汾渭平原PM2.5-O3复合污染特征及气象成因 1 分析 2 3 周涛¹,周青²,张勇³,吴昱树⁴,孙健⁵ 4 5 6 (1. 运城市气象局,运城 044000; 2. 中国气象局气象探测中心,北京 100081; 3. 中国气象局气象发展与规 7 划院,北京 100081; 4.乌兰察布市气象局,乌兰察布 012000; 5.莒县气象局,莒县 276500) 8 9 摘 要: PM25和 O3已经成为汾渭平原城市最主要的污染物,两者之间相互影响, 在暖季经常同时出 现构成污染,其污染程度与气象条件密切相关。本文利用 2015 年至 2021 年间汾渭平原 12个城市逐日 PM25 10 和O₃浓度、地面气象观测数据以及ERA5高空再分析数据等资料,分析了汾渭平原PM,和O,的时空变化 11 特征以及复合污染发生时 PM25和 O3的关系,并研究了局地气象条件和天气形势对复合污染的影响。 12 显示,得益于"污染协同治理"和"一市一策"的实施,该地区年均 PM25和 MDA8 O3 (MDA8-90, O3 13 年评价值,日最大8小时滑动平均值第90百分位数)浓度分别在2017年和2018年开始持续下降,复合污 14 染日数也在 2019 年后开始持续下降;复合污染主要发生在 3-9 月,在汾渭平原东部城市出现次数较多,多 15 出现在高温、低湿的环境下;最后利用 T-PCA 算法(正交主成分分析)将复合污染的天气环流形势分为4 16 种类型,主要呈现出以高空西北气流或偏西气流、低层为暖区偏南风或微风为主的天气特征。研究结果对 17 汾渭平原的大气污染防治提供了参考依据,尤其对于 PM25和 O3 污染协同治理具有重要意义。 18 关键词: 汾渭平原、PM2.5 和 O3复合污染、T-PCA 分型 19 气象成因 20 引 言 21 22 汾渭平原是我国第四大平原,由汾河,渭河冲击形成,由于其大部分城市位于黄土高原, 23 地形封闭,能源消费结构以煤炭为主,年消耗量达2.6亿吨,占全国能源消费的80%以上(Feng 24 et al, 2016),加上繁重的道路运输和较高的人口密度,导致汾渭平原的污染排放量极高(Dao et 25 气污染严重,生态环境脆弱(黄小刚等,2021;王妘涛等,2022;秦卓凡等,2021),并 al, 2021), 太 26 且可能加重临近地区的污染(黄小刚等, 2019)。为了解决空气污染问题,中国政府于 2013 年 27 颁布《大气污染防治行动计划》,行动计划实施以来,全国空气质量显著好转(Zhang et al, 28 29 2018a, b),但汾渭平原空气质量并未明显改善(Feng et al, 2019),并且已经取代京津冀地区成 为中国污染最严重的地区(Dao et al, 2021; 杨乐超等, 2018), 因此国务院于 2018 年继续颁布 30 31 《打赢蓝天保卫战三年行动计划》,将汾渭平原列为重点管控区域(秦卓凡等,2021)。随着行

^{*}山西省气象局面上项目(SXKMSTQ20217137),秦岭和黄土高原生态环境气象重点实验室开放研究基金重点课题(2021K-10)资助

第一作者:周涛,主要从事天气预报和环境气象工作.E-mail:805746177@qq.com

通讯作者:周青,主要从事大气成分与环境气象研究.E-mail:zhouqing@cma.gov.cn

32 动计划中减排措施的强制实施, 汾渭平原的 PM_{2.5} 浓度已经开始下降(郝永佩等, 2022), 但
33 O₃ 污染却越来越严重(关茜妍等, 2021), 2021 年汾渭平原污染物超标天数比例为 29.8%,
34 PM_{2.5} 污染和 O₃ 污染分别占总超标天数的 39.3%和 38%, 污染形势依旧严峻(中华人民共和
35 国生态环境部, 2022)(来自《2021 生态环境公报》)。

污染物局地排放是大气污染的主要因素,而不利的气象因素会加剧空气污染(Wang et al, 36 37 2018;祁海霞等,2019;陈镭等,2020;胡春梅等,2020;宋佳琨等,2021;刘兆东等,2020;杨颖川 等,2022), 2014-2018 年汾渭平原的 PM25浓度呈 4.7 µg·m⁻³ yr⁻¹ 的趋势下降, 气象因素的贡 38 献为 0.7 μg·m⁻³, 贡献率达 15%, O₃浓度呈 6.6 μg·m⁻³ γr⁻¹的趋势增长, 气象贡献占 12% (Chen 39 et al, 2020), 有研究显示汾渭平原 2015-2019 年各年度臭氧单因子所导致污染超标所占比例 40 分别为 1.4%、5.4%、13.0%、11.1%、14.4%(解淑艳等, 2021)。O3 污染事件通常与高温低湿 41 度条件有关(何慧根等,2021;杨镇江等,2023),高温和低湿环境导致大量 Bvoc (生物挥发性有 42 43 机物)的排放促进光化学反应(Lu et al, 2019),进而加重地面 O₃污染;而 PM_{2.5}污染通常发 生在弱风、高湿和低边界层的条件下(Xu et al, 2018; 张琴和姚秀萍, 2021), 两者条件虽有不 44 同,但高浓度的 O3 会导致二次 PM2.5 粒子产生,使得空气中的 PM2.5 浓度增大(Ding et al, 45 2013;Wang et al, 2016), 而高浓度 PM2.5 会通过吸收太阳辐射、改变光解速率从而降低 O3 浓 46 度(Unger et al, 2009; Menon et al, 2008; Li et al, 2018), 两者之间会相互影响, 因此在许多城市 47 都出现了 PM_{2.5}和 O₃ 同时污染的现象(He et al, 2022; Schnell and Prather, 2017; Luo et al, 2022; 48 Yang et al, 2021), 我国的大气污染已经呈现出以 PM2.5 和 O3 为主的复合污染特征(Zhang et al, 49 2008),这种复合污染的现象会极大增加人类健康风险(Anenberg et al, 2010)。 50

