等) 来自 HITRAN 数据库(Liljegren et al,2005),水汽 吸收谱采用 MTCKD 模型(Mlawer Tobin_Clough Kneizys Davis),包括 22、183、325 和 380 GHz 等 4 条强水汽吸收谱线,模型同时考虑了氧气、氮、二氧 化碳和臭氧的压力加宽和自加宽效应,对氧气吸收 线在微波频段的重叠情况也进行了处理(Clough et al,2005)。

然后,利用晴空无云和降水条件下的资料,深入 分析微波辐射计实测亮温与模拟亮温的偏差及其分 布特征,评估微波辐射计探测质量。参考车云飞等 (2015),基于探空资料的相对湿度廓线数据,区分有 云和无云条件,基于雨量计资料,挑选降水样本。若 无降水,且整层大气相对湿度均低于 85%,判定为 晴空无云样本;若探空施放时段降水量≥0.1 mm, 则定义为降水样本。评估试验期间,晴空和降水天 气的样本数分别为 105 组和 227 组。

最后,通过分析降水条件下亮温偏差和亮温恢 复时长的变化,探讨天线罩性能对探测质量的影响。 天线罩被水污染后,亮温偏差异常增大,天线罩变干 后,亮温恢复正常值。亮温恢复时长的定义即为降 水结束至亮温恢复正常的时间。参考 Cadeddu et al (2013)研究,计算降水开始之前1h测得的亮温平 均值及标准差,降水之后,当亮温数值回到降水之前 平均亮温的1倍标准差之内,则认为亮温观测恢复 正常。试验期间共挑选到两次相似的降水过程开展 对比分析,2018年11月3日(更换天线罩之前)和 2019年2月3日(更换天线罩之后)均发生了过程 累计降水量为 0.1 mm 的弱降水,降水强度和持续 时间十分接近。考虑到降水天气探测结果受雨滴粒 子影响较大,在无降水天气另外开展了四次淋水试 验(表 3),模拟雨水沾湿天线罩对探测结果的影响。 对应的亮温恢复时长为淋水试验结束至亮温恢复正 常的时间。为减少试验结果的不确定性,淋水试验 之前人工检查天线罩清洁状态。

Table	5 Records	of water pouring tes	sts in November 2018
序号	试验日期	淋水试验开始 时间/BT	淋水试验结束 时间/BT
1	19	09:25	09:32
2	23	11:45	11:51
3	27	09:35	09:42
4	28	09:40	09:47

表 3 2018 年 11 月淋水试验记录

2 评估结果与分析

晴空条件下亮温资料的质量主要反映设备本身的探测精度,而其他条件下受云和降水的影响较大, 为区分设备本身探测精度及其雨雾防护性能对探测 质量的影响,针对晴空无云和降水条件分别开展评 估分析。

2.1 亮温准确性评估

晴空条件下,微波辐射计实测亮温与模拟亮温 一致性高,其中氧气通道一致性明显高于水汽通道。 各通道实测亮温(TB_{MWR})与模拟亮温(TB_{RS})的相关 系数均超过 0.96(达到 0.01 显著性水平,图 2),氧 气通道的相关系数略高于水汽通道。对比分析同波 段的各通道差异,V 波段(氧气通道)频率较高的通 道实测亮温与模拟亮温的相关系数更高(接近 1), 与此类通道位于氧气的吸收峰附近有关,同理,K 波 段(水汽通道)频率较低通道的相关系数也相对更 高。

分别选取两个波段频率较低的通道(第1通道 和第31通道)和频率较高的通道(第20通道和第 42通道),进一步分析微波辐射计实测亮温与模拟 亮温的对应关系。如图3所示,虽然样本基本集中 分布在参考线(y=x)附近,但仍存在一定偏差。第 1通道样本分布比较离散,第20通道有部分样本的 实测亮温略偏高,而第31通道的实测亮温略偏低。 因此,下文对所有通道的亮温偏差进行统计分析。

