彭霞云,章丽娜,刘汉华,等,2022. 冷涡底部对流引起的杭州湾极端大风形成机制分析[J]. 气象,48(6):719-728. Peng X Y, Zhang L N,Liu H H,et al,2022. Formation mechanism of extreme winds in Hangzhou Bay caused by convection at the bottom of cold vortex[J]. Meteor Mon,48(6):719-728(in Chinese).

冷涡底部对流引起的杭州湾极端大风形成机制分析*

彭霞云1章丽娜2 刘汉华1 李文娟1 黄新晴1 黄旋旋1

1 浙江省气象台,杭州 310051

2 中国气象局气象干部培训学院,北京 100081

提 要: 2020年4月12日,受冷涡影响,华东地区出现了大范围的雷暴大风,其中在杭州湾地区出现了12级以上的极端大风。此次强对流过程发生前,高低空为一致的西北气流,水汽含量低、能量条件弱,预报难度大,沿海海面风力预报出现了较大的偏差。基于常规观测资料及多普勒天气雷达、风廓线雷达等非常规观测资料,结合 ERA5 再分析资料,分析了此次过程 雷暴大风特征及对流系统移入杭州湾前后的演变特征,重点探讨了杭州湾东北部出现极端大风的可能原因。研究表明,杭州 湾极端大风的形成是多因素共同作用的结果。杭州湾具有一定的能量条件、低层大气的温度直减率接近干绝热递减率,有利 于对流系统中形成较强的下沉气流,下沉辐散造成地面大风。中层存在西北风急流,在对流下沉运动的作用下,中层的高动 量被带到地面,增强了地面风速。对流系统移入杭州湾的过程中,冷池增强,而杭州湾水面的摩擦力比陆地小,有利于风速增 强,这也是杭州湾风力增强的重要原因之一。杭州湾东北部13级以上大风的出现还与海上热力、动力条件的不均匀分布及对 流入海后形态的变化有关。

关键词: 雷暴大风,动量下传,冷池,杭州湾 中图分类号: P458 **文献标志码:** A

DOI: 10.7519/j.issn.1000-0526.2022.051601

Formation Mechanism of Extreme Winds in Hangzhou Bay Caused by Convection at the Bottom of Cold Vortex

PENG Xiayun¹ ZHANG Lina² LIU Hanhua¹ LI Wenjuan¹ HUANG Xinqing¹ HUANG Xuanxuan¹ 1 Zhejiang Meteorological Observatory, Hangzhou 310051

2 China Meteorological Administration Training Centre, Beijing 100081

Abstract: On April 12, 2020, affected by the cold vortex, a large-scale thunderstorm and gale occurred in East China, including an extreme gale exceeding the Beaufort scale 12 in Hangzhou Bay. Before the occurrence of this severe convection process, the high and low levels had consistent northwest air flow, with low water vapor content and weak energy conditions, so it was difficult to predict, thus larger deviations appeared in coastal sea surface wind forecast. Based on conventional observation data and Doppler weather radar and wind profile radar data, combined with ERA5 reanalysis data, this paper analyzes the characteristics of thunderstorm gale in this process and the evolution characteristics of convective system before and after its moving into Hangzhou Bay, and focuses on the possible causes of extreme gale in the northeast of Hangzhou Bay. The research shows that the formation of extremely strong wind in Hangzhou Bay was the result of the joint action of many factors. Hangzhou Bay had certain energy conditions, and the temperature

^{*} 浙江省科技厅科技项目(2022C03150)、中国气象局创新发展专项(CXFZ2021Z033)和华东区域气象科技协同创新基金(QYHZ202111)共 同资助

²⁰²¹年3月20日收稿; 2022年5月4日收修定稿

第一作者:彭霞云,主要从事天气预报工作.E-mail:76608060@qq.com

通讯作者:章丽娜,主要从事灾害性天气诊断分析和机理研究.E-mail:zhangln@cma.gov.cn

reduction rate of the lower atmosphere was close to the dry adiabatic decline rate, which was conducive to the formation of strong downdraft in the convective system and the surface strong wind caused by subsidence divergence. There was a northwest wind jet in the middle layer. Under the action of convective subsidence, the high momentum in the middle layer was brought to the ground, enhancing the ground wind speed. During the process of the convective system moving towards Hangzhou Bay, the cold pool enhanced, and the friction on the water surface of Hangzhou Bay was smaller than that on land. Therefore, the intense flow in the cold pool spread faster, which was also one of the important reasons for the increasing of wind speed in Hangzhou Bay. The occurrence of gales above Beaufort scale 13 in the northeast of Hangzhou Bay was also related to the uneven distribution of marine thermal and dynamic conditions and the variation of echo shape after the convection moved into the sea.