51 综上、以前的学者对汾渭平原污染的气象成因研究大多是针对单一 PM_{2.5} 或 O₃ 污染,
52 对汾渭平原 PM_{2.5}和 O₃ 复合污染时的气象成因分析较少。因此我们将从气温、湿度和风速
53 等气象要素及天气形势方面分析 PM_{2.5}和 O₃ 复合污染成因,以期为汾渭平原大气复合污染
54 防治以及环境气象预报服务等提供参考依据。

55

56 1 资料与方法

57

58 1.1 研究区域

59 此次研究区域汾渭平原城市群共有 12 个城市,包括陕西省西安市、渭南市、铜川市、
60 咸阳市和宝鸡市,山西省太原市、晋中市、吕梁市、临汾市和运城市,河南省三门峡市和洛
61 阳市,2021 年汾渭平原 12 个城市有 6 个城市位于全国污染倒数 20 名之内(中华人民共和国)

62 生态环境部, 2022)。

64 图 1 汾渭平原各城市地理位置分布及海拔高度信息(陕西省(蓝色),山西省(黑色)、河南省(红色))
65 Fig 1 Geographic location distribution and elevation information of cities in Ferwei Plain (Shaanxi Province (blue),
66 Shanxi Province (black), Henan Province (red))

67 1.2 污染物和气象数据

63

68 污染物数据包括 2015 至 2021 年 12 个城市的 PM_{2.5}和 MDA8 O₃(日最大 8 小时平均
O₃浓度)观测资料,来源于中国环境监测总站(https://quotsoft.net/air/<u>)</u>(Wang et al, 2021; Jiang
et al, 2021; Zhang et al, 2022); 地面气象数据来自中国气象局国家气象数据观测中心
(http://data.cma.cn/),包括同时期逐小时的地面风速(WS)、风向(WD)、气温(T)、降
水 (RAIN)、相对湿度(RH);此外还使用了欧洲中期天气预报中心(ECMWF)第5代全
73 球大气再分析数据(ERA5),包括位势高度、风向、风速,时间分辨率为1小时,空间分辨
率为1°×1°。

75 1.3 污染日定义

本研究重点关注 PM_{2.5}和 O₃复合污染时的气象条件,世界卫生组织在综合考虑过去 15
年间环境健康研究进展的基础上,制定了 2021 版空气质量指南(朱彤等, 2022),针对 PM_{2.5}
和 O₃提出了更为严格的目标,根据中国环境空气质量标准(GB3095-2012),我们将同时满
足日均 PM_{2.5}>35 μg·m⁻³ (一级浓度限值)和 MDA8 O₃>100 μg·m⁻³ (一级浓度限值)两个条件
时的日期定义为复合污染日,将同时满足 PM_{2.5}>35 μg·m⁻³和 MDA8 O₃>100 μg·m⁻³定义为 O₃污染日,将同
PM_{2.5}污染日,将同时满足 PM_{2.5}<35 μg·m⁻³和 MDA8 O₃>100 μg·m⁻³定义为 O₃污染日,将同
时满足 PM_{2.5}<35 μg·m⁻³和 MDA8 O₃<100 μg·m⁻³定义为无污染日。

83 1.4 研究方法

自 2013 年政府发布《大气污染防治行动计划》以来,中国的空气污染物浓度呈下降趋
势(Zhang et al, 2018a),首要污染物以 PM_{2.5}和 O₃为主,要研究每日 PM_{2.5}和 O₃的关系,必
须消除 PM_{2.5}和 O₃的长期变化趋势所产生的影响,因此我们采用去趋势化和去季节化浓度
的处理方式, Tai et al(2010)和 Dai et al(2021)等人均用此方法进行过研究,去趋势化算法如
下:

$$Dev_{mi} = C_{mi} - \sum_{i=1}^{n} \frac{c_{mi}}{n} \tag{1}$$

90 公式(1)中 Dev_{mi}为去趋势化后的污染物浓度, C_{mi}为 m 月份第 i 天的污染物浓度, n
 91 为 m 月份的天数, ∑_{i=1}ⁿ C_{mi}为 m 月污染物的平均浓度,因此当某日的Dev_{mi}为正时,可以说
 92 明其浓度高于当月的平均浓度。

在天气分型方面,我们使用正交主成分分析方法(T-PCA)来对汾渭平原的天气形势进行 93 分类, T-PCA 已经证明是一种可靠的分类方法(Ye et al, 2016; Miao et al, 2018; Huth et al, 2008), 94 其可以准确地反映原始环流场的特征,不会因分型对象的调整而有太大变化,得到的时空场 95 也更加稳定(Huth et al, 2008),这里使用 cost733class 分型软件 (http://cost733.met.no) 中的 96 T-PCA 算法来对研究区域 850 hPa 形势进行客观分型,用位势高度场将天气形势进行分类, 97 进而识别出易受污染的天气形势。此外,通过计算不同天气分型数量下的累积解释方差(ECV, 98 explained cluster variance)以及累积解释方差的变率(AECV),从而完成对天气分型性能的评 99 估,其中 \triangle ECV = ECVk₊₁ – ECV_k,其中 k 为分类数量, \triangle ECV 值越大表示在天气模式分类 100 中的性能提升幅度越大,并且趋于稳定(Ning et al,2019)。 101

102

103 2 结果和讨论

104

105 2.1 2015 至 2021 年 PM25 和 O3 浓度变化趋势

106 图 2a 和 2b 分别为 2015 - 2021 年汾渭平原各城市 PM_{2.5}和 MDA8 O₃年均浓度空间分布,
107 其中臭氧年评价值采用日最大 8 小时平均浓度的第 90 百分位浓度值计算得到。整体来看汾
108 渭平原 PM_{2.5}年均浓度于 2015 至 2017 年呈上升趋势, 2017 年后,得益于蓝天保卫行动计划
109 的实施,汾渭平原城市群的年均 PM_{2.5}开始下降,由 2017 年的 66.8 μg m⁻³ 下降至 2021 年的
110 44.5 μg m⁻³,下降幅度达 33.4%,西安、渭南、咸阳、临汾、运城和洛阳等城市浓度下降明
111 显,但浓度仍远高于世卫组织推荐的年均标准(朱形等, 2022);虽然 2013 年大气污染防治行
112 动计划要求控制生成 O₃的氮氧化物和挥发性有机物等的排放,但 MDA8 O₃年评价值仍由

