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Abstract: This study is concerned with a nocturnal convective process from the night of the 24th to the early
morning of the 25th September 2017. The meso-f scale convective system on the south side of the frontal
rainband perpendicular to the quasi-east-west frontal orientation gradually evolved into a bow echo, cau-

sing short-time severe precipitation in the middle and lower reaches of the Yangtze River, accompanied
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by Level 7 thunderstorm gale. From the perspective of the large-scale environment, there is no favorable
thermodynamic conditions at night. Therefore it is difficult to make a forecast. In this study observations
and numerical simulations are used to analyze the fomation mechanism. The radar observations show that
there is a northeast-southwest meso-f scale convective belt, moving in the south-easterly direction, and
there are new convective cells being triggered on its southwest side, forming the lateral back-building prop-
agation. The new cells then merge into the main convective zone. Other new cells, generated ahead
(southeast side) of the main convective zone, gradually develop into a northwest-southeast belt and move
to the northeast, eventually making the original main northeast-southwest convective belt gradually
strengthen and finally evolve into a bow echo. Although the high-resolution numerical model simulation re-
sults deviate from observations in intensity and time, the convective system evolution processes are very
close to the observations. Therefore, the vertical vorticity equation is used to diagnose the mechanism.
The results show that the vorticity tilt term plays an important role in the lateral back-building propaga-
tion. In the early stage of the convection development, new cells are generated on the southwest side under
the effect of the vorticity tilt term and merge with the main echo. As the echoes continuously merge and
strengthen, the divergence term becomes more important and the positive vorticity of the main echo increa-
ses significantly under both the vorticity tilt term and the divergence term. Besides, the vorticity vertical
transport term propagates the positive vorticity upward, which is beneficial to the vertical extension of the
main convection. New cells are triggered in front of the main echo due to the effect of the vorticity horizon-
tal advection term. However, the vertical extension height is low, so it moves northeastward guided by
the low-level wind. Its vorticity increases during the movement and it aligns into a northwest-southeast
band, which finally leads to the conversion of the linear main echo into the bow echo. The formation of
this bow echo differs significantly from the classical model which has the rear inflow jets in the rear part of
the bow echo. On the contrary, this case is mainly influenced by the development of convective systems
within the warm zone and has a significant frontal near-surface inflow.

Key words: lateral back-building propagation, bow echo, vorticity tilt term, vorticity horizontal advection
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Fig. 1 Distribtution of (a) 3 h accumulated precipitation, (b) hourly evolution of
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Fig. 2

(a) The 500 hPa geopotential height (contour, unit: dagpm) and its deviation from the climate mean

(1979—2016) geopotential height in September (colored) from ERA5, (b) 850 hPa wind field (barb), equivalent

potential temperature (contour, unit; K) and wind speed =12 m « s~ ' (colored) from EAR5, (¢) profile and

wind hodograph of Nanjing Sounding Station, (d, e) the vertical profile of (d) equivalent potential temperature and

(e) Richardson number at Nanjing Sounding Station at 20:00 BT 24 September 2017
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(a) vorticity horizontal advection term, (b) vorticity vertical transport term,

(¢) vorticity tilt term, (d) divergence term
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(a) vorticity horizontal advection term, (b) vorticity vertical transport term,

(¢) vorticity tilt term, (d) divergence term
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(a) vorticity horizontal advection term, (b) vorticity vertical transport term,

(¢) vorticity tilt term, (d) divergence term
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