Key words: thunderstorm gale, downward momentum propagation, cold pool, Hangzhou Bay

引 言

线状中尺度对流系统在雷达图像上表现为准直 线或弓形的连续强回波带(Parker and Johnson, 2000;Gallus et al,2008)。与其他产生直线大风的 非线性结构中尺度对流系统(诸如弓形回波单体、超 级单体、多单体风暴等)相比,线状中尺度对流系统 生命期往往更长、影响区域更广,常产生区域性的雷 暴大风(John and Hirt,1987;Meng et al,2013)。

许爱华等(2014)把高空西北气流下(槽后或冷 涡),高空强干冷平流起主导作用的强对流归为冷平 流强迫类,这是产生强对流天气的主要天气形势之 一(侯淑梅等,2020;盛杰等,2020;陈晓欣等,2022)。 很多大范围灾害性雷暴大风过程发生在冷涡或槽后 背景下,研究者从不同角度分析了大风产生的原因。 2009年6月3日,东北冷涡控制我国的东北和华北 地区,在黄淮地区出现了一次罕见的强飑线灾害性 大风过程。这是非常典型的冷涡背景下的强对流过 程,研究发现强冷池和中层入流对地面大风的形成 有重要贡献(梁建宇和孙建华,2012;刘香娥和郭学 良,2012;吴海英等,2013)。杨晓亮等(2020)对冷涡 背景下河北雷暴大风过程的环境条件和触发机制进 行了分析,大风由多种形态对流系统引起,地面大风 出现在大风速核前沿、正变压中心附近。公衍铎等 (2019)研究了冷涡底部的强对流大风过程,认为对 流层中层相对干、大的垂直减温率和下沉对流有效 位能都是形成地面强风的有利条件。杨吉等(2020) 利用数值模拟研究了冷涡背景下弱飑线过程的形成 机制,认为冷涡外围干冷空气输送,夹卷进入下沉气 流内使雨滴蒸发,形成强冷池,也通过夹卷将高动量 空气带到近地面,造成地面大风。上述的研究主要 针对陆地上的雷暴大风过程。

受海陆下垫面的影响,线状对流系统移入海洋 后强度可能会出现加强、维持、减弱等不同情况,当 对流的强度加强或维持时,往往会对沿海地区或海 上造成相当大的破坏力(Lombardo and Colle, 2012)。浙北地区处于海陆交界处,杭州湾(包括舟 山)时常受到对流系统入海后加强的影响,在舟山及 周边海域产生超过 30 m · s⁻¹的雷暴大风,造成严 重的海上渔船海损事故(陈淑琴等,2017;2011)。高 梦竹等(2017)分析了 2014 年夏季一次飑线移入杭 州湾后加强的过程,认为杭州湾更好的能量和水汽 使得对流入海后加强。Zhang et al(2021)进一步研 究发现后侧入流急流下沉到地面对海上大风的形成 起了重要作用。上述过程都属于槽前型强对流过 程,浙北属于冷涡或槽后类的强对流次数不多,且多 发生于初夏季节。如 2006 年 6 月 10 日的飑线大风 过程(沈杭锋等,2010;李文娟等,2019)、2009年6 月5日影响苏皖沪和浙北的冰雹和大风灾害过程 (戴建华等,2012;章元直等,2018)。这两次过程都 发生在初夏,大气整体温度较高,低层盛行西南气 流,能量和低层水汽条件较好,出现了生命史较长的 强飑线和超级单体风暴,回波伸展高度较高,地面大 风主要是由飑线中存在的强下沉气流造成。而对于 发生在更干冷背景下的春季冷涡强对流过程,及其 移入杭州湾后雷暴大风强度变化的研究,目前还很 少。