2015年的131.1升至2018年的183.4 μg m⁻³,上升幅度达28.5%,说明氮氧化物和挥发性有
机物尚未得到有效控制,2018年蓝天保卫行动计划加大控制力度后开始逐年缓慢下降。通
过统计汾渭平原 PM_{2.5}和 MDA8 O₃逐年月平均浓度变化趋势(图略),发现 PM_{2.5}浓度主要
在11月至次年2月呈现高值,而 MDA8 O₃则在4月至9月呈现高值,这些特征与京津冀等
区域的污染情况类似(Ou et al, 2022)。

122 图 2 汾渭平原各城市 2015-2021 年(a)PM_{2.5}年均浓度和(b)MDA8 O₃年第 90 分位数空间分布情况.
 123 Fig. 2 Spatial distribution of (a) annual average PM_{2.5} and (b) the 90th quantile in MDA8 O₃ concentrations in
 124 cities of Fenwei Plain from 2015-2021.

图 3 为 2015-2021 年间汾渭平原各城市 PM25 污染(图 3a)、MDA8 O3 污染(图 3b)和 125 复合(MDA8 O3 与 PM25)污染《图 3c》 日数的空间分布图,可以看出汾渭平原7年来各城市 126 PM25污染日数介于 852-1132 天之间, 其中污染日数最多的地区是咸阳市; O3污染天数则介 127 于 328 -671 天之间, O₃污染日数最多的地区是铜川市, 主要是由于铜川市第二产业占比较 128 高,O3前体物排放较其他区域突出《郑小华等,2021);从复合污染情况(图 3c)看,各城 129 市污染天数介于 332 至 737 天,运城和临汾的污染天数较多,占总日数 28%,东部城市太 130 临汾、运城和三门峡普遍在 600 天以上,西部西安、宝鸡、咸阳、渭南和铜川则 131 原、晋城、 均在 600 天以下, 东部的运城、临汾和河南的三门峡、洛阳复合污染比西部城市严重, 主要 132 是由于这几个城市处于两省交界处,也可能与政策缺乏协同规划有关(郑小华等, 2021)。 133 134 从各城市逐年复合污染次数二维分布来看(图 3d),2017 年和 2018 年为复合污染天数最多 的两年, 2019 年至 2021 年复合污染天数开始逐年下降, 表明 O₃和 PM_{2.5} 协同治理已经发挥 135 了作用, 2021 年西部城市西安、宝鸡、咸阳、渭南和铜川的复合污染日数已经降至 40 天以 136 下,洛阳和三门峡分别为 52 和 57 天,而太原、晋中、临汾和运城的日数仍在 70 天以上, 137 因此这几个城市仍需加大协同治理力度。 138

 143
 图 3 汾渭平原各城市 7 年(a)PM_{2.5}、(b)MDA8 O₃、(c)复合污染总日数及(d)各城市逐年复合污染次数二维分

 144
 布图

145Fig 3Total number of days of (a) PM2.5, (b) MDA8 O3, (c) compound pollution and (d) Two-dimensional146distribution of number of compound pollution days in cities of Fenwei Plain from 2015-2021

147 2.2 汾渭平原地区 PM_{2.5} 和 MDA8 O₃ 的关系

统计了汾渭平原 2015-2021 年间各城市逐月累计复合污染天数二维分布情况(图略), 148 各城市复合污染主要集中在3月至9月,10月至次年2月PM25污染严重,但冬季MDA8O3 149 浓度偏低。使用 1.4 节中的公式 1 计算了每日的 Dev_PM25(去趋势后的 PM25)和 Dev_MDA8 150 O3 (去趋势后的 MDA8 O3),从 2015-2021 年不同季节各城市 Dev_PM25 和 Dev_MDA8 O3 151 之间的相关系数箱线图(图4)看,各城市春夏秋三季多以正相关为主,其中夏季相关性明 152 显高于春秋两季,春季在 2015 至 2016 年后呈现上下波动趋势,夏季和秋季均在 2019 到 2021 153 年呈现上升的趋势, 说明夏秋 O3 对 PM2.5 浓度的影响在呈现加剧的态势; 而两者在冬季多 154 155 呈现负相关性,且自 2015 年开始负相关开始逐渐减小,到 2021 年各城市的相关性均值接近 于 0, 说明冬季 PM25对 O3 的影响在持续减弱。 156

175 因此在 3-9 月所有城市基本都表现为正相关,尤其对于高海拔的太原、晋中在 4 月和 5 月相

179 图 5 2015-2021 年 3-9 月汾渭平原 Dev_PM_{2.5}>0 时(a)和 Dev_O₃>0(b)时各城市 Dev_PM_{2.5}和 Dev_O₃ 180 的相关系数 181 Fig 5 Correlation coefficients between Dev_PM_{2.5} and Dev_O₃ for each city in Fenwei Plain when Dev_PM_{2.5}>0 182 (a) and Dev_O₃>0 (b) from March to September during 2015-2021 183 图6为复合污染时Dev_MDA8O3与Dev_PM25的散点关系图,图中展示了当Dev_MDA8 O3在不同取值区间时 Dev_PM2.5>0 的样本所占比例,当 Dev_MDA8 O3>0 时,Dev_PM2.5>0 184 的比例均能超过 69%,并且随着 Dev MDA8 O3的增大呈上升趋势,在 Dev MDA8 O3>40 185 ug m⁻³时, 汾渭平原 12 个城市的 Dev_PM_{2.5}>0 的比例超过 80%, 表明了大气氧化对 PM_{2.5} 186 187 浓度增加起到积极影响,然而大气强氧化性并不能无限制导致 PM2.5 浓度的增长,一方面受 制于硫酸盐、硝酸盐等粒子的数量,另一方面由于 O3的生成特性要求大气环境为高温和强 188 辐射,而高温条件下会导致硫酸盐、硝酸盐等粒子的挥发和扩散,进而导致PMA、浓度的下 189 190 降(张远远等, 2022)。

