刘文惠,罗仕,陆春松,等,2023. 夹卷混合过程及其影响因子对云内过饱和度的影响[J]. 气象,49(5):551-562. Liu W H,Luo S,Lu C S, et al,2023. Effects of entrainment-mixing process and its impact factors on cloud supersaturation[J]. Meteor Mon,49 (5):551-562(in Chinese).

夹卷混合过程及其影响因子对云内过饱和度的影响*

刘文惠1 罗 仕2 陆春松1 赵 阳1

1 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室/气象灾害预报预警与评估协同创新中心,南京 210044
 2 中国民用航空飞行学院航空气象学院,四川广汉 618307

提 要: 云内过饱和度是影响云宏微观物理特性的关键之一。利用显式混合气泡模式,首先研究了云滴周围过饱和度在夹 卷混合过程中的演变特征,结果表明:过饱和度先因干空气作用减小,后因云滴蒸发作用增大,直到气块恢复饱和。随后分析 了不同的热力、动力和微物理因子对过饱和度的减小幅度和饱和恢复快慢程度的影响。敏感性试验表明:减幅小、恢复快的 因子是较大的卷入空气相对湿度和初始云滴数浓度;相对湿度越大,夹卷的影响越小;数浓度越大,云滴尺度越小,蒸发越快, 对湿度的补充越强。减幅大、恢复慢的因子是较大的卷入空气比例;卷入空气越多,蒸发量越大。减幅大、恢复快的因子是较 大的湍流动能耗散率;混合过程越快,云滴蒸发越快。研究结果有助于提升对夹卷混合过程和暖云降水理论的理解。 关键词: 云物理,夹卷混合过程,过饱和度,数值模拟

中图分类号: P426, P421 文献标志码: A DOI: 10.7519/j. issn. 1000-0526. 2023. 030301

Effects of Entrainment-Mixing Process and Its Impact Factors on Cloud Supersaturation

LIU Wenhui¹ LUO Shi² LU Chunsong¹ ZHAO Yang¹

Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
 Nanjing University of Information Science and Technology, Nanjing 210044
 College of Aviation Meteorology, Civil Aviation Flight University of China, Sichuan, Guanghan 618307

Abstract: Supersaturation in the cloud is the one of key factors affecting cloud macro- and micro-properties. The Explicit Mixing Parcel Model (EMPM) is used to study the evolution of supersaturation of cloud droplets during the entrainment-mixing process. The results show that in this process, the supersaturation decreases firstly due to the entrained dry air, and then increases due to the evaporation of droplets until the parcel restores new saturation. Then, the effects of different thermal, dynamic and microphysical factors on the reduction of supersaturation and saturation recovery time are analyzed. The sensitive test indicates that the factors of small reduction and quick recovery are the high relative humidity of the entrained dry air and the number concentration of initial cloud droplets. The higher humidity, the less effect of entrainment. The higher the number concentration, the smaller droplet size and the faster evaporation, and thus the supplement to the humidity of dry air is strong. The factor of large reduction and slow recovery is the

^{*} 国家重点研发计划(2019YFA0606803)、国家自然科学基金项目(42175099、42027804)和中央高校基本科研业务费基金项目(J2022-037) 共同资助

²⁰²²年7月7日收稿; 2022年12月31日收修定稿

第一作者:刘文惠,主要从事云降水物理方向研究.E-mail:liuwenhui013@163.com

通讯作者:罗仕,主要从事云降水物理研究.E-mail:luoshi@cafuc.edu.cn

large fraction of entrained dry air. The more the dry air is entrained, the more evaporation of droplets. The factor of large reduction and quick recovery is the high turbulent kinetic energy dissipation rate. The faster the mixing process, the faster cloud droplets evaporate. The results will help to improve the understanding of the entrainment mixing process and warm cloud precipitation theory.

Key words: cloud physic, entrainment and mixing process, supersaturation, numerical simulation

引 言

云是地球系统的重要组成部分,它显著地影响 着地球系统的能量平衡(解小宁等,2016;吕巧谊等, 2017;朱泽恩等,2017;Zhang et al,2018;Lin,2019; 刘涛等,2015)、降水分布(Bai et al,2018; Hou et al, 2020)以及天气、气候的变化(符传博等,2019;Ge et al,2019;Yang and Gao,2020)。云的宏微观物理 特性对云的光学厚度(石广玉等,2008;Xie and Liu, 2013)、气溶胶间接效应的评估(解小宁等,2015;Li J M et al, 2018; Xie et al, 2018; 陆春松等, 2021; 蔡 兆鑫等,2021; Wang et al, 2021) 乃至降水的生成具 有重要作用(杨薇等,2017;Li et al,2017;贾星灿 等,2018;李筱杨等,2019;刘涛等,2015)。然而,目 前的暖云降水形成理论并不能很好地解释实际观测 结果(Johnson, 1993; Seifert and Onishi, 2016; Lu et al,2018a;Li et al,2020)。首先,观测结果表明, 在自然界中暖云可以在 15~30 min 内形成降水 (Stephens and Haynes, 2007; Beard and Ochs Ⅲ, 1993),这远小于暖云降水形成理论所需的时间(数 十小时)。其次,绝热理论表明云滴半径的增长率和 半径成反比,即小云滴半径增长的速率大于大云滴 (Korolev and Isaac, 2000;邓玮等, 2019)。因此, 在 绝热凝结过程中,云滴的尺度会逐渐接近,并在大云 滴端形成云滴谱较窄的单峰分布(Warner, 1969; Wang et al, 2020b),导致云滴之间难以发生碰并过 程进而形成降水。在实际观测结果中,云滴谱通常 较宽并呈现为双峰或多峰分布,有利于云滴之间发 生碰并(Sun et al, 2012; Chen et al, 2016; Li X Y et al,2018;杨文霞等,2019;陆春松和徐晓齐,2021; Yin et al, 2022; 周黎明等, 2014)。然而, 云滴谱如 何从理论中的窄谱拓宽为实际观测中的宽谱,到目前 还没有统一的结论。Lasher-Trapp et al(2005)、Devenish et al (2012), Cooper et al (2013), Lu et al (2013b;2018a)和朱磊等(2020)提出云和周围干空 气之间的湍流夹卷混合过程可能是导致云滴谱拓宽