2020年4月12日,随着冷涡横槽下摆,江苏和 浙北出现8级以上雷暴大风,进入杭州湾后风力迅 速增强至12~13级,最强风力达40.8 m·s⁻¹,在 对流大风过程中实属罕见,属于极端大风(马淑萍 等,2019)。此次过程,高低空均为西北气流控制,环 境湿度非常小、不稳定能量弱,预报员对此类过程的 经验不足,主客观预报的风力都明显偏弱。全球模 式风力释用产品在浙北沿海仅预报了 6~8级大风, 华东区域中尺度模式(CMA-SH)在浙北及沿海报 出带状对流,但最大风力仅为 8级。12日上午主观 预报认为冷涡底部可能会有弱对流发展,预报浙北 和沿海海面有 8~10级大风,但对对流移入杭州湾 后风力的增强考虑不足,沿海海面风力预报比实况 严重偏小,预警信号等级也偏弱。本文将基于雷达、 风廓线、地面自动站等多源观测资料,结合欧洲数值 预报中心 ERA5 逐小时再分析资料,讨论此次春季 杭州湾极端大风的形成机制,总结经验教训,为今后 类似天气过程的预报和预警提供借鉴。

1 天气实况

2020年4月12日午后,山东和江苏交界处有 零散对流发展并逐渐向南移动(图略),18时(北京 时,下同),回波位于江苏南部,为分散性强回波(图 略)。19时,对流到达杭州湾北岸,组织成3条带状 回波(图1a):位于上海地区的线状回波带"A",位于 江苏和浙江交界处回波带"B"和位于浙北西北部的弱 回波带"C"。每条回波带后都产生大范围的8~9级

图 1 2020 年 4 月 12 日(a)19 时、(b) 20 时 0.5°仰角反射率拼图(填色)和地面 8 级以上极大风(风羽)分布,
15—23 时(c)累计降水(灰色阴影)和 8 级以上极大风(风羽)分布,(d)12 级以上大风分布、出现时间和雷电分布(图 1a,1b 中 A~C 为回波带;图 1c 中,风向杆的不同颜色表示不同等级,浅蓝色、深蓝色、紫色、红色分别表示8,9,10~11,12~13 级大风;图 1d 中,13 级大风的出现时间标为红色,绿色圆点、星形、正方形分别表示风廓线雷达站点、多普勒雷达站点、探空站点的位置,红色三角形、圆点分别表示冰雹、过程最大风出现位置)
Fig. 1 (a, b) Radar reflectivity at 0.5° elevation (shaded) and hourly extreme gale exceeding scale 8 (barb) at (a) 19:00 BT and (b) 20:00 BT; (c) accumulated precipitation (grey shaded) and extreme gale exceeding scale 8 (barb) during 15:00-23:00 BT; (d) time and location of extreme gale exceeding scale 12 and lightning during 15:00-23:00 BT 12 April 2020
(In Figs. 1a, 1b, A-C represent echo bands. In Fig. 1c, different colors are used to distinguish the wind speed, scales 8, 9, 10-11, 12-13 are colored in light blue, dark blue, puple and magenta, respectively. In Fig. 1d, the time is labeled in red if the wind speed exceeds scale 13; green dot, green star, and green square represent the locations of

wind profiler, Doppler radar and sounding stations, respectively; red triangle represents the place where hail was observed; red dot represents the location where the maximum wind was observed)

象

大风。19:20 开始,带状回波"A"移入杭州湾(以下 简称为入海,图略)。到了 20 时(图 1b),回波带"A" 已经完全位于杭州湾上,45 dBz 以上强回波范围较 入海前明显增大,因此可以认为对流入海后增强。 随着带状回波"A"扫过杭州湾,舟山地区普遍出现 10~12 级大风,有 4 个站出现 13 级大风,其中岱山 下三星岛风速最大(达 40.8 m·s⁻¹,图 1d 中红色 圆点)。相比陆地,沿海海面风力增强了 3~5 级 (图 1c)。

整个过程以雷暴大风为主,江苏东部、上海、浙 江东北部地区虽有降水,但累计降水最大值仅为 6 mm 左右,其余大风影响区域几乎没有降水(图 1c)。12~13级极端大风主要出现在杭州湾和舟山 群岛北部,时间集中在 20 时前后(图 1d)。在出现 13级大风的杭州湾东北部地区,雷电较密集,降水 也较明显,而且在 20 时左右,舟山嵊泗菜园镇(图 1d 中红色三角形)局地还出现了 0.5 cm 的小冰雹。