191

- 192 图 6 Dev_MDA8 O₃ 与 Dev_PM_{2.5} 的散点图,不同颜色代表 Dev_MDA8 O₃ 在不同取值区间时 Dev_PM_{2.5}数 值分布状况,上横坐标各刻度值表示当 Dev_MDA8 O₃ 在各取值区间时 Dev_PM_{2.5}>0 的样本所占比例
 194 Fig. 6 Scatter plot of Dev_MDA8 O₃ and Dev_PM_{2.5}, different colors represent the distribution of Dev_PM_{2.5}
 195 values when Dev_MDA8 O₃ is at different value intervals, and each scale value of the upper horizontal coordinate 196 indicates the proportion of samples with Dev_PM_{2.5}>0 when Dev_MDA8 O₃ is at each value interval
- 197 2.3 气象条件对污染的影响

除排放因素外,PM25和O3浓度也受到气象条件的影响(何国文等, 2022; 肖致美等, 2022; 198 199 花丛等, 2022), 图 7 为汾渭平原 12 个城市 3-9 月中发生不同污染时的气温(T)、相对湿度 (RH)和风速(W)的箱线图,可以看出O₃污染和复合污染发生在高温、低湿的环境条件下, 200 201 日平均气温主要介于 18-26.5℃之间, 单独 O3 污染时较复合污染更高, 日平均相对湿度主要 介于 46.3%-59%之间; 而 PM25污染和无污染发生在气温相对较低、湿度偏高的条件下, PM25 202 污染时气温介于 8.6-18.6℃之间,相对湿度在 46.5%-80.3%之间,相对湿度范围大于臭氧和 203 204 复合污染,而无污染时气温介于 13.4-21.5℃之间,高于 PM25 污染,但相对湿度介于 53%-89% 之间,略高于污染时的水平。在风速上四种类型差别不明显,均介于1.2-2.4m/s之间。高温 205

利于大气 O3 的光化学反应和二次污染物的生成,而高的相对湿度则利于 PM25 的吸湿增长 206 (闫小利等, 2021),低的风速不利于污染物的扩散(肖致美等, 2022)。无污染时表现的低温、 207 高湿、弱风气象特征则可能由于 PM25 和 O3 排放较少或降雨的影响,降雨可以有效地清除 208 PM2.5污染,并且降雨降温和较厚云层阻挡太阳辐射不利于 O3产生,统计发现无污染天气 209 (2385 天)中汾渭平原降雨(超过6个城市出现降雨)的天数为1122 天,占比为53%。由 210 于 PM2.5 和无污染样本在三种气象要素下不易区分, 剔除无污染中的降水样本后, 无污染和 211 PM25污染样本主要分布在3月、4月和9月,对比两种情况在三种气象要素下的一阶差分 212 213 的分布状况(后一日要素值减去前一日的要素值,图略),发现无污染时气温与前一日相比 会略有降低,而 PM25 污染时则温度均值会略有上升,这主要是由于春秋季冷空气活动利于 214 污染物扩散;而相对湿度方面,无污染时相对湿度则会明显降低,而 PM, 污染时相对湿度 215 则不明显,这主要是由于低的相对湿度不利于污染物吸湿增长,风速方面两者呈现出不明显 216 的区别,这主要因为在不同风向的传输影响下,将呈现出污染加重或减轻两种现象。 217

218

219

224

- 图 7 各污染类型下(a)2m 气温、(b)2m 相对湿度、(c)10m 风速的箱线分布图, PM_{2.5}表示单独的 PM_{2.5}污染,
 O₃表示单独 O₃污染, O₃&PM_{2.5}表示复合污染, None 表示无污染。
 Fig. 7 Box plots showing distribution of (a) 2m air temperature, (b) 2m relative humidity, and (c) 10m wind speed
 related to each pollution type, PM_{2.5} indicates PM_{2.5} pollution alone, O₃ indicates O₃ pollution alone, O₃ & PM_{2.5}
 - related to each pollution type, PM_{2.5} indicates PM_{2.5} pollution alone, O₃ indicates O₃ pollution alone, O₃ & PM_{2.5} indicates combined pollution, and None indicates no pollution.
- 为了更好地了解复合污染天气发生时的天气形势,提取了 2015-2021 年 3 月至 9 月汾渭
 平原复合污染时的日期作为统计样本,这些污染日中有一半以上的城市都出现了复合污染的
 现象,使用 T-PCA 算法将复合污染发生时的 850 hPa 位势高度进行天气分型,同时计算了
 2-12 种天气分型结果的 ECV 以及ΔECV,结果显示当天气分型数量为4 时ΔECV 取最大值,,
 因此这里根据统计样本分为 4 种天气形势,并绘制出对应的 500 hPa 形势图 (图 8),图 9
 为对应的复合污染时每种天气类型在各月的分布比例情况,分型方法详见 2.4 节。可以看到,
 第一种为最主要的污染天气形势,占总天数的 62.8%,平均 PM_{2.5}和 MDA8 O₃浓度分别为