的一个关键的因素,但是夹卷混合过程对云滴谱和 云微物理量的影响尚不明确。

云内过饱和度是决定云滴凝结/蒸发的重要物 理量,能够显著影响云滴谱和云微物理量(Morrison and Grabowski, 2008; Hudson et al, 2010; 刘瑞翔 等,2020;Xu et al,2022)。夹卷混合过程通过影响 云内过饱和度,使得云滴能够经历不同的过饱和度, 进而导致云滴谱和云微物理量发生变化(Grabowski and Abade, 2017; Yang et al, 2018; Li et al, 2019; Chandrakar et al, 2021)。Lasher-Trapp et al(2005)发 现夹卷混合过程引起的过饱和度波动,能够导致云 滴谱向大滴方向拓宽。Tölle and Krueger(2014)指 出当夹卷混合过程较慢时,云滴能够长时间处于不 饱和状态,并经历更多变的过饱和环境。此外,夹卷 混合过程受到卷入干空气相对湿度、湍流动能耗散 率、卷入干空气在云中所占比例以及云滴数浓度等 因子的影响。卷入干空气相对湿度越小时,过饱和 度减小幅度越大(Pinsky et al, 2016),云滴蒸发越 强,混合完成后云微物理量的值越小(罗仕等, 2017)。卷入干空气相对湿度和湍流动能耗散率越 大时,云滴越容易发生部分蒸发,导致云滴数浓度不 变(Burnet and Brenguier, 2007; Luo et al, 2020), 过 饱和度能快速减小至最小值(Tölle and Krueger, 2014)。湍流动能耗散率越小时,干空气和云内空气 混合的速率越慢,过饱和度能够在混合过程中长时 间起伏,导致部分云滴长时间处于未饱和环境并发 生完全蒸发(Tölle and Krueger, 2014)。卷入干空 气比例越大时,云滴蒸发越显著(Lu et al, 2013a)。 Chen et al(2020)的研究结果也表明随着夹卷率的 增大,进入云内的干空气增加,过饱和度的最小值减 小。云滴数浓度越大时,云滴对水汽的竞争越强,云 内过饱和度越小,导致云滴尺度越小(Kudzotsa et al,2016; Jia H L et al,2019), 越容易发生完全蒸 发(Kumar et al, 2013)。尽管学者们在夹卷混合过 程的研究中涉及过饱和度以及夹卷相关因子的分 析,但是并未清晰地揭示过饱和度在夹卷混合过程 中的演变以及相关因子的影响,因此目前夹卷混合

过程对过饱和度影响的认识还很有限,需要进一步 深入研究。

针对以上问题,本文利用高分辨率的显式混合 气泡模式(Krueger et al,1997;Su et al,1998;Tölle and Krueger,2014),分析云内过饱和度在夹卷混合 过程中的演变,研究过饱和度在卷入干空气相对湿 度、湍流动能耗散率、卷入干空气比例以及云滴数浓 度影响下的特征,为更加深入地理解夹卷混合过程 和暖云降水理论提供支撑。

1 模式及参数设置

显式混合气泡模式(EMPM)是 Krueger et al (1997)在线性涡度模式(Kerstein, 1988: 1992)的基 础上,为了研究云和周围干空气之间的夹卷混合过 程而专门开发的高分辨率数值模式。该模式通过将 无云内部结构的传统气泡模式和能够解析云尺度上 云内部结构变化的多维云模式相结合,实现了在毫 米尺度上呈现云内部结构的变化。在 EMPM 中, 云内部结构的变化是由夹卷过程和湍流混合过程产 生。EMPM 设定模拟区域内气块的物理性质在统 计上是均匀的(Austin et al, 1985),在夹卷过程中, 干空气在进入气块之前,模拟区域中与干空气块尺 度相同的区域被移除,随后卷入的干空气进行补充, 但干空气块卷入模拟区域后不会影响气块的统计属 性(Krueger et al, 1997; Tölle and Krueger, 2014)。 干空气进入气块的速率由夹卷率(λ)决定,其定义为 云在抬升过程中云质量随高度的变化率与云质量的 比值(Su et al, 1998)。表达式如下:

$$\lambda = \frac{1}{m} \frac{\mathrm{d}m}{\mathrm{d}z} \tag{1}$$

式中:m 是气块的质量,z 是高度。

在湍流混合过程中,在湍流的作用下卷入的干 空气会发生形变、破碎,增加卷入干空气和云内空气 的接触面积以及水汽、温度等标量场的梯度。当干 空气尺度减小至柯尔莫戈洛夫微尺度(约为毫米量 级)时,分子扩散过程起作用,并能迅速使标量场梯 度减小并变得均匀。分子扩散方程如下:

$$\frac{\partial \phi}{\partial t} = D_{\rm M} \frac{\partial^2 \phi}{\partial x^2} \tag{2}$$

式中:t是时间, ø是水汽、温度等标量, D_M是分子扩 散系数。此外, 在夹卷混合过程中 EMPM 能够根 据云滴周围环境(温度、水汽混合比和气压)的变化, 追踪每个云滴的凝结/蒸发情况。液滴的蒸发/凝结 方程为(Fukuta and Walter,1970):

$$r_{j} \frac{\mathrm{d}r_{j}}{\mathrm{d}t} = \frac{S - A_{1} + A_{2}}{A_{3} + A_{4}}$$
 (3a)

$$S = \frac{q_v}{q_{vs}} - 1 \tag{3b}$$

式中:r_j是第 j 个云滴的半径;A₁和 A₂分别是液滴 曲率效应和溶质效应的修正因子,A₃和 A₄分别是 热传导和水汽扩散项;S 是过饱和度;q_v是水汽混合 比;q_{vs}是饱和水汽混合比。

在 EMPM 中, 饱和的气块以一定速度从云底 绝热抬升,云滴凝结增长。当气块抬升到夹卷过程 发生高度时,停止抬升,云外干空气通过夹卷进入云 内,并随机卷出与干空气尺度相当的云内空气。紧 接着,云内空气和干空气之间进行等压混合过程。 在湍流的作用下干空气块会破碎成许多尺度更小的 干空气块,并随机分布在云内,改变云内温度场和水 汽场,使得云滴因周围过饱和度的变化而发生凝结/ 蒸发过程(Krueger et al, 2008)。凭借 EMPM 的优 势,该模式成功再现了夏威夷积云观测结果中的云 滴谱(Su et al, 1998),并随后被用于夹卷混合过程 对云微物理量影响的研究(Tölle and Krueger, 2014;Lu et al,2018b;Luo et al,2020)、夹卷混合机 制的识别(Lu et al, 2014; Luo et al, 2021)以及夹卷 混合机制参数化方案的开发(Lu et al, 2013a; Luo et al, 2020).