总体而言,水汽通道的相对误差和均方根误差 均明显高于氧气通道,氧气通道的均方根误差随通 道频率增加而降低,水汽通道的均方根误差先减小 后增大。图 4a显示,K 波段绝大部分通道的实测亮 温偏高,平均偏差在2K以内(图 4a),除少部分通 道(第 18~第 21 通道)外,各通道的相对误差基本 低于 5%(图 4b),相对误差整体呈现随频率增加而 增大的特征。而 V 波段绝大部分通道实测亮温偏 低,相对误差以随频率减少的分布特征为主,基本低 于 2%,甚至接近 0%。图 4c显示,水汽通道均方根 误差为 0.89~2.68 K,高于所有氧气通道(0.15~ 0.75 K)。进一步分析发现,K波段均方根误差呈现

图 2 2018 年 7 月至 2019 年 7 月晴空无云 条件下,各通道实测亮温(TB_{MWR})与 模拟亮温(TB_{RS})的相关系数 Fig. 2 The correlation coefficient between brightness temperatures observed and simulated in clear-sky condition

from July 2018 to July 2019

图 3 2018 年 7 月至 2019 年 7 月晴空无云条件下,微波辐射计观测亮温(TB_{MWR})与模拟亮温(TB_{RS})对比 (a)22.24 GHz(第 1 通道),(b)31.40 GHz(第 20 通道),(c)53.86 GHz(第 31 通道),(d)58.00 GHz(第 42 通道) Fig. 3 Brightness temperatures measured and simulated at (a) 22.24 GHz (the 1st channel), (b) 31.40 GHz (the 20th channel), (c) 53.86 GHz (the 31st channel) and (d) 58.00 GHz (the 42nd channel) in clear-sky condition from July 2018 to July 2019

两头高、中间低的特征,其中第 1~第 10 通道亮温 均方根误差较大,可能与低层大气较高的水汽含量 导致亮温观测误差偏大有关,而第 19~第 21 通道 的均方根误差较大,可能与其中心频率离水汽吸收 峰较远、接收到的辐射较弱有关(图 5a);V 波段均 方根误差随频率增加单调降低,可能是中心频率越 高的通道离氧气吸收峰越近、接收到的辐射越强所 导致(图 5b)。

2.2 亮温偏差分布及定标效果分析

下文将分析晴空条件下亮温偏差的分布特征 (以第1、第20、第31和第42通道为代表),并探讨 定标对亮温准确性的影响。

各通道亮温偏差分布特征存在较大差异,包括 随机偏差、系统性偏差和季节性偏差等几种类型。 如图 6 所示,第1 通道以随机偏差为主;第 20 通道 呈现系统性正偏差,且数值变化较大,定标前后存在 明显的突变点;第 31 通道以系统性负偏差为主,数 值比较稳定;第 42 通道亮温的偏差较小,但有明显 的季节变化特征,冬季偏差低于夏季。其余通道的 偏差分布与上述 4 种情况类似(图略)。

开展液氮定标能明显降低大部分水汽通道的偏差,但对氧气通道的影响较小,更换天线罩对晴空条件下各通道亮温偏差的影响不明显。图6显示,两次液氮定标(黑色三角形标示)前后,第20通道的亮温偏差均明显改变,第一次定标后,平均偏差增大至2.47 K,此后维持系统性正偏差,与图4a显示的较大正偏差一致,第二次定标后,上述系统性偏差得到明显改善,平均亮温偏差降低至一0.35 K,此后亮温偏差集中在0 K 附近,第19~第22 通道也有类似现象。定标前后各通道平均偏差如表4 所示,定标对 K 波段其他通道也有明显影响,大部分通道

图 4 2018 年 7 月至 2019 年 7 月晴空无云 条件下,微波辐射计各通道亮温偏差 (a)平均偏差(TB_{MWR}-TB_{RS}), (b)相对偏差,(c)均方根误差