55 和 138 ug m⁻³,此种类型下 PM25浓度最高,O3浓度最低,这是由于类型 1 多出现在 3-5 233 234 月, 气较其余类型偏低, 此时 500 hPa 副热带高压偏南, 汾渭平原受槽后脊前的西北风影响, 导致天气晴朗,850 hPa 受暖脊控制,以弱偏南风为主,利于污染物的输送,但温度偏低在 235 一定程度上影响了 O₃的产生。类型 2 占比为 15.2%,主要发生在 7-8 月,平均 PM₂₅ 和 MDA8 236 O3浓度分别为 47 和 144 ug m⁻³, PM₂₅污染程度较类型 1 偏弱, O3浓度则相对偏高, 500 hPa 237 副热带高压较类型1偏北,退居海上,脊线位于25 N附近,汾渭平原上空气流平直,而850 238 hPa 与类型1类似,以东南风为主,同样存在暖湿气流输送,但气压梯度偏大,风力大于类 239 型 1,加之 7-8 月温度较高,利于污染物湍流扩散,导致 PM,5浓度低于类型 1 而 O3浓度高 240 于类型 1。类型 3 占比 15.2%, 主要发生在 6 月和 7 月, 平均 PM25 和 MDA8 O3 浓度分别为 241 45 和 152 ug m⁻³, 此类型 O₃ 污染最强, 这是一年中 O₃ 浓度最高的月份 (图 2c), 500hPa 汾 242 渭平原上空为槽后西北风,850 hPa 汾渭平原同样为东南风,虽然 6 月和 7 月污染物排放少, 243 但高的臭氧浓度会使得大气氧化性增强,提高 PM2.5浓度。类型 4 占比 6.8%,主要在 7-9 月, 244 平均 PM2.5 和 MDA8 O3 浓度分别为 44 和 142 ug m⁻³, 副热带高压偏东, 汾渭平原上空为槽 245 后弱西北气流控制,地面气压场弱,风速小,利于 PM2.5 和 O3 前体物的累积。综合分析发 246 现,汾渭平原污染时 500 hPa 以槽后西北风和偏西风为主,而 850 hPa 多受暖脊的影响,以 247 偏南风或静风为主,槽后西北风和偏西风的动力作用使天气以晴朗活动云为主,利于太阳辐 248 249 射,低层偏南暖湿气流输送或者静风使得污染物累积, 导致发生 PM25和 O3复合污染。 250

261 262

图 9 复合污染时不同类型天气形势在不同月份的分布

Fig 9 Distribution of different synoptic patterns from March to September during compound pollution

263 3结论

264 本文基于 2015 至 2021 年间汾渭平原 12 个城市逐日 PM_{2.5}和 O₃浓度、地面气象观测数
265 据以及 ERA5 高空再分析数据等资料,对汾渭平原 7 年来 PM_{2.5}和 O₃ 的时空变化特征尤其
266 是复合污染特征开展了统计分析,并重点研究了复合污染发生时 PM_{2.5}和 O₃二者的相关性,
267 局地气象条件以及天气形势对复合污染的影响,主要结论如下:

(1) 汾渭平原的 PM_{2.5}和 MDA8 O₃年均浓度均在 2017 年达到近年来的峰值,得益于大
气污染防治行动计划和蓝天保卫行动计划的实施,其年评价值(PM_{2.5} 为年均浓度,O₃ 为
MDA8-90) 分别呈 5.6 和 3.7 μg·m⁻³ y⁻¹ 的速率下降。汾渭平原各城市复合污染天数介于 332
至 737 天,东部城市污染日数多于西部,运城复合污染日数占比达 30.7%;复合污染日数在
2016 年开始增加,2018 年达到峰值,2019 年至 2021 年呈下降趋势,体现了政府在污染协
同治理方面的成效。

274 (2)去趋势化后的 PM_{2.5}和 MDA8 O₃存在弱正相关性, Dev_MDA8 O₃>0时, Dev_PM_{2.5}>0
 275 的比例均能超过 69%,在 Dev_MDA8 O₃>40 µg m⁻³时 Dev_PM_{2.5}>0 的比例超过 80%,表明
 276 了大气氧化对增加颗粒物浓度所起到的正贡献影响。

277 (3) O₃ 污染和复合污染发生在高温、低湿的环境条件下,PM_{2.5} 污染和无污染发生在气
278 温相对较低、湿度偏高和风速较小的条件下,无污染时出现降雨的概率为 53%,体现了降
279 雨对污染物的湿清除作用。使用 T-PCA 算法将复合污染时的天气形势分为 4 种类型,这些
280 形势的共同特点是 500 hPa 位势高度场以西北或偏西气流为主,低层 850 hPa 位势高度场受
281 暖脊影响,以偏南风或静风为主,利于 O₃ 的生成和 PM_{2.5} 的传输和累积。

282 283

284

参考文献

- 285 陈镭,周广强,毛卓成,等,2020. 上海地区 2017 年三次短时重度污染过程变化特征及其气象影响因素[J]. 气象,46(5):
 286 675-686. Chen L, Zhou G Q, Mao Z C, et al, 2020. Variation characteristics and meteorological impact factors of three short-time
 287 severe air pollutions in Shanghai in 2017[J]. Meteor Mon, 46(5): 675-686 (in Chinese).
- 288 关茜妍,陆克定,张宁宁,等, 2021.西安市大气臭氧污染光化学特征与敏感性分析[J].科学通报, 66(35): 4561-4573. Guan X Y,
 289 Lu K F, Zhang N N, et al, 2021. Analysis of the photochemical characteristics and sensitivity of ozone pollution in Xi'an[J]. Chin
 290 Sci Bull, 66(35): 4561-4573 (in Chinese).
- 291 郝永佩,宋晓伟,赵文珺,等,2022. 汾渭平原大气污染时空分布及相关因子分析[J]. 生态环境学报,31(3): 512-523. Hao Y P, Song
 292 X W, Zhao W J, et al, 2022. Spatiotemporal distribution of air pollution and correlation factors in Fenwei Plain[J]. Ecol Environ Sci,
 293 31(3): 512-523 (in Chinese).
- 294 何国文,邓涛,欧阳珊珊,等,2022. 广州地区秋季 PM2.5 和臭氧复合污染的观测研究[J]. 环境科学学报,42(6): 250-259. He G W,