与 Tölle and Krueger(2014)研究一致,在本研 究中 EMPM 的模拟区域为 20 m(长)× 0.001 m (宽)× 0.001 m(高),并以 2 m • s⁻¹垂直速度从云 底绝热抬升。经过 375.75 s 后,到达夹卷发生高 度,此时垂直速度变为 $0 \text{ m} \cdot \text{s}^{-1}$ 。尺度为 $2 \text{ m} \times$ 0.001 m×0.001 m 的干空气块通过夹卷进入云内, 并与云内空气进行等压混合。模式中云底信息来自 夏威夷积云观测项目(Raga et al, 1990), 云底温度、 气压和水汽混合比分别为 293.95 K、963.95 hPa、 15.73 g·kg⁻¹。在夹卷混合过程中,卷入干空气相 对湿度(RH。)和卷入干空气比例(f)通过改变卷入 干空气的性质来影响过饱和度(Chen et al, 2020; Pinsky et al,2016),湍流动能耗散率(ε)通过改变夹 卷过程混合速率来影响过饱和度(Tölle and Krueger,2014;Andrejczuk et al,2006),初始云滴数浓度 (n_i)通过影响云滴蒸发速率来影响过饱和度(Kumar et al, 2013)。浅积云的大涡模拟和观测结果显

示,RH_e可以在70%~95%(Burnet and Brenguier, 2007); ε 可以在10⁻⁵~10⁻² m² • s⁻³(Siebert et al, 2006);*n*_i可以在20~700 cm⁻³(Burnet and Brenguier,2007;Hudson et al,2012)。根据以上结果以 及参考 Tölle and Krueger(2014)和Lu et al(2013a)中 EMPM 模式参数的设置,在对照试验中 RH_e, ε ,*f*,*n*_i 分别设置为88%、1×10⁻³ m² • s⁻³、0.3、102.75 cm⁻³。为了研究以上各因子的影响,在敏感性试验 中,RH_e分别设置为88%、44%、22%,可以表示紧 邻云和远离云的干空气湿度的影响。 ε 分别设置为 1×10⁻²、1×10⁻³、1×10⁻⁵ m² • s⁻³,可以表示干空 气和云内空气混合速率的影响。f分别设置为 0.2、0.3、0.4,可以表示卷入云内干空气总量的影 响。本研究使用和 Krueger et al(1997)、Su et al (1998)、Lu et al(2013a)、Tölle and Krueger(2014) 相同的云凝结核(CCN)来驱动 EMPM 模式,CCN 凝结形成的云滴个数为 2055 个,对应的数浓度为 102.75 cm⁻³。为了研究云滴数浓度对结果的影响, n_i 分别取 102.75 cm⁻³的 1/3、1、3 倍进行敏感性试 验,即 34.25、102.75、308.25 cm⁻³。以上参数如 表1所示。

表 1	显式	混?	合气	〔泡棹	左 莫	t (EN	IPN	1)中自	句参	数	设置	髶
 ъ				-		• -			D		• •		(

Table 1 Tarameters in the Explicit wixing Larcer would (Ewit wi)							
参数	参数值						
垂直速度(w)/(m・s ⁻¹)	夹卷前:2;夹卷后:0						
云底气压/hPa	963.95						
云底温度/K	293.95						
云底水汽混合比/(g・kg ⁻¹)	15.73						
夹卷发生高度气压/hPa	888.9						
卷入干空气温度/K	289.3						
卷入干空气水汽混合比 $/(g \cdot kg^{-1})$	11.5						
卷入干空气相对湿度 RH _e /%	22、44、88(对照)						
湍流动能耗散率(ϵ)/(m ² · s ⁻³)	1×10^{-5} 、 1×10^{-3} (
初始云滴数浓度 $(n_i)/(cm^{-3})$	34.25、102.75(对照)、308.25						
卷入干空气的混合比例(f)	0.2、0.3(对照)、0.4						

2 夹卷混合过程及其影响因子对云内 过饱和度的影响

2.1 对照试验

云滴周围过饱和度的变化直接影响云滴的凝 结/蒸发过程,因此本文围绕夹卷混合过程对云滴周 围过饱和度的影响进行研究。图1显示当RH_e= 88%, ϵ =1×10⁻³ m²•s⁻³, f=0.3, n_i =102.75 cm⁻³ 时,在绝热云和包含夹卷混合过程的云中,云滴周围 过饱和度(ΔS = RH – 100%,其中 RH 为相对湿 度)、云滴数浓度(n_e)、体积平均半径(r_v)以及含水 量(LWC)在夹卷混合过程中的演变。在绝热条件 下, ΔS 随时间先增加后减小,并在 ΔS =1.1%处出 现峰值(图 1a)。当气块绝热抬升冷却供应水汽的 速率大于云滴凝结消耗水汽的速率大于抬升冷 却供应水汽的速率时, ΔS 随时间逐渐减小;当 水汽消耗的速率和水汽供应的速率相等时, ΔS 出 现最大值,该结果和绝热理论一致(Morrison and Grabowski,2008;杨军等,2011;Sun et al,2012; Pinsky and Khain,2020)。在此过程中, n_c 保持不 变(图 1b), r_v 和 LWC 逐渐增大(图 1c,1d)。在 375.75 s 后垂直速度变为0 m・s⁻¹,云不再抬升, $\Delta S, n_c, r_v$,LWC 保持不变。

考虑夹卷混合过程后(对照试验), ΔS 在夹卷混 合过程中先减小后增大。夹卷开始时(375.75 s),不 饱和的云外干空气通过夹卷过程进入云内。由于不 饱和干空气的稀释作用,导致 ΔS 显著减小(Tölle and Krueger,2014),并在 386.25 s时出现最小值 (-0.7%,图 1a)。夹卷混合过程刚开始阶段,卷入 干空气会在湍流的作用下逐渐发生形变、破碎。随 着混合过程的进行,与破碎的干空气块相接触的云 滴增多, ΔS 逐渐减小。此时,虽然云滴会发生蒸 发,促进卷入干空气的相对湿度增大,但是不断破碎 的干空气块对 ΔS 的减小作用大于云滴蒸发对 ΔS 的补充作用(Kumar et al,2017)。当两者对 ΔS 的

(b)云滴数浓度、(c)体积平均半径、(d)含水量的变化 Fig. 1 The evolutions of (a) supersaturation of droplets, (b) cloud droplet number concentration, (c) volume-mean radius, and (d) liquid water content in the adiabatic

cloud and the cloud considering entrainment-mixing process

影响相当时, ΔS 达到最小值。此时, n_c 因干空气的 稀释作用和云滴的完全蒸发显著减小(Lehmann et al,2009),数值从绝热时的 102.75 cm⁻³减小至 71.25 cm⁻³(图 1b)。 r_v 从 15.67 μ m 减小至 15.42 μ m(图 1c),LWC 从稀释后的 1.15 g·m⁻³,因云滴 的蒸发减小至 1.09 g·m⁻³(图 1d)。在随后的混合 过程中,由于云滴的进一步蒸发对 ΔS 的补充作用 占主导, ΔS 逐渐增大, n_c , r_v ,LWC 逐渐减小,直到 422.25 s时干空气达到饱和($\Delta S=0$),云滴不再蒸 发, ΔS , n_c , r_v ,LWC 保持不变。