2 环流背景

4月12日08时的500hPa图上,黄海北部为冷 涡,从冷涡中心向西可分析出一横槽(图2a)。在横 槽前西北气流与等温线交角较大的区域,存在较强 的冷平流。冷平流中心位于浙北和苏南地区,最大 可达4℃・h⁻¹。850hPa上呈现西高东低的形势 (图2c),我国东部地区为偏北气流所控制,江苏、浙 北等地区低层受暖平流影响。12日20时,黄海北 部的冷涡东移到朝鲜半岛东南部,横槽下摆成竖槽 (图2b)。冷涡西南侧的等高线变密,西北气流加 强,冷涡底部的冷平流也较08时加强。由于12日 08时冷锋已经入海,因此12日午后浙北地区处于 地面高压东北侧,受西北气流影响(图2d)。从天气

(b) 500 hPa at 20:00 BT, (c) 850 hPa at 08:00 BT, (d) sea level pressure (black line, unit: hPa), 10 m wind (barb) at 17:00 BT 12 April 2020 based on ERA5 data

形势分析看,对流主要产生在 500 hPa 低涡后部, 500 hPa 冷平流明显强于 850 hPa 暖平流,因此本次 过程属于高空冷平流强迫类(孙继松等,2014;许爱 华等,2014)。

3 杭州湾极端大风产生的原因分析

3.1 杭州湾有利于大风形成的环境条件

基于 ERA5 资料计算的对流有效位能(CAPE) 和 0~3 km 垂直风切变分布显示,12 日午后,浙北 地区的不稳定能量弱而垂直风切变强(图略)。在临 近杭州湾大风发生前,浙北地区(包括杭州湾)的不 稳定能量仍然很弱(图 3a),杭州湾中东部的 CAPE 超过 50 J·kg⁻¹,最大值中心位于舟山群岛以东地 区,杭州湾的 0~3 km 垂直风切变超过 12 m·s⁻¹。 上述分析表明,杭州湾局地的热力和动力条件有利 于图 1a 中杭州湾北岸对流入海后的维持和发展。

杭州湾上最强的风出现在杭州湾东北部,因此 在这个区域选取了一个具有代表性的点进行分析 (图 3b,具体位置如图 3a 中红色三角所示)。该点 19 时的斜 *T*-ln*p* 图表明,CAPE 为 231 J·kg⁻¹,大 气可降水量只有 11.7 mm,大气层结呈现"X"型,中 低层温、湿廓线呈向下开口的喇叭形,地面温度露点 差达 20 ℃,1000~700 hPa 的平均温度直减率达到 8.6 K·km⁻¹。这样的层结特征有利于形成强的下 沉运动。浙北地区(包括杭州湾)在对流发生前存在 较大的下沉对流有效位能(DCAPE)(图 3a),杭州 湾大部分地区的 DCAPE 约为 400~500 J·kg⁻¹, 估算得到杭州湾地区由于对流造成的地面水平风速 约为 $14\sim16 \text{ m} \cdot \text{s}^{-1}$ 。虽然这个下沉速度数值已经 接近雷暴大风的阈值,但是仅由对流本身产生的下 沉运动,还不足以产生杭州湾东部 10 级以上大风。

3.2 中低空急流及动量下传作用

前面的分析中已经指出,对流发生前,苏南一浙 北地区的西北风强且深厚(图 2,图 3b)。中层急流 增强了杭州湾北岸对流系统中后侧入流的强度和厚 度。利用风廓线雷达风场时序图,结合自动站逐分 钟要素变化,可以分析风暴内部的风场特征。下面选 取离杭州湾相对较近、资料较为完整的昆山和嘉兴站 风廓线进行分析(图 4)。杭州湾地区的情况类似,但 由于洋山港站风廓线缺测较多,本文不做分析。

昆山站(图 4a)地面风速在 18:15 左右开始增 大,同时地面温度开始下降,18:19 地面风达到极 大,然后 18:30 左右地面开始出现降水。在降水出 现之前,大风区出现在 3 km 左右高度(超过 20 m・ s⁻¹),2 km 以下水平风速较小(小于 12 m・s⁻¹)。 而降水开始后,地面至低层 2 km 风速明显增强 (图4a中黑框所示时间段)。18:45,2.5 km 高度左右