- Deng T, Ouyang S S, et al, 2022. Observation studies on the PM_{2.5} and O₃ complex episodes during autumn in Guangzhou[J]. Acta
 Sci Circumstantiae, 42(6): 250-259 (in Chinese).
- 297 何慧根,唐红玉,李永华,等,2021.2014—2018 年重庆主城区大气污染的特征及其与大气环流之间的关系[J].气象,47(10):
 298 1233-1245. He H G, Tang H Y, Li Y H, et al, 2021. Characteristics of air pollution and its relationship with atmospheric circulation
 299 in Chongqing City from 2014 to 2018[J]. Meteor Mon, 47(10): 1233-1245 (in Chinese).
- 300 胡春梅,陈道劲,周国兵,等,2020. 基于自组织神经网络算法的重庆秋冬季空气污染与天气分型的关系[J]. 气象,46(9):
 301 1222-1234. Hu C M, Chen D J, Zhou G B, et al, 2020. Relationship between air pollution events in autumn and winter in chongqing
 302 and the classification of synoptic situation based on self-organizing maps[J]. Meteor Mon, 46(9): 1222-1234 (in Chinese).
- 花丛, 江琪, 迟茜元, 等, 2022. 我国中东部地区 2015—2020 年夏半年 PM_{2.5} 和臭氧复合污染气象特征分析[J]. 环境科学研究,
 35(3): 650-658. Hua C, Jiang Q, Chi X Y, et al, 2022. Meteorological characteristics of PM_{2.5}-O₃ air combined pollution in central
 and eastern China in the summer half years of 2015-2020[J]. Res Environ Sci, 35(3): 650-658 (in Chinese).
- 306 黄小刚, 邵天杰, 赵景波, 等, 2019. 汾渭平原 PM_{2.5}浓度的影响因素及空间溢出效应[J]. 中国环境科学, 39(8): 3539-3548. Huang
 307 X G, Shao T J, Zhao J B, et al, 2019. Influence factors and spillover effect of PM_{2.5} concentration on Fen-wei Plain[J]. China
 308 Environ Sci, 39(8): 3539-3548 (in Chinese).
- 309 黄小刚,赵景波,孙从建,等,2021. 汾渭平原 PM_{2.5}空间分布的地形效应[J]. 环境科学,42(10): 4582-4592. Huang X G, Zhao J B,
 310 Sun C J, et al, 2021. Orographic influences on the spatial distribution of PM_{2.5} on the Fen-Wei Plain[J]. Environ Sci, 42(10):
 311 4582-4592 (in Chinese).
- 312 刘兆东,王宏,沈新勇,等,2020. 京津翼及周边地区冬季能见度与 PM_{2.5} 浓度和环境湿度的多元回归分析[J]. 气象学报,78(4):
 313 679-690. Liu Z D, Wang H, Shen X Y, et al, 2020. Multiple regression analysis of whiter visibility, PM_{2.5} concentration and
 314 humidity in Beijing-Tianjin-Hebei and its surrounding regions[J]. Acta Meteor Sin, 78(4): 679-690 (in Chinese).
- 315 祁海霞, 崔春光, 赵天良, 等, 2019. 2015 年冬季湖北省 PM₂₅ 重污染传输特征及影响天气系统的数值模拟[J]. 气象, 45(8):
 316 1113-1122. Qi H X, Cui C G, Zhao T L, et al, 2019. Numerical simulation on the characteristics of PM₂₅ heavy pollution and the
 317 influence of weather system in Hubei Province in winter 2015[J]. Meteor Mon, 45(8): 1113-1122 (in Chinese).
- 318
 秦卓凡,廖宏,陈磊,等,2021. 汾渭平原空气质量及气象要素对其日变化和年际变化的影响[J]. 大气科学,45(6): 1273-1291. Qin

 319
 Z F, Liao H, Chen L, et al, 2021. Fenwei platn air quality and the dominant meteorological parameters for its daily and interannual

 320
 variations[J]. Chin J Atmos Sci, 45(6): 1273-1291 (in Chinese).
- 321 宋佳琨,陈耀登,陈丹, 2021, 气象-气溶胶资料联合同化对秋季 PM_{2.5} 浓度模拟的影响研究[J]. 气象学报, 79(3): 477-491.
 322 Song J K, Chen Y D, Chen D, 2021. A study of meteorology-aerosol joint data assimilation on autumn PM_{2.5} concentration
 323 simulation[J]. Acta Meteor Sin, 79(3): 477-491 (in Chinese).
- 324 王芃,朱盛强,张梦媛,等,2022.大气氧化性及其对二次污染物形成的贡献[J].科学通报,67(18): 2069-2078. Wang P, Zhu S Q,
 325 Zhang M Y, et al, 2022. Atmospheric oxidation capacity and its contribution to secondary pollutants formation[J]. Chin Sci Bull,
 326 67(18): 2069-2078 (in Chinese).
- 327 王妘涛,张强,温肖学,等,2022. 运城市 PM_{2.5} 时空分布特征和潜在源区季节分析[J]. 环境科学,43(1): 74-84. Wang Y T, Zhang Q,
 328 Wen X Y, et al, 2022. Spatiotemporal distribution and seasonal characteristics of regional transport of PM_{2.5} in Yuncheng City[J].
 329 Environ Sci, 43(1): 74-84 (in Chinese).
- 330 肖致美,李源,孔君,等,2022. 天津市 PM_{2.5}-O₃ 复合污染特征及气象影响分析[J]. 环境科学,43(6): 2928-2936. Xiao Z M, Li Y,
 331 Kong J, et al, 2022. Characteristics and meteorological factors of PM_{2.5}-O₃ compound pollution in Tianjin[J]. Environ Sci, 43(6):
 332 2928-2936 (in Chinese).
- 第級艳, 霍晓芹, 曾凡刚, 等, 2021. 2015—2019 年汾渭平原臭氧污染状况分析[J]. 中国环境监测, 37(1): 49-57. Xie S Y, Huo X Q,
 Zeng F G, et al, 2021. Analysis of ozone pollution in Fenwei Plain from 2015 to 2019[J]. Environ Monit China, 37(1): 49-57 (in
 Chinese).
- 336 闫小利,叶东,牛广山,等,2021.2017年冬焦作市一次持续严重污染天气过程分析[J].气象与环境科学,44(4):33-42. Yan X L, Ye
 337 D, Niu G S, et al, 2021. Analysis of a continuous heavy pollution weather process in Jiaozuo City in winter 2017[J]. Meteor Environ
 338 Sci, 44(4): 33-42 (in Chinese).