2.2 敏感性试验

2.2.1 卷入干空气相对湿度的影响

为了研究 RH_e 对 ΔS 的影响,在对照试验设置 的基础上,RH_e 分别设置为 88%(对照)、44%、 22%。图 2显示了 RH_e 的影响下, $\epsilon = 1 \times 10^{-3}$ m² · s⁻³, f = 0.3, $n_i = 102.75$ cm⁻³ 时, ΔS , n_e , r_v ,LWC 在夹卷混合过程的演变。夹卷发生前, ΔS 的值为 0.4%。夹卷后, ΔS 在三个 RH。下都显著减小, 并 分别在 386.25、389.25、394.5 s 达到最小值,数值 为一0.7%、一4.1%、一7.2%。在随后的混合过程 中,干空气分别在 422. 25、459. 75、514.5 s 达到饱 $\pi(图 2a)$ 。RH。越小, ΔS 减小的幅度越大, 数值越 小,并且恢复饱和状态所需的时间越长。和对照试 验相比(RH_e = 88%),当 RH_e = 44%、22%时, n_c , r,,LWC 大幅减小。n。分别从 71.3 cm⁻³减小至 51.2、30.4 cm⁻³ (图 2b), r_v 分别减小至 12.63、 10.28 µm(图 2c), LWC 分别减小至 0.43、0.14 g· m^{-3} (图 2d)。当 RH。越小时,卷入干空气对 ΔS 的 影响越大(Pinsky et al, 2016), 需要云滴大量蒸发 来补充水汽,云滴通常需要发生完全蒸发使干空气 达到饱和。因此,n_c,r_v,LWC 在混合过程中显著减 小,并且恢复饱和的时间显著增长(Devenish et al, 2012; Slawinska et al, 2012; 罗仕等, 2017)。

图 2 卷入干空气相对湿度(RH_e)的影响下(a)云滴周围过饱和度、 (b)云滴数浓度、(c)体积平均半径、(d)含水量的变化

Fig. 2 The evolutions of (a) supersaturation of droplets, (b) cloud droplet number concentration, (c) volume-mean radius, and (d) liquid water content under the effects of entrained dry air relative humidity (RH_e)

2.2.2 湍流动能耗散率的影响

当 ϵ =1×10⁻⁵、1×10⁻³(对照)、1×10⁻² m² • s⁻³ 时,图 3 显示了当 RH_e=88%、*f*=0.3、*n*_i=102.75 cm⁻³时, ϵ 对 Δ *S*,*n*_e,*r*_v、LWC 的影响。当 ϵ 从 1× 10⁻⁵ m² • s⁻³增大到 1×10⁻² m² • s⁻³时,湍流强度 增强, Δ *S*分别在 410.25、386.25、381.75 s 减小至 -0.31%、-0.75%、-1.1%(图 3a)。在随后的混 合过程中,干空气分别在 487.5、422.25、404.25 s 时达到饱和。 ϵ 越大, Δ *S* 减小的幅度越大,越迅速, 恢复饱和所需的时间越短,该结果和 Andrejczuk et al(2006)一致。当 ϵ 较大时,卷入干空气块和云 内空气之间混合快,卷入干空气块在湍流的作用下 破碎得快,使得在短时间内有更多的云滴和干空气 接触,导致 Δ *S*大幅度的迅速减小。当 ϵ 较小时,干 空气和云内空气之间混合慢,部分云滴能够长时间 和干空气接触蒸发,增加干空气的相对湿度(Jensen and Baker, 1989; Andrejczuk et al, 2004), 导致 ΔS 小幅度减小, 并且使恢复饱和所需的时间变长。因此, 随着 ε 的增大, n_c , r_v , LWC 能够快速减小。在 夹卷混合过程完成后, 不同 ε 下, n_c , r_v , LWC 值的 差异较小(图 3b, 3c, 3d)。

2.2.3 卷入干空气比例的影响

图 4 显示了当 RH_e = 88%、 ε = 1×10⁻³ m²・ s⁻³、 n_i = 102.75 cm⁻³, f = 0.2、0.3(对照)、0.4 时, $\Delta S, n_c, r_v$, LWC 在夹卷混合过程中的演变。当 f 从 0.2 增大到 0.4 时, ΔS 分别在 383.25、386.25、384 s 减小至最小值,数值为-0.4%、-0.7%、-1.1% (图 4a)。随着 f 的增大,进入云内的干空气增多, 导致干空气在云中的占比增大,受干空气影响的云 滴增多, ΔS 减小的幅度增大,该结果和 Chen et al (2020)的结果一致。Chen et al(2020)的研究结果 表明随着夹卷率的增大,进入云内的干空气增加,

图 3 湍流动能耗散率(ε)的影响下(a)云滴周围过饱和度、 (b)云滴数浓度、(c)体积平均半径、(d)含水量的变化

Fig. 3 The evolutions of (a) supersaturation of droplets, (b) cloud droplet number concentration, (c) volume-mean radius, and (d) liquid water content under the effects of turbulent kinetic energy dissipation rate (ε)

 ΔS 的最小值减小。在随后的混合过程中,*f*增大,云 内空气恢复饱和的时间增长,分别为 411、422. 25、 423. 75 s。当 *f* 分别为 0. 2、0. 3、0. 4 时,在夹卷混 合过程完成后,*n*_c 从 102. 75 cm⁻³减小至 79. 8、71. 3、 61. 6 cm⁻³(图 4b),*r*_v 从 15. 64 μ m 减小至 15. 24、 14. 94、14. 45 μ m(图 4c),LWC 从 1. 28、1. 15、0. 99 g・m⁻³减小至 1. 18、0. 99、0. 78 g・m⁻³(图 4d)。*f* 越大,干空气的稀释作用越强,为了使云内空气恢复 饱和状态,云滴的蒸发量越大(Jensen and Baker, 1989;Lu et al,2013a)。

2.2.4 初始云滴数浓度的影响

当 $n_i = 34.25$ 、102.75(对照)、308.25 cm⁻³时, 图 5 显示了 RH_e=88%、 $\varepsilon = 1 \times 10^{-3}$ m² · s⁻³、f = 0.3的条件下, n_i 在夹卷混合过程中对 ΔS , n_e , r_v 、LWC 的影响。在夹卷前,当 $n_i = 34.25$ 、102.75、308.25 cm⁻³时, ΔS 分别为 0.42%、0.22%、0.12% (图 5a), 对应的 r_v 分别为 22.49、15.67、10.88 µm (图 5c)。因为 n; 越小,云滴对水汽的竞争越小,云 中剩余水汽的量越大,所以夹卷前 ΔS 和 r, 越大 (Yum and Hudson, 2005;杨军等, 2011; Xie et al, 2018; Yang et al, 2018; Zhao et al, 2018; Wang et al, 2020a)。夹卷后, ΔS 在 387.75、386.25、385.5 s 减 小至-0.9%、-0.7%、-0.5%。 n_i 越大, ΔS 减幅 越小。在随后的过程中,云内空气分别在 454.5、 422.25、413.25 s 时恢复饱和状态(图 5a),对应的 n。分别减小至 23.75、71.25、217.45 cm⁻³(图 5b), r,分别减小至 21.48、14.93、10.39 µm(图 5c)。在 不同 n_i 的条件下,LWC 的差异较小(图 5d)。 n_i 越 大,云滴尺度越小(Wang et al, 2020b),蒸发越快 (Hill et al, 2009),恢复饱和状态所需的时间越短。 在夹卷过程中稀释和发生完全蒸发的云滴数量越 多,因此n。减小的幅度越大。此外,因为ni较大时