图 3 基于 ERA5 资料绘制 2020 年 4 月 12 日 19 时的(a)CAPE(填色)、DCAPE
 (黑色实线,单位:J・kg⁻¹)和 0~3 km 垂直风切变(红色实线,单位:m・s⁻¹),
 (b)杭州湾东北部某点(图 3a 中红色三角形位置)的斜温图

Fig. 3 (a) CAPE (shaded), DCAPE (black line, unit: J • kg⁻¹) and 0-3 km vertical wind shear (red line, unit: m • s⁻¹), and (b) skew-T diagram of a point (The location is labeled with red triangle in Fig. 3a) over northeast of Hangzhou Bay at 19:00 BT 12 April 2020 based on ERA5 data

出现一支强西北风急流。如果把时间序列图理解成 沿着风暴运动方向的空间剖面,有降水的时段划为 风暴体(黑框),则可以看到地面大风出现在风暴前 沿,而风暴后侧 2~3 km 高度为强的后侧入流(图 4a 中红色粗线所示),后侧入流急流从风暴后侧逐 渐向下、向前传递(黑色虚线箭头所示)。

嘉兴站(图 4b)的风廓线时序图与昆山站类似, 同样可以看到对流后部存在强的入流区,但水平风 速比昆山站更强,嘉兴站的地面极大风也比昆山站 更大。后侧入流急流从风暴后侧逐渐向下、向前传 递,20 m·s⁻¹的大风区可向下一直伸展到 1 km 以 下。根据图 4 中观测到的 1 m·s⁻¹左右的下沉运 动估算,后侧入流 30 分钟可下降 1 800 m。实际上 对流风暴低层的下沉速度超过了 1 m·s⁻¹,因此当 风暴中低层存在较强的下沉速度时,可短时间内将 中层的强水平动量带到地面。

3.3 强冷池密度流的作用

18—20时,对流系统从江苏南部向南移动,伴 有明显的负变温和正变压,小时最大变温达-7~ -8℃,表明冷池强盛(图 5)。19时,对流主体还在 杭州湾以北地区(图1a),负变温和正变压大值区主

和1h变压(红色等值线,单位:hPa)

Fig 5 Variations of 1 h surpace temperature (shaded) and 1 h surface pressure (red contour, unit: hPa) at (a) 18:00 BT, (b) 19:00 BT, and (c) 20:00 BT 12 April 2020

要位于上海地区,小时变温中心值达-8.1℃ (图 5b)。20时,对流主体位于杭州湾(图 1b),负变 温和正变压大值区也大部分移到杭州湾,表明雷暴 高压也已经影响到杭州湾水域,小时变温中心值达 -7.4℃,小时变压中心值超过+4 hPa(图 5c)。 19—20时,冷池的变温梯度指向东南方向,地面 1 小时变压的梯度方向也指向东南方向,表明冷池最 强出流(密度流)为西北风。

冷池传播速度 C 可以认为是水平方向密度流的传播速度,参考陈涛等(2020)中的简化公式进行 计算,即: $C^2 = 2\Delta p/\bar{\rho}$,其中: Δp 为冷池内外气压 差, $\bar{\rho}$ 为地面平均空气密度。利用自动站小时数据, 在冷池中心和冷池前沿(东南方向)各取 3~4 个站 点,估计冷池内外气压差,计算冷密度流的传播速 度,并用 ERA5 逐小时资料计算 0~3 km 垂直风切 变,结果如表 1 所示。 可以看到,在对流入海前,冷池密度流的传播速 度不断增强。19时传播速度达到最强,为23.8m •s⁻¹,入海后,20时冷池内外气压差仍较强,冷池 边界扩张速度为23.4m•s⁻¹,强烈的冷池出流遇 到光滑的杭州湾水面,有利于大风增强。另外对流 影响前,杭州湾的地面已经有极大风风速为10~15 m•s⁻¹的西北风(图6c),强的冷池密度流与环境 西北风叠加,也是导致杭州湾风力急速增强的重要 原因之一。

低层垂直风切变和冷池传播速度的比值显示, 18时两者比值接近1,有利于线状对流发展,实况显示18—19时对流组织成带状结构。19时和20时 冷池传播速度都显著大于垂直风切变,不利于对流 系统垂直发展和长时间维持,可以看到对流发展高 度较低(图7c),并且回波带入海后断裂(图7e)可能 也和两者不平衡有关。