Fig. 4 (a) Mean bias, (b) relative bias,(c) root mean square error of brightnesstemperature in 42 channels of microwaveradiometer from July 2018 to July 2019

(第4~第18通道)的平均偏差在第一次定标后均 明显减小,第二次定标后进一步减小。相比之下,定 标对氧气通道的影响相对较小(图6c,6d和表4)。 更换天线罩(图6绿色三角形)前后,亮温无明显变 化,说明更换天线罩对晴空条件下亮温观测准确性 的影响相对较小。上述结果表明,定标对绝大部分 水汽通道的亮温偏差影响较大,规范定标能明显降 低此类通道的偏差。

2.3 天线罩性能对亮温准确性的影响

降水天气,天线罩上的水层、水滴等物质会导致 各通道实测亮温出现较大的正偏差。因此,下文通 过分析降水条件以及淋水试验前后的亮温偏差分 布,探讨天线罩性能对探测准确性的影响。

降水条件下,微波辐射计实测亮温偏差明显大 于晴空条件,且偏差波动范围较大。水汽通道亮温 偏差受降水影响较大,第1通道平均偏差超过40K, 最大偏差接近200K(图7a),第20通道平均亮温偏 差更大,最大甚至超过250K(图7b)。虽然氧气通 道偏差相对较小,但仍然大幅超过晴空条件对应的 偏差。

更换合适材质的天线罩有助于降低降水天气各 通道的亮温偏差,效果持续4个月左右。更换天线 罩后,天线罩疏水性能提升,有助于减少天线罩上水 层、水滴等物质的影响,进而降低偏差。试验期间更 换天线罩共三次,分别为2018年8月28日,2019 年1月3日和7月24日(图7绿色虚线)。由图7 可知,第一次更换天线罩之后,降水天气各通道亮 温偏差有小幅降低,但仍维持在较高水平,部分通道

注:实心点对应微波辐射计相应通道。

图 5 以中纬度冬季标准大气廓线(Anderson et al,1986)作为输入因子,利用 MonoRTM 模式 模拟的(a)20~33 GHz,(b)50~63 GHz 大气光学厚度分布 Fig. 5 The total optical depth at (a) 20-33 GHz and (b) 50-63 GHz simulated by MonoRTM with the AFGL reference atmospheric model

profiles (0-120 km) of midlatitude winter

注:△标示更换天线罩的日期,▶标示液氮定标日期,更换天线罩和定标记录详见表2。

Fig. 6 Bias of brightness temperature obtained by microwave radiometer at

(a) 22. 24 GHz (the 1st channel), (b) 31. 40 GHz (the 20th channel), (c) 53. 86 GHz (the 31st channel) and (d) 58. 00 GHz (the 42nd channel) in clear-sky condition from July 2018 to July 2019

Table 4 Mean bias of brightness temperature in 42 channels before and after LN2 calibration (unit: K)						n (unit: K)	
通道序号	第一次定标前	第一次定标后	第二次定标后	通道序号	第一次定标前	第一次定标后	第二次定标后
1	-0.06	-0.99	-4.04	22	0.40	-1.10	-0.99
2	1.74	0.53	-1.44	23	-0.23	-1.64	-1.56
3	2.18	0.75	-1.06	24	-0.46	-1.78	-1.73
4	2.82	0.98	-0.73	25	-2.30	-3.38	-3.49
5	3.17	1.07	-0.42	26	-1.92	-2.81	-2.95
6	3.16	1.01	-0.38	27	-3.42	-4.03	-4.30
7	3.01	0.92	-0.49	28	-1.22	-1.66	-1.80
8	2.81	0.80	-0.40	29	-2.74	-3.02	-3.23
9	2.56	0.74	-0.37	30	-0.45	-0.66	-0.73
10	2.23	0.68	-0.45	31	-0.71	-0.90	-0.91
11	2.08	0.64	-0.39	32	-1.60	-1.69	-1.73
12	1.96	0.62	-0.38	33	-1.69	-1.58	-1.69
13	1.85	0.62	-0.43	34	-0.41	-0.13	-0.20
14	1.68	0.68	-0.35	35	0.44	0.87	0.80
15	1.58	0.82	-0.31	36	0.45	0.89	0.83
16	1.55	1.02	-0.32	37	-0.49	-0.13	-0.23
17	1.57	1.22	-0.24	38	-0.54	-0.21	-0.32
18	1.61	1.43	-0.22	39	-0.49	-0.16	-0.29
19	1.67	1.86	-0.24	40	-0.46	-0.13	-0.25
20	1.39	2.47	-0.35	41	-0.45	-0.12	-0.24
21	0.95	2.61	-0.53	42	-0.54	-0.18	-0.29