图 5 初始云滴数浓度(n_i)的影响下(a)云滴周围过饱和度、(b)云滴数浓度、(c)体积平均半径、(d)含水量的变化 Fig. 5 The evolutions of (a) supersaturation of droplets, (b) cloud droplet number concentration, (c) volume-mean radius, and (d) liquid water content under the effects of initial cloud droplet number concentration (n_i)

云滴能够快速蒸发补充干空气的湿度,所以虽然在 发生夹卷前 ΔS 小,但是 ΔS 减小的幅度小,最终 ΔS 最小值能够大于 n_i 较小的情况。

3 结 论

本文利用高分辨率的显式混合气泡模式 (EMPM),研究了夹卷混合过程中云滴周围过饱和 度的演变特征;分析了不同影响因子在夹卷混合过 程中对云滴周围过饱和度的影响,得到如下结论。

在夹卷混合过程中,云滴周围过饱和度先减小 后增大,直到气块恢复饱和。在夹卷混合过程开始 阶段,随着破碎的干空气块增多,受干空气块影响的 云滴增多。此时,干空气块对过饱和度的减小作用 大于云滴蒸发的补充作用,导致过饱和度逐渐减小。 当两者对过饱和度的影响相当时,过饱和度达到最 小值。在随后的混合过程中,云滴蒸发对过饱和度 的补充作用占主导,导致过饱和度逐渐增大。云滴 数浓度、体积平均半径、含水量因干空气的稀释作用 和云滴的蒸发显著减小。在夹卷混合过程完成后云 滴不再蒸发,云微物理量保持不变。

由于夹卷受到多个因子的制约,本文分别探讨 了各个因子对云滴周围过饱和度的影响。首先,卷 入干空气相对湿度较大时,干空气达到饱和需要云 滴的蒸发量小,过饱和度减小的幅度小,云内空气恢 复饱和状态需要的时间短;数浓度、体积平均半径、 含水量在夹卷混合过程中的减幅小。其次,湍流动 能耗散率较小时,干空气和云内空气之间的混合速 率小,部分云滴能够长时间和干空气接触蒸发,增大 干空气相对湿度,导致过饱和度减幅度变小,云内空 气恢复饱和状态的所需时间长;但在夹卷混合过程 完成后数浓度、体积平均半径、含水量的差异较小。 再次,卷入干空气在云中比例较大时,进入云内的干 空气多,云滴的蒸发量大,导致受干空气影响的云滴 增多,过饱和度显著减小,云内空气恢复饱和需要的 时间长;数浓度、体积平均半径、含水量显著减小。 最后,初始云滴数浓度较大时,云滴尺度小,蒸发快, 云滴能够快速蒸发补充干空气的湿度,导致云内空 气恢复饱和状态所需要的时间短,云滴数浓度因稀 释和蒸发显著减小。

过饱和度是直接影响云滴生长情况的重要物理 量之一。明确夹卷混合过程对过饱和度的影响对理 解云微物理量在该过程中的演变至关重要。但在以 往的研究中并未清晰指出过饱和度在夹卷混合过程 中的演变以及夹卷相关因子对过饱和度演变的影响 (Pinsky et al, 2016; Tölle and Krueger, 2014; Chen et al,2020)。本研究揭示了夹卷混合过程对过饱和 度的影响,并清晰给出了热力、动力、微物理因子对 过饱和度的减小幅度和恢复饱和时间的作用机理, 弥补了以往研究的不足,提升了对夹卷混合过程的 理解。此外,夹卷混合过程对过饱和度的影响会进 一步影响气溶胶的活化,导致云滴数浓度、云滴尺度 等微物理量发生变化(李义字等,2022: Jia X C et al,2019;石茹琳等,2021;沙桐等,2019),进而改 变云的反照率和生命周期(杨怡曼等,2020;Qiu et al,2017)。在本研究中夹卷混合过程对过饱和度 产生影响后,并没有进一步考虑气溶胶活化的影响。 经历夹卷混合过程后,过饱和度的减小会抑制气溶 胶的活化,不利于云滴的形成,导致云滴谱和云微物 理量发生变化。因此,在以后的工作中需要进一步 研究夹卷混合过程对气溶胶活化的影响。

参考文献

- 蔡兆鑫,蔡森,李培仁,等,2021. 华北地区一次气溶胶与浅积云微物 理特性的飞机观测研究[J]. 大气科学,45(2):393-406. Cai Z X, Cai M,Li P R,et al,2021. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China[J]. Chin J Atmos Sci,45(2):393-406(in Chinese).
- 邓玮,孙继明,雷恒池,2019. 三参数云微物理方案中气溶胶谱函数对 云滴谱影响的数值模拟研究[J]. 气候与环境研究,24(6):693-710. Deng W,Sun J M,Lei H C,2019. Numerical simulation research on the effects of the size distribution of aerosols on the droplet spectrum with a newly developed Triple-Moment Bulk Scheme[J]. Climatic Environ Res,24(6):693-710(in Chinese).
- 符传博,丹利,冯锦明,等,2019.1960~2012 年中国地区总云量时空变化及其与气温和水汽的关系[J].大气科学,43(1):87-98.FuCB,DanL,FengJM,et al,2019.Temporal and spatial variations of total cloud amount and their possible relationships with temperature and water vapor over China during 1960 to 2012
 [J].ChinJAtmos Sci,43(1):87-98(in Chinese).
- 贾星灿,马新成,毕凯,等,2018. 北京冬季降水粒子谱及其下落速度 的分布特征[J]. 气象学报,76(1):148-159. Jia X C,Ma X C,Bi K,et al,2018. Distributions of particle size and fall velocities of winter precipitation in Beijing[J]. Acta Meteor Sin,76(1):148-159(in Chinese).
- 李筱杨,郑佳锋,朱克云,等,2019. 基于雷达资料的一次高原涡天气 云降水宏微观特征研究[J]. 气象,45(10):1415-1425. Li X Y, Zheng J F,Zhu K Y, et al,2019. Study of macro and micro properties of cloud and precipitation caused by Tibetan Plateau vortex based on radar observations[J]. Meteor Mon,45(10):1415-1425(in Chinese).
- 李义宇,郭学良,金莲姬,等,2022.华北中部夏季气溶胶垂直分布及

其与云凝结核和云滴转化关系的飞机观测研究[J]. 大气科学, 46(4):845-858. Li Y Y, Guo X L, Jin L J, et al, 2022. Aircraft measurements of summer vertical distributions of aerosols and transitions to cloud condensation nuclei and cloud droplets in central Northern China[J]. Chin J Atmos Sci, 46(4):845-858(in Chinese).