- 339 杨乐超, 董雪丽, 徐波, 2018. 汾渭平原雾霾时空变化特征及其溢出效应[J]. 环境经济研究, 3(3): 75-87. Yang L C, Dong X L, Xu B,
- 340 2018. Spatial distribution and spillover effects of haze pollution in the Fen-Wei plain[J]. J Environ Econ, 3(3): 75-87 (in Chinese).
- 341 杨颖川, 叶倩, 魏颖, 等, 2022. 内蒙古呼包鄂区域冬季大气细颗粒物污染成因解析[J]. 大气科学, 46(6): 1332-1348. Yang Y C, Ye
- Q, Wei Y, et al, 2022. Analysis of the causes of atmospheric fine particle pollution in winter in the Hohhot–Baotou–Ordos area of
 Inner Mongolia[J]. Chin J Atmos Sci, 46(6): 1332-1348 (in Chinese).
- 344 杨镇江,李柯,廖宏,等,2023.2022 年夏季历史极端高温下我国近地表臭氧污染及气象成因分析[J]. 大气科学. Yang Z J, Li K,
 345 Liao H, et al, 2023. Analysis of surface ozone pollution in China amid the record summertime extreme heat of 2022[J]. Chin J
 346 Atmos Sci, doi: 10.3878/j.issn.1006-9895.2302.22211 (in Chinese). (未找到本条文献卷期,页码信息,请确认)
- 347 张琴, 姚秀萍, 2021. 鲁中地区霾期间气溶胶的垂直分布及其与气象条件的关系[J]. 气象, 47(9): 1099-1112. Zhang Q, Yao X P,
 348 2021. Vertical distribution of aerosol and its relationship with meteorological conditions during haze in central part of Shandong
 349 Province[J]. Meteor Mon, 47(9): 1099-1112 (in Chinese).
- 350 张远远,戴维,华楠,等, 2022. 基于不同周期 PM_{2.5}组成高时间分辨观测的 PMF 源解析研究[J]. 环境科学学报, 42(2): 308-317.
 351 Zhang Y Y, Dai W, Hua N, et al, 2022. PMF source apportionment based on high time-resolved measurements of PM_{2.5} components
 352 during different observation periods[J]. Acta Sci Circumstantiae, 42(2): 308-317 (in Chinese).
- 第小华,李明星,娄盼星,2021. 不同时间尺度下汾渭平原臭氧浓度变化及气象环境影响[J]. 高原气象,40(4):954-964. Zheng X H,
 Li M X, Lou P X, 2021. Different-scale changes in ozone concentration and meteorological environment in Fenwei Plain[J]. Plateau
 Meteor, 40(4): 954-964 (in Chinese).
- 中华人民共和国生态环境部, 2022. 2021 中国生态环境状况公报[R]. 北京:中华人民共和国生态环境部. Ministry of Ecology and
 Environment of the People's Republic of China, 2022. 2021 State of China's ecological environment bulletin[R]. Beijing: Ministry of
 Ecology and Environment of the People's Republic of China (in Chinese). (未找到本条文献英文翻译信息,请确认)
- 359 朱形, 万薇, 刘俊, 等, 2022. 世界卫生组织《全球空气质量指南》修订解读[J]. 科学通报, 67(8): 697-706. Zhu T, Wan W, Liu J, et al,
 360 2022. Insights into the new WHO global air quality guidelines[J]. Chin Sci Bull, 67(8): 697-706 (in Chinese).
- Anenberg S C, Horowitz L W, Tong D Q, et al, 2010. An estimate of the global burden of anthropogenic ozone and fine particulate matter
 on premature human mortality using atmospheric modeling[J]. Environ Health Perspect, 118(9): 1189-1195.
- Chen L, Zhu J, Liao H, et al, 2020. Meteorological influences on PM_{2.5} and O₃ trends and associated health burden since China's clean air
 actions[J]. Sci Total Environ, 744: 140837.
- Dai H B, Zhu J, Liao H, et al. 2021. Co-occurrence of ozone and PM_{2.5} pollution in the Yangtze River Delta over 2013–2019:
 spatiotemporal distribution and meteorological conditions[J]. Atmos Res, 249: 105363.
- Bao X, Ji D S, Zhang X, et al. 2021. Characteristics, sources and health risk assessment of PM_{2.5} in China's coal and coking heartland:
 insights gained from the regional observations during the heating season[J]. Atmos Pollutn Res, 12(12): 101237.
- Ding A J, Fu C B, Yang X Q, et al, 2013. Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the
 SORPES station[J]. Atmos Chem Phys, 13(11): 5813-5830.
- Feng S L, Gao D, Liao F, et al, 2016. The health effects of ambient PM_{2.5} and potential mechanisms[J]. Ecotoxicol Environ Saf, 128:
 67-74.
- Feng Y Y, Ning M, Lei Y, et al, 2019. Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan"
 on air quality improvements from 2013 to 2017[J]. J Environ Manage, 252: 109603.
- He Y P, Li L, Wang H L, et al, 2022. A cold front induced co-occurrence of O₃ and PM_{2.5} pollution in a Pearl River Delta city: temporal
 variation, vertical structure, and mechanism[J]. Environ Pollut, 306: 119464.
- Huth R, Beck C, Philipp A, et al, 2008. Classifications of atmospheric circulation patterns: recent advances and applications[J]. Ann NY
 Acad Sci, 1146(1): 105-152.
- Jiang Z J, Li J, Lu X, et al, 2021. Impact of western Pacific subtropical high on ozone pollution over eastern China[J]. Atmos Chem Phys,
 21(4): 2601-2613.
- Li M M, Wang T J, Xie M, et al, 2018. Agricultural fire impacts on ozone photochemistry over the Yangtze River Delta region, East
 China[J]. J Geophys Res Atmos, 123(12): 6605-6623.