表 4 定标前后各通道亮温平均偏差(单位:K)

图 7 2018 年 7 月至 2019 年 7 月降水条件下,微波辐射计实测亮温偏差(TB_{MWR}-TB_{RS})的时间序列 (a)22.24 GHz(第 1 通道),(b)31.40 GHz(第 20 通道),(c)53.86 GHz(第 31 通道),(d)58.00 GHz(第 42 通道) Fig. 7 Bias of brightness temperature obtained by microwave radiometer at

(a) 22. 24 GHz (the 1st channel), (b) 31. 40 GHz (the 20th channel), (c) 53. 86 GHz (the 31st channel) and (d) 58. 00 GHz (the 42nd channel) under precipitation condition from July 2018 to July 2019

(图 7a 和 7b)最大偏差仍超过 150 K。第二次选用 了新型材质的天线罩,更换之后,各通道亮温偏差明 显降低,第1通道的最大亮温偏差由 150 K 以上降 低至 30 K 以内,第42 通道的亮温偏差全部降低至 0.5 K 以内,其他通道也可观察到类似现象。约 4 个月后,各通道的最大亮温偏差又重新增大至较 高水平,与首次更换天线罩之前的偏差相当。可能 是天线罩使用时间太长、性能下降导致,即更换天线 罩的间隔时间(6 个月)可能太长。

提高天线罩性能还可能加快微波辐射计受降水

影响后的恢复速度。两次降水过程前后,亮温变化 情况(以第 20 通道为例)如图 8 所示。2018 年 11 月 3 日 12—13 时发生降水,微波辐射计实测亮温由 降水前的 50 K 左右异常增大至 120 K 以上,降水结 束后,亮温逐渐恢复正常,亮温恢复时长为 40 min。 更换天线罩之后,受强度和持续时间相近的降水过 程(2019 年 2 月 3 日 17—18 时)影响后,亮温快速 恢复至降水前水平,亮温恢复时长缩短至 11 min。

淋水试验的初步分析也显示类似结果(图 9)。 淋水开始时,亮温快速、大幅度增加,四次淋水试验

图 8 (a)2018 年 11 月 3 日和(b)2019 年 2 月 3 日降水前后微波辐射计第 20 通道实测亮温时间序列 Fig. 8 Brightness temperature (the 20th channel, 31.40 GHz) observed during two rain events on (a) 3 November 2018, (b) 3 February 2019

Fig. 9 Brightness temperature (the 20th channel, 31.40 GHz) observed during four water pouring tests on (a) 9, (b) 23, (c) 27 and (d) 28 November 2018

亮温异常幅度逐渐增大,分别为 11.18、8.68、26.01 和 45.90 K。淋水结束后,亮温小幅降低,然后慢慢 恢复至正常水平。第 1~第4次淋水试验亮温恢复 时长依次延长,分别为 36、62、90 和 121 min。考虑 到四次淋水试验对应的大气温湿风条件较为接近, 即认为水膜蒸发速率的差异较小,上述亮温异常幅 度以及亮温恢复时长逐渐增大的现象,可能与天线 罩上的水膜增厚有关,而天线罩疏水性能下降是导 致水膜增厚的重要原因之一。