表 1 冷池密度流传播速度和 ERA5 计算的垂直风切变对比

	Table 1	ble 1 Propagation speed of cold pool compared with ERA5 derived vertical shear					
时间/BT	$\Delta p/\mathrm{hPa}$	2 m 温度/℃	$ar{ ho}/(\mathrm{kg}\cdot\mathrm{m}^{-3})$	$C/(m \cdot s^{-1})$	ERA5 $\Delta U_{0\sim 3 \text{ km}}/(\text{m} \cdot \text{s}^{-1})$	$C/\Delta U_{0\sim 3~\mathrm{km}}$	
17 时	2.47	12.5	1.240	19.9	15.9	1.25	
18 时	2.52	11.3	1.245	20.1	18.5	1.10	
19 时	3.60	10.5	1.250	23.8	13.4	1.77	
20 时	3.40	10.4	1.252	23.4	14.6	1.69	

4 杭州湾东北部 13 级大风形成原因

4.1 杭州湾东北部较好的热力和动力条件

对比杭州湾大风发生前的海陆地面温度和露点 温度发现(图 6a):18 时上海和嘉兴的地面温度为 $17 \sim 18 \ C$,杭州湾的地面温度为 $14 \sim 16 \ C$;地面露 点温度在杭州湾和舟山为 $6 \ C$,而上海和嘉兴仅为 1 $\sim 3 \ C$ 。虽然海上地面温度略低于陆地,但是水汽条 件明显好于陆地。地面假相当位温分布表明 (图 6b):杭州湾西部和陆地数值接近,而杭州湾东 北部的数值明显大于陆地,大值中心位于嵊泗和岱 山附近(站点位置见图 6c)。18 时 CAPE 分布与地 面假相当位温接近,大值中心位于舟山东部,其中嵊 泗附近的 CAPE 约为 200 J·kg⁻¹(图略)。18 时杭 州湾东北部 0~3 km 垂直风切变约为 12~15 m· s⁻¹(图略),属于中等强度的垂直风切变。另外在杭 州湾东北部,由于地面西北风的风速差异,存在一条 西北一东南向的水平切变线(图 6c)。上述分析表明,杭州湾东北部(尤其是嵊泗、岱山附近)局地的热力和动力条件有利于回波入海后维持和发展。

4.2 入海对流形态和结构变化的影响

从图 1b 中可知,杭州湾 13 级大风集中在舟山 东部的嵊泗和岱山之间。极端大风在该处出现,除 了海上有利的热力和动力条件外(见 4.1 节分析), 也与杭州湾北岸线状对流入海后对流系统的形态及 结构变化密切相关。

利用 GR2Analyst 软件分析上海南汇雷达体扫 数据,并利用该软件进行了速度退模糊。从 18:51 的 0.5°反射率因子(图 7a)可以看到,线状回波主体 位于上海中部,呈"S"型,在其后侧存在一个很深的 后侧入流槽口。入流槽口前部存在强径向风速区 (图 7b),风速超过 20 m·s⁻¹。沿着后侧入流槽口 方向作垂直剖面图后显示,强回波高度约为 2 km (图 7c)。在对流系统后侧 3 km 以上高度,存在后 侧入流急流(图7d),且该气流已经倾斜下沉到地面,

图 6 2020 年 4 月 12 日 18 时(a)地面 2 m 温度(等值线,单位:℃)和露点温度(填色), (b)地面假相当位温(填色),(c)地面 1 h 极大风(风羽,红色虚线代表地面风场切变线) Fig. 6 (a) The 2 m temperature (contour, unit: ℃) and dew point temperature (shaded), (b) surface pseudo-equivalent potential temperature (shaded), (c) 10 m extreme gale during 1 hour period (barb, red dashed line: horizontal wind shear) at 18:00 BT 12 April 2020

图 7 2020年4月12日(a,b,c)18:51,(d,e,f)19:55上海南汇雷达0.5°仰角(a,e)基本反射率, (b,f)径向速度,(c)反射率因子剖面,(d)径向速度剖面
(图 7c,7d中的基线为图 7a,7b中白色直线 PQ;图 7d 中黑色虚线箭头表示后侧入流向前倾斜下沉; 图 7f 中的黑色十字表示 19:55前后观测到的13级大风站点,黑色圆形代表气旋性环流位置)
Fig. 7 (a, e) Reflectivity, (b, f) radial velocity, (c, d) vertical cross section of (c) reflectivity and