- Lu X, Zhang L, Chen Y F, et al, 2019. Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological
- 384 influences[J]. Atmos Chem Phys, 19(12): 8339-8361.
- Luo Y H, Zhao T L, Yang Y J, et al, 2022. Seasonal changes in the recent decline of combined high PM_{2.5} and O₃ pollution and associated
 chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China[J]. Sci Total Environ, 838: 156312.
- 387 Menon S, Unger N, Koch D, et al, 2008. Aerosol climate effects and air quality impacts from 1980 to 2030[J]. Environ Res Lett, 3(2):
 388 024004.
- Miao Y C, Guo J P, Liu S H, et al, 2018. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary
 aerosol transport from Beijing-Tianjin-Hebei region to northeast China[J]. Atmos Environ, 181: 1-11.
- Ning G C, Yim S H L, Wang S G, et al, 2019. Synergistic effects of synoptic weather patterns and topography on air quality: a case of the
 Sichuan Basin of China[J]. Climate Dyn, 53(11): 6729-6744.
- Ou S J, Wei W, Cai B, et al, 2022. Exploring the causes for co-pollution of O₃ and PM_{2.5} in summer over North China[J]. Environ Monit
 Assess, 194(4): 1-14.
- Schnell J L, Prather M J, 2017. Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern north
 America[J]. Proc Natl Acad Sci USA, 114(11): 2854-2859.
- Tai A P K, Mickley L J, Jacob D J, 2010. Correlations between fine particulate matter (PM_{2.5}) and meteorological variables in the United
 States: implications for the sensitivity of PM_{2.5} to climate change[J]. Atmos Environ, 44(32): 3976-3984.
- Unger N, Menon S, Koch D M, et al, 2009. Impacts of aerosol-cloud interactions on past and future changes in tropospheric
 composition[J]. Atmos Chem Phys, 9(12): 4115-4129.
- Wang D F, Zhou B, Fu Q Y, et al, 2016. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in
 summer: observations at a rural site in eastern Yangtze River Delta of China[J]. Sci Total Environ, 571: 1454-1466.
- Wang G, Zhu Z Y, Zhao N, et al, 2021. Variations in characteristics and transport pathways of PM_{2,5} during heavy pollution episodes in
 2013–2019 in Jinan, a central city in the North China Plain[J]. Environ Pollut, 284: 117450.
- Wang X Y, Dickinson R E, Su L Y, et al, 2018. PM_{2.5} pollution in China and how it has been exacerbated by terrain and meteorological
 conditions[J]. Bull Amer Meteor Soc, 99(1):105-119.
- Xu Y L, Xue W B, Lei Y, et al, 2018. Impact of meteorological conditions on PM_{2.5} pollution in China during winter[J]. Atmosphere,
 9(11): 429.
- Yang K J, Kong L D, Tong S Y, et al, 2021. Double high-level ozone and PM_{2.5} co-pollution episodes in Shanghai, China: pollution
 characteristics and significant role of daytime HONO[J]. Atmosphere, 12(5): 557.
- Ye X X, Song Y, Cai X H, et al. 2016. Study on the synoptic flow patterns and boundary layer process of the severe haze events over the
 North China Plain in January 2013[J]. Atmos Environ, 124: 129-145.
- Zhang N N, Ma F, Qin C B, et al, 2018a. Spatiotemporal trends in PM_{2.5} levels from 2013 to 2017 and regional demarcations for joint
 prevention and control of atmospheric pollution in China[J]. Chemosphere, 210: 1176-1184.
- Zhang Q Q, Ma Q, Zhao B, et al, 2018b. Winter haze over North China Plain from 2009 to 2016: influence of emission and
 meteorology[J]. Environ Pollut, 242: 1308-1318.
- Zhang X X, Cheng C X, Zhao H, 2022. A health impact and economic loss assessment of O₃ and PM_{2.5} exposure in China from 2015 to
 2020[J]. GeoHealth, 6(3): e2021GH000531.
- Zhang Y H, Hu M, Zhong L J, et al, 2008. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004):
 overview[J]. Atmos Environ, 42(25): 6157-6173.

- 422
- 423
- 424

425 426 427 428 Study on Characteristics of PM_{2.5}-O₃ combined pollution and 429 meteorological impact in Fenwei Plain 430 431 ZHOU Tao¹, ZHOU Qing^{2*}, Zhang Yong³, WU Yushu⁴, SUN Jian⁵ 432 433 (1. Yuncheng Meteorological Bureau, Yuncheng 044000, China; 2. Meteorological Detection Center, China Meteorological 434 Administration, Beijing 100081; 3.Institute of Meteorological Development and Planning, China Meteorological Administration, 435 436 Beijing 100081; 4. Wulanchabu Meteorological Bureau, Wulanchabu 012000; 5. Juxian Meteorological Bureau, Juxian 276500) 437 Abstract: PM2.5 and O3 which interact with each other have become the most important pollutants 438 in the cities of FenWei Plain. The pollution often occurs simultaneously in the warm season and is 439 closely related to meteorological conditions. Based on the daily PM2.5 and O3 concentration data, 440 441 ground meteorological observation data and ERA5 high-altitude re-analysis data of 12 cities in the 442 FenWei Plain from 2015 to 2021, the spatio-temporal characteristics of PM_{2.5} and O₃ in the FenWei Plain, as well as the relationship between PM2.5 and O3 when combined pollution occurs 443 were analyzed, and the impact of local meteorological conditions and synoptic situation on 444 445 combined pollution is also studied in this paper. The result shows that the average annual PM_{2.5} and MDA8 O₃ (maximum daily 8-h average ozone) concentrations in the FenWei Plain began to 446 decline continuously in 2017 and 2018, respectively, and the number of compound pollution days 447 also began to decline continuously after 2019, due to the implementation of "collaborative 448 pollution control" and "one city, one policy"; combined pollution mainly occurs in 449 March-September, frequently in the eastern cities of the FenWei Plain, and mostly in condition of 450 451 high temperature and low humidity; Finally, the synoptic circulation situation of combined 452 pollution is divided into four types by principal component analysis in the T-mode (T-PCA 453 algorithm), featured by northwest or the westerly air flow in high-altitude and the warm zone southerly wind or breeze in low layer. The results of the study provide the basis for controlling 454 pollution in the FenWei Plain and are of great significance for cooperative governance for PM_{2.5} 455 456 and O₃ pollution especially. Key words: FenWei Plain, $PM_{2.5}$ and O_3 combined pollution, T-PCA typing, meteorologica 457 458 1 impact

- 459
- 460