3 结论与讨论

利用 2018 年 7 月至 2019 年 7 月上海宝山气象 站 RPG-HATPRO-G5 微波辐射计探测资料和设备 元数据,以同站同期的探空资料模拟亮温为参考,通 过分析晴空和降水条件的亮温偏差,评估亮温资料 质量,并探讨设备性能、定标、天线罩更换等的影响, 主要结论如下:

(1)晴空条件下,地基微波辐射计实测亮温分布与模拟亮温一致性高。各通道相关系数均超过0.96。其中水汽通道实测亮温总体偏高,均方根误

差为 0.89~2.68 K,且随频率增加先减小后增大;而 氧气通道实测亮温总体偏低,均方根误差为 0.15~ 0.75 K,随频率增加而降低。

(2)各通道的亮温偏差分布主要包括随机偏差, 系统性偏差以及季节性偏差三类,液氮定标能明显 降低部分通道的系统性偏差,更换天线罩对晴空条 件下各通道偏差的影响不明显。K 波段大部分通道 (第4~第18通道)的平均偏差在第一次定标后明 显减少,第二次定标后进一步减小,而 V 波段各通 道对定标的响应相对较弱。更换天线罩前后,晴空 条件下各通道亮温无明显变化。

(3)降水条件下,亮温偏差及其波动范围均明显 增大,更换新型材质的天线罩有助于较大幅度降低 降水条件下的亮温偏差,明显缩短受降水影响后的 亮温恢复时长,增加降水天气的可用资料。更换新 材质的天线罩之后,亮温恢复时长由原来的 40 min 降至 11 min。亮温偏差明显减少,最大可减少 100 K 以上,效果维持 4 个月左右。

上述结果表明,上海宝山气象站的微波辐射计 实测亮温准确性较高,与其他地区同类设备相当。 结果显示定标对水汽通道的改善效果比氧气通道更 明显,与李青等(2014)的结果一致。需要注意的是, 第一次定标后,一些通道的亮温偏差未减小,反而有 增加的现象,可能与定标精度的不确定性(Küchler et al,2016)有关,及时评估定标效果并开展重复定 标有助于改善上述不确定性。本研究结果还表明, 更换天线罩的效果维持4个月左右,说明当前选用 的6个月更换周期需要进一步缩短。上述可为微波 辐射计维护、数据质量改进及应用提供参考。另外, 本研究开展淋水试验对天线罩性能的影响分析为初 步结果,可能包含蒸发速率差异等其他因素的影响, 后续仍需开展更深入的试验研究。

致谢:感谢华东师范大学束炯教授、刘延安教授对本 研究的地基微波辐射计数据支持。

参考文献

- 车云飞,马舒庆,杨玲,等,2015. 云对地基微波辐射计反演湿度廓线 的影响[J]. 应用气象学报,26(2):193-202. Che Y F, Ma S Q, Yang L, et al, 2015. Cloud influence on atmospheric humidity profile retrieval by ground-based microwave radiometer[J]. J Appl Meteor Sci,26(2):193-202(in Chinese).
- 丁虹鑫,马舒庆,杨玲,等,2018. 云雷达和微波辐射计联合反演大气 湿度廓线的初步研究[J]. 气象,44(12):1604-1611. Ding H X, Ma S Q, Yang L, et al, 2018. Retrieval of humidity profiles by using cloud radar and microwave radiometer[J]. Meteor Mon,44 (12):1604-1611(in Chinese).
- 傳新姝,谈建国,2017. 地基微波辐射计探测资料质量控制方法[J]. 应用气象学报,28(2):209-217. Fu X S, Tan J G,2017. Quality control of temperature and humidity profile retrievals from ground-based microwave radiometer[J]. J Appl Meteor Sci,28 (2):209-217(in Chinese).
- 黄治勇,徐桂荣,王晓芳,等,2014. 基于地基微波辐射计资料对咸宁 两次冰雹天气的观测分析[J]. 气象,40(2):216-222. Huang Z Y,Xu G R, Wang X F, et al, 2014. Analysis on two hailstorm events in Xianning based on observations of ground-based microwave radiometer[J]. Meteor Mon,40(2):216-222(in Chinese).
- 孔凡超,李江波,王颖,2021.北京冬奥会云顶赛场微波辐射计反演大 气温湿廓线分析[J]. 气象,47(9):1062-1072. Kong F C,Li J B, Wang Y,2021. Analysis on atmospheric profiles retrieved by microwave radiometer at genting Venue of Beijing Olympic Winter Games[J]. Meteor Mon,47(9):1062-1072(in Chinese).
- 李金辉,周毓荃,岳治国,等,2022.基于微波辐射计数据的秦岭南北 水汽和云底高度等参量的差异[J]. 气象,48(4):452-458. Li J H,Zhou Y Q,Yue Z G,et al,2022. Water vapor and cloud base heigh difference between the north and south of Qinling Mountains based on microwave radiometer measurements[J]. Meteor Mon,48(4):452-458(in Chinese).