- 刘瑞翔,刘端阳,姚雷,等,2020. 近十年连云港市霾变化特征及其气 象条件分析[J]. 气象,46(7):959-970. Liu R X, Liu R Y, Yao L, et al,2020. Analysis on the variation characteristics and meteorological conditions of haze in Lianyungang City in recent decade[J]. Meteor Mon,46(7):959-970(in Chinese).
- 刘涛,孙晶,周毓荃,等,2015. 一次低槽冷锋层状云系结构和过冷水 分布特征的模拟研究[J]. 气象,41(10):1232-1244. Liu T,Sun J,Zhou Y Q, et al,2015. Simulation study on stratiform cloud structure of trough cold front and characteristics of supercooled water distribution[J]. Meteor Mon,41(10):1232-1244(in Chinese).
- 陆春松,徐晓齐,2021. 云中夹卷混合过程的研究进展[J]. 暴雨灾害, 40(3):271-279. Lu C S, Xu X Q, 2021. Advances in the studies of cloud entrainment and mixing process[J]. Torr Rain Dis,40 (3):271-279(in Chinese).
- 陆春松,薛宇琦,朱磊,等,2021. 基于层积云飞机观测资料评估气溶 胶间接效应[J]. 大气科学学报,44(2):279-289. Lu C S, Xue Y Q, Zhu L, et al, 2021. Evaluation of aerosol indirect effect based on aircraft observations of stratocumulus[J]. Trans Atmos Sci, 44(2):279-289(in Chinese).
- 罗仕,陆春松,郭小浩,等,2017. 夹卷混合过程对青藏高原云滴谱及 微物理量影响的数值模拟研究[J].中国科技论文,12(9):972-977. Luo S,Lu C S,Guo X H,et al,2017. Numerical simulation of the effects of entrainment-mixing on cloud droplet size distributions and microphysical properties over the Tibetan Plateau [J]. China Sciencepaper,12(9):972-977(in Chinese).
- 吕巧谊,张玉轩,李积明,2017.南半球中高纬度区域不同类型云的辐射特性[J].气象学报,75(4):596-606.LüQY,ZhangYX,LiJM,2017. Radiative characteristics of various cloud types over southern mid-high latitudes[J]. Acta Meteor Sin,75(4):596-606(in Chinese).
- 沙桐,马晓燕,银燕,等,2019. 石家庄地区气溶胶和 CCN 垂直廓线的 飞机观测分析[J]. 大气科学学报,42(4):521-530. Sha T, Ma X Y, Yin Y, et al,2019. Aircraft measurements and analysis of the vertical distribution of aerosol particles and CCN over the Shijiazhuang Area[J]. Trans Atmos Sci,42(4):521-530(in Chinese).
- 石广玉,王标,张华,等,2008. 大气气溶胶的辐射与气候效应[J]. 大 气科学,32(4):826-840. Shi G Y, Wang B, Zhang H, et al, 2008. The radiative and climatic effects of atmospheric aerosols[J]. Chin J Atmos Sci,32(4):826-840(in Chinese).
- 石茹琳,银燕,陈倩,等,2021. 气溶胶对新疆冰雹形成物理过程影响 的数值模拟研究[J]. 大气科学,45(1):107-122. Shi R L, Yin Y, Chen Q, et al, 2021. Numerical simulation of aerosol effects on the physical processes of hail formation in Xinjiang[J]. Chin J Atmos Sci,45(1):107-122(in Chinese).
- 解小宁,刘晓东,王昭生,2015. 云滴谱离散度对气溶胶间接效应影响 的研究进展[J]. 地球环境学报,6(2):127-134. Xie X N, Liu X

D, Wang Z S,2015. Review of influence of cloud droplet spectral dispersion on aerosol indirect effects[J]. J Earth Environ,6(2): 127-134(in Chinese).

- 解小宁,王昭生,王红丽,等,2016. 云微物理特性及云滴有效半径参数化:一次降水层状云的飞机观测资料结果[J]. 地球环境学报,7(1):12-18. Xie X N, Wang Z S, Wang H L, et al, 2016. Cloud microphysical properties and parameterization of cloud droplet effective radius from aircraft measurements: aircraft observational results from a stratiform precipitation cloud[J]. J Earth Environ,7(1):12-18(in Chinese).
- 杨军,陈宝君,银燕,等,2011. 云降水物理学[M]. 北京:气象出版社: 119-123. Yang J,Chen B J,Yin Y,et al,2011. Physics of Clouds and Precipitation[M]. Beijing: China Meteorological Press:119-123(in Chinese).
- 杨薇,冯文,李勋,2017. 微物理过程和积云参数化方案对海南岛秋季 暴雨模拟的影响[J]. 暴雨灾害,36(1):8-17. Yang W, Feng W, Li X,2017. Impacts of microphysical processes and cumulus parameterization schemes on simulated rainfall in autumn over the Hainan Island[J]. Torr Rain Dis,36(1):8-17(in Chinese).
- 杨文霞,范皓,杨洋,等,2019. 一次层状云降雨过程多源遥感特征参 量演变分析[J]. 气象,45(9):1278-1287. Yang W X, Fan H, Yang Y, et al,2019. Evolution analysis of physical quantities obtained by multi-source remote sensing in a process of stratiform cloud rainfall[J]. Meteor Mon,45(9):1278-1287(in Chinese).
- 杨怡曼,周毓荃,蔡兆鑫,2020. 气溶胶垂直分布及活化特性的飞机观 测个例研究[J]. 气象,46(9):1199-1209. Yang Y M,Zhou Y Q, Cai Z X,2020. A case study of aircraft observation of aerosol vertical distribution and activation characteristics[J]. Meteor Mon,46(9):1199-1209(in Chinese).
- 周黎明,牛生杰,王俊,2014.不同天气系统层状云微物理特征个例分 析[J]. 气象,40(3):327-335. Zhou L M,Niu S J,Wang J,2014. Case analysis on microphysical characteristics of stratiform cloud under synoptic systems[J]. Meteor Mon,40(3):327-335 (in Chinese).
- 朱磊,陆春松,高思楠,等,2020.海洋层积云中的云滴谱宽度及其影响因子[J].大气科学,44(3):575-590. Zhu L,Lu C S,Gao S N, et al,2020. Spectral width of cloud droplet spectra and its impact factors in marine stratocumulus[J]. Chin J Atmos Sci,44(3): 575-590(in Chinese).
- 朱泽恩,郑创,葛觐铭,等,2017. 利用 KAZR 云雷达对 SACOL 站云 宏观特性的研究[J]. 科学通报,62(8):824-835. Zhu Z E, Zheng C, Ge J M, et al, 2017. Cloud macrophysical properties from KAZR at the SACOL[J]. Chin Sci Bull,62(8):824-835(in Chinese).
- Andrejczuk M, Grabowski W W, Malinowski S P, et al, 2004. Numerical simulation of cloud-clear air interfacial mixing[J]. J Atmos Sci, 61(14):1726-1739.
- Andrejczuk M,Grabowski W W,Malinowski S P,et al,2006. Numerical simulation of cloud-clear air interfacial mixing: effects on cloud microphysics[J]. J Atmos Sci,63(12):3204-3225.
- Austin P H,Baker M B,Blyth A M, et al,1985. Small-scale variability in warm continental cumulus clouds[J]. J Atmos Sci,42(11): 1123-1138.
- Bai H M, Gong C, Wang M H, et al, 2018. Estimating precipitation

susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites [J]. Atmos Chem Phys, 18(3): 1763-1783.

- Beard K V, Ochs III H T, 1993. Warm-rain initiation: an overview of microphysical mechanisms[J]. J Appl Meteorol Climatol, 32(4): 608-625.
- Burnet F, Brenguier J L, 2007. Observational study of the entrainment-mixing process in warm convective clouds [J]. J Atmos Sci,64(6):1995-2011.
- Chandrakar K K,Grabowski W W,Morrison H, et al, 2021. Impact of entrainment mixing and turbulent fluctuations on droplet size distributions in a cumulus cloud: An investigation using Lagrangian microphysics with a subgrid-scale model[J]. J Atmos Sci, 78(9): 2983-3005.
- Chen J Y, Liu Y G, Zhang M H, 2020. Effects of lateral entrainment mixing with entrained aerosols on cloud microphysics[J]. Geophys Res Lett, 47(13):e2020GL087667.
- Chen S S, Bartello P, Yau M K, et al, 2016. Cloud droplet collisions in turbulent environment: collision statistics and parameterization [J]. J Atmos Sci, 73(2):621-636.
- Cooper W A, Lasher-Trapp S G, Blyth A M, 2013. The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud[J]. J Atmos Sci, 70(6): 1727-1743.
- Devenish B J,Bartello P,Brenguier J L,et al,2012. Droplet growth in warm turbulent clouds[J]. Quart J Roy Meteor Soc,138(667): 1401-1429.
- Fukuta N, Walter L A, 1970. Kinetics of hydrometeor growth from a vapor-spherical model[J]. J Atmos Sci, 27(8):1160-1172.
- Ge J M, Wang Z Q, Liu Y Y, et al, 2019. Linkages between mid-latitude cirrus cloud properties and large-scale meteorology at the SACOL site[J]. Climate Dyn, 53(7-8); 5035-5046.
- Grabowski W W, Abade G C, 2017. Broadening of cloud droplet spectra through eddy hopping:turbulent adiabatic parcel simulations [J]. J Atmos Sci, 74(5):1485-1493.
- Hill A A, Feingold G, Jiang H L, 2009. The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus[J]. J Atmos Sci, 66(5):1450-1464.
- Hou T J, Lei H C, Hu Z X, et al, 2020. Simulations of microphysics and precipitation in a stratiform cloud case over northern China: comparison of two microphysics schemes[J]. Adv Atmos Sci, 37 (1):117-129.
- Hudson J G, Noble S, Jha V, 2010. Stratus cloud supersaturations [J]. Geophys Res Lett, 37(21): L21813.
- Hudson J G, Noble S, Jha V, 2012. Cloud droplet spectral width relationship to CCN spectra and vertical velocity [J]. J Geophys Res: Atmos, 117(D11): D11211.
- Jensen J B,Baker M B,1989. A simple model of droplet spectral evolution during turbulent mixing[J]. J Atmos Sci,46(18):2812-2829.
- Jia H L, Ma X Y, Yu F Q, et al. 2019. Distinct impacts of increased aerosols on cloud droplet number concentration of stratus/stratocumulus and cumulus[J]. Geophys Res Lett, 46(22):13517-13525.

- Jia X C, Quan J N, Zheng Z Y, et al, 2019. Impacts of anthropogenic aerosols on fog in North China Plain[J]. J Geophys Res: Atmos, 124(1):252-265.
- Johnson D B,1993. The onset of effective coalescence growth in convective clouds[J]. Quart J Roy Meteor Soc,119(513):925-933.
- Kerstein A R, 1988. A linear-eddy model of turbulent scalar transport and mixing[J]. Combust Sci Technol, 60(4/5/6); 391-421.
- Kerstein A R, 1992. Linear-eddy modelling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing[J]. J Fluid Mech, 240:289-313.
- Korolev A V, Isaac G A, 2000. Drop growth due to high supersaturation caused by isobaric mixing[J]. J Atmos Sci, 57(10):1675-1685.
- Krueger S K, Schlueter H, Lehr P, 2008. Fine-scale modeling of entrainment and mixing of cloudy and clear air[R]//15th International Conference on Clouds and Precipitation, Cancun, Mexico.
- Krueger S K, Su C W, McMurtry P A, 1997. Modeling entrainment and finescale mixing in cumulus clouds[J]. J Atmos Sci, 54(23): 2697-2712.
- Kudzotsa I, Phillips V T J, Dobbie S, et al, 2016. Aerosol indirect effects on glaciated clouds. Part [:model description[J]. Quart J Roy Meteor Soc, 142(698): 1958-1969.
- Kumar B, Bera S, Prabha T V, et al, 2017. Cloud-edge mixing: direct numerical simulation and observations in Indian monsoon clouds [J]. J Adv Model Earth Syst,9(1):332-353.
- Kumar B, Schumacher J, Shaw R A, 2013. Cloud microphysical effects of turbulent mixing and entrainment[J]. Theor Comput Fluid Dyn, 27(3-4):361-376.
- Lasher-Trapp S G, Cooper W A, Blyth A M, 2005. Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud[J]. Quart J Roy Meteor Soc, 131(605):195-220.
- Lehmann K, Siebert H, Shaw R A, 2009. Homogeneous and inhomogeneous mixing in cumulus clouds: dependence on local turbulence structure[J]. J Atmos Sci, 66(12): 3641-3659.
- Li J M,Lv Q Y,Zhang M,et al,2017. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds[J]. Atmos Chem Phys,17(3):1847-1863.
- Li J M, Jian B D, Huang J P, et al, 2018. Long-term variation of cloud droplet number concentrations from space-based lidar[J]. Remote Sens Environ, 213:144-161.
- Li X Y,Brandenburg A,Svensson G, et al,2018. Effect of turbulence on collisional growth of cloud droplets[J]. J Atmos Sci,75(10): 3469-3487.
- Li X Y,Brandenburg A,Svensson G,et al,2020. Condensational and collisional growth of cloud droplets in a turbulent environment [J]. J Atmos Sci,77(1):337-353.
- Li X Y, Svensson G, Brandenburg A, et al, 2019. Cloud-droplet growth due to supersaturation fluctuations in stratiform clouds [J]. Atmos Chem Phys, 19(1):639-648.
- Lin Y L, 2019. Impact of cumulus microphysics and entrainment specification on tropical cloud and radiation in GFDL AM2[J]. Earth Syst Environ, 3(2):255-266.
- Lu C S, Liu Y G, Niu S J, et al, 2013a. Exploring parameterization for turbulent entrainment-mixing processes in clouds[J]. J Geophys

Res: Atmos, 118(1): 185-194.