李青,胡方超,楚艳丽,等,2014.北京一地基微波辐射计的观测数据

一致性分析和订正实验[J]. 遥感技术与应用,29(4):547-556. Li Q,Hu F C,Chu Y L,et al,2014. A consistency analysis and correction of the brightness temperature data observed with a ground based microwave radiometer in Beijing[J]. Remote Sens Technol Appl,29(4):547-556(in Chinese).

- 刘红燕,2011. 三年地基微波辐射计观测温度廓线的精度分析[J]. 气 象学报,69(4):719-728. Liu H Y,2011. The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years[J]. Acta Meteor Sin,69(4):719-728(in Chinese).
- 马丽娜,李青,姜苏麟,等,2018. 地基微波辐射计的亮温观测与模拟 数据的一致性分析和云检测[J]. 遥感技术与应用,33(1):68-77. Ma L N,Li Q,Jiang S L,et al,2018. Consistency analysis of experimental and simulated brightness temperature based on ground-based microwave radiometer and cloud detection[J]. Remote Sens Technol Appl,33(1):68-77(in Chinese).
- 王振会,曹雪芬,黄建松,等,2014a.基于气象资料变化特征和辐射传输模式的微波辐射计工作状态分析[J].大气科学学报,37(1):
 1-8. Wang Z H, Cao X F, Huang J S, et al, 2014a. Analysis on the working state of a ground-based microwave radiometer based on radiative transfer model and meteorological data variation features[J]. Trans Atmos Sci,37(1):1-8(in Chinese).
- 王振会,李青,楚艳丽,等,2014b. 地基微波辐射计工作环境对 K 波 段亮温观测影响[J]. 应用气象学报,25(6):711-721. Wang Z H,Li Q,Chu Y L, et al,2014b. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer[J]. J Appl Meteor Sci,25(6):711-721(in Chinese).
- 王志诚,张雪芬,茆佳佳,等,2018. 不同天气条件下地基微波辐射计 探测性能比对[J]. 应用气象学报,29(3):282-295. Wang Z C, Zhang X F, Mao J J, et al, 2018. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions[J]. J Appl Meteor Sci,29(3):282-295(in Chinese).
- 杨世昆,杨玲,张雪芬,等,2023. 地基遥感联合反演大气边界层高度 与 ERA5 再分析资料比对分析[J]. 气象,49(2):178-187. Yang S K,Yang L,Zhang X F, et al ,2023. Comparison and analysis of atmospheric boundary layer height retrieved by ground-based remote sensing and ERA5 reanalysis data[J]. Meteor Mon,49 (2):178-187(in Chinese).
- 杨文霞,范皓,杨洋,等,2019. 一次层状云降雨过程多源遥感特征参 量演变分析[J]. 气象,45(9):1278-1287. Yang W X,Fan H,Yang Y, et al ,2019. Evolution analysis of physical quantities obtained by multi-source remote sensing in a process of stratiform cloud rainfall [J]. Meteor Mon,45(9):1278-1287(in Chinese).
- 邹荣士,何文英,王普才,等,2021. 辐射传输模式对地基微波辐射计观测亮温的模拟能力分析[J]. 大气科学,45(3):605-616. Zou R
 S, He W Y, Wang P C, et al, 2021. Assessment of radiative transfer models based on observed brightness temperature from ground-based microwave radiometer[J]. Chin J Atmos Sci,45 (3):605-616(in Chinese).