- Lu C S, Niu S J, Liu Y G, et al, 2013b. Empirical relationship between entrainment rate and microphysics in cumulus clouds[J]. Geophys Res Lett, 40(10):2333-2338.
- Lu C S, Liu Y G, Niu S J, 2014. Entrainment-mixing parameterization in shallow cumuli and effects of secondary mixing events[J]. Chin Sci Bull, 59(9); 896-903.
- Lu C S, Liu Y G, Niu S J, et al, 2018a. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence; an overview[J]. Atmos Oceanic Sci Lett, 11(2);123-135.
- Lu C S, Liu Y G, Zhu B, et al, 2018b. On which microphysical time scales to use in studies of entrainment-mixing mechanisms in clouds[J]. J Geophys Res: Atmos, 123(7):3740-3756.
- Luo S, Lu C S, Liu Y G, et al, 2020. Parameterizations of entrainment-mixing mechanisms and their effects on cloud droplet spectral width based on numerical simulations[J]. J Geophys Res: Atmos, 125(22):e2020JD032972.
- Luo S, Lu C S, Liu Y G, et al, 2021. Consideration of initial cloud droplet size distribution shapes in quantifying different entrainment-mixing mechanisms[J]. J Geophys Res: Atmos, 126(13): e2020JD034455.
- Morrison H, Grabowski W W, 2008. Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics [J]. J Atmos Sci, 65(3):792-812.
- Pinsky M, Khain A, 2020. Calculation of supersaturation maximum and droplet concentration at cloud boundaries[J]. Atmos Res, 234:104694.
- Pinsky M,Khain A,Korolev A, et al. 2016. Theoretical investigation of mixing in warm clouds-Part 2: homogeneous mixing[J]. Atmos Chem Phys, 16(14):9255-9272.
- Qiu Y M,Zhao C F,Guo J P,et al,2017. 8-year ground-based observational analysis about the seasonal variation of the aerosolcloud droplet effective radius relationship at SGP site[J]. Atmos Environ,164,139-146.
- Raga G B, Jensen J B, Baker M B, 1990. Characteristics of cumulus band clouds off the coast of Hawaii[J]. J Atmos Sci,47(3):338-356.
- Seifert A, Onishi R, 2016. Turbulence effects on warm-rain formation in precipitating shallow convection revisited [J]. Atmos Chem Phys, 16(18):12127-12141.
- Siebert H, Franke H, Lehmann K, et al, 2006. Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements[J]. Bull Amer Meteor Soc, 87(12):1727-1738.
- Slawinska J, Grabowski W W, Pawlowska H, et al, 2012. Droplet activation and mixing in large-eddy simulation of a shallow cumulus field[J]. J Atmos Sci,69(2):444-462.
- Stephens G L, Haynes J M, 2007. Near global observations of the warm rain coalescence process[J]. Geophys Res Lett, 34(20): L20805.
- Su C W, Krueger S K, McMurtry P A, et al, 1998. Linear eddy modeling of droplet spectral evolution during entrainment and mixing in

cumulus clouds[J]. Atmos Res, 47-48:41-58.

- Sun J, Leighton H, Yau M K, et al, 2012. Numerical evidence for cloud droplet nucleation at the cloud-environment interface[J]. Atmos Chem Phys, 12(24):12155-12164.
- Tölle M H,Krueger S K,2014. Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds [J]. J Adv Model Earth Syst,6(2):281-299.
- Wang M Q, Peng Y R, Liu Y G, 2020a. Contrasting aerosol effects on long-wave cloud forcing in South East Asia and amazon simulated with community atmosphere model version 5. 3[J]. J Geophys Res: Atmos, 125(24):e2020JD032380.
- Wang M Q, Peng Y R, Liu Y G, et al, 2020b. Understanding cloud droplet spectral dispersion effect using empirical and semi-analytical parameterizations in NCAR CAM5. 3 [J]. Earth Space Sci,7(8):e2020EA001276.
- Wang Y,Niu S J,Lu C S, et al, 2021. A new CCN activation parameterization and its potential influences on aerosol indirect effects [J]. Atmos Res, 253:105491.
- Warner J, 1969. The microstructure of cumulus cloud. Part I. General features of the droplet spectrum[J]. J Atmos Sci, 26(5):1049-1059.
- Xie X N, Liu X D, 2013. Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect[J]. Adv Atmos Sci, 30(5):1313-1319.
- Xie X N,Zhang H,Liu X D,et al,2018. Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1 [J]. Adv Atmos Sci,35(2):248-259.
- Xu X H, Yin J F, Zhang X T, et al, 2022. Airborne measurements of cloud condensation nuclei (CCN) vertical structures over Southern China[J]. Atmos Res, 268: 106012.
- Yang F, Kollias P, Shaw R A, et al, 2018. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation[J]. Atmos Chem Phys, 18(10): 7313-7328.
- Yang Y,Gao S H,2020. The impact of turbulent diffusion driven by fog-top cooling on sea fog development[J]. J Geophys Res: At-mos,125(4):e2019JD031562.
- Yin J F,Liang X D,Wang H,et al,2022. Representation of the autoconversion from cloud to rain using a weighted ensemble approach: a case study using WRF v4. 1. 3[J]. Geosci Model Dev, 15(2):771-786.
- Yum S S, Hudson J G, 2005. Adiabatic predictions and observations of cloud droplet spectral broadness[J]. Atmos Res, 73(3/4): 203-223.
- Zhang R D, Wang H L, Fu Q, et al, 2018. Local radiative feedbacks over the Arctic based on observed short-term climate variations [J]. Geophys Res Lett, 45(11):5761-5770.
- Zhao C F, Qiu Y M, Dong X B, et al, 2018. Negative aerosol-cloud re relationship from aircraft observations over Hebei, China [J]. Earth Space Sci, 5(1): 19-29.