- Anderson G P,Clough S A,Kneizys F X,et al,1986. AFGL Atmospheric Constituent Profiles (-120 km) [R]. Hanscom AFB, MA:Air Force Geophysics Laboratory(OPI):46.
- Bao Y S, Cai X, Qian C, et al, 2018. 0-10 km temperature and humidity profiles retrieval from ground-based microwave radiometer [J]. J Trop Meteor, 24(2):243-252.
- Boukabara S A, Clough S A, Hoffman R N, 2001. Monortm: a monochromatic radiative transfer model for microwave and laser calculation[C]. Specialist Meeting on Microwave Remote Sensing.
- Cadeddu M P,Liljegren J C,Turner D D,2013. The Atmospheric radiation measurement(ARM) program network of microwave radiometers:instrumentation,data,and retrievals[J]. Atmos Meas Tech,6(9):2359-2372.
- Caumont O,Cimini D,Löhnert U, et al. 2016. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model[J]. Quart J Roy Meteor Soc. 142(700):2692-2704.
- Cimini D, Nelson M, Güldner J, et al, 2014. Forecast indices from ground-based microwave radiometer for operational meteorology [J]. Atmos Meas Tech Discuss, 7(7):6971-7011.
- Clough S A, Shephard M W, Mlawer E J, et al, 2005. Atmospheric radiative transfer modeling: a summary of the aer codes[J]. J Quant Spectrosc Radiat Transf,91(2):233-244.
- Jiang S L, Pan Y, Lei L F, et al, 2018. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer[J]. Atmos Res, 205:26-32.
- Küchler N, Turner D D, Löhnert U, et al, 2016. Calibrating groundbased microwave radiometers: Uncertainty and drifts[J]. Radio Sci,51(4):311-327.
- Li Q, Wei M, Wang Z H, et al, 2019. Evaluation and correction of ground-based microwave radiometer observations based on

NCEP-FNL data[J]. Atmos Climate Sci,9(2):229-242.

- Liljegren J C.Boukabara S A.Cady-Pereira K.et al,2005. The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer[J]. IEEE Trans Geosci Remot Sen, 43 (5): 1102-1108.
- Löhnert U, Maier O, 2012. Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges[J]. Atmos Meas Tech, 5(5):1121-1134.
- Madhulatha A,Rajeevan M, Venkat Ratnam M, et al, 2013. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations[J]. J Geophys Res Atmos, 118(1): 1-13.
- Matrosov S Y, Turner D D, 2018. Retrieving mean temperature of atmospheric liquid water layers using microwave radiometer measurements[J]. J Atmos Oceanic Technol, 35(5):1091-1102.
- Sánchez J L, Posada R, García-Ortega E, et al, 2013. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a groundbased microwave radiometer[J]. Atmos Res, 122; 43-54.
- Ware R, Cimini D, Herzegh P, et al, 2004. Ground-based microwave radiometer measurements during precipitation [C] // The 8th Specialst Meeting on Microwave Radiometry. Rome.
- Xu G R,Xi B K,Zhang W G,et al,2015. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings[J]. J Geophys Res Atmos,120(19):10313-10323.
- Zhang W G, Xu G R, Liu Y Y, et al, 2017. Uncertainties of groundbased microwave radiometer retrievals in zenith and off-zenith observations under snow conditions[J]. Atmos Measur Techn, 10(1):155-165.

(本文责编:俞卫平)