(d) radial velocity at 0.5° elevation at (a, b, c) 18:51 BT, (d, e, f) 19:55 BT 12 April 2020 (The baselines in Figs. 7c, 7d are "PQ"; the dashed black arrow in Fig. 7d represents the rear inflow sunk to the low level; in Fig. 7f, black cross represents the stations with observed 10 m wind speed exceeding scale 13, black circle represents the cyclonic circulation)

在对流系统前部形成厚度大约 1~2 km 的风暴前 侧出流,低层径向风速约为 20~25 m·s⁻¹,与上海 地区实测地面极大风速接近。

19:55,线状对流移入杭州湾并断裂成南、北两段(图 7e中白色箭头所示),断裂处前部对应了杭州 湾东北部的大风区,最大风速超过 27 m·s⁻¹ (图 7f)。实况观测到的 13 级大风主要出现在该大风带中。在大风带东北侧,对流演变成螺旋状 (图 7e),径向速度图上表现为气旋式旋转(图 7f 中 黑色圆位置)。图 7f 中涡旋西南侧的旋转分量与西 北气流一致,嵊泗 13 级极端大风就位于涡旋西侧。

5 结论与讨论

2020年4月12日,500 hPa 冷涡位于黄海,在 冷涡横槽下摆过程中,华东地区出现了大范围的雷 暴大风,其中处于低涡底部的杭州湾地区出现了12 级以上的极端大风。此次过程高低空均为西北气流 控制,500 hPa 冷平流明显强于 850 hPa 暖平流,属 于高空冷平流强迫类,低层湿度条件差、不稳定能量 弱。

在这种环流背景下,杭州湾极端大风的出现是 多尺度、多因素共同作用的结果:(1)杭州湾具有不 稳定能量,并存在中等强度垂直风切变,有利于海上 形成有组织性的对流系统。探空分析表明,杭州湾 的大气层结呈现"X"型,中低层为深厚的干绝热层, 有利于对流中形成较强的下沉气流。利用 DCAPE 估算,下沉辐散气流造成的地面风速约为14~16 m•s⁻¹。(2)风廓线雷达资料表明,对流发生时,中 低层的西北风急流达 $20 \sim 26 \text{ m} \cdot \text{s}^{-1}$,强的中层急 流增强了对流系统后部入流的强度和厚度。在对流 系统中下沉气流的作用下,中层具有高动量的气流 被带到地面(即动量下传)。动量下传的风与对流系 统中的下沉辐散气流叠加,增强了地面风速。(3)杭 州湾作为特殊的下垫面在本次极端大风过程中也起 到重要作用。在对流系统移入杭州湾的过程中,冷 池明显增强,加上杭州湾水面的摩擦力小,冷池密度 流辐散速度远超过陆地,这也是杭州湾风力增强的 重要原因之一。

除了上述原因,杭州湾东北部 13级以上大风的 出现还与海上热力、动力条件的不均匀分布及对流 入海后形态的变化有关:(1)杭州湾东北部的不稳定 能量强于杭州湾西部区域且存在水平风切变,有利 于陆地上的对流移入杭州湾东部后强度维持。(2) 主体位于上海的线状对流移入杭州湾后发生断裂, 断裂处左前方出现了中尺度涡旋,在对流断裂的前 部及涡旋西南侧对应了杭州湾东北部的大风区。

导致这次雷暴大风过程预报偏差的原因主要是 对沿海海面和陆地热力、动力及下垫面环境条件对 比分析不足以及缺乏相关经验。此次极端大风对沿 海强对流天气的潜势和短时临近预报都有一定的借鉴意义。就潜势预报而言,在能量和水汽条件较弱的情况下,只要动力条件和环境条件合适,仍然有可能形成雷暴大风。因此需要综合考虑环境气流、动量下传、冷池出流等的叠加效应以及海洋下垫面的影响。就短时临近预报而言,即使回波高度低、强度较弱,也可能产生强的地面大风;需多关注回波的形态和结构变化,在回波带断裂处和出现中尺度涡旋的地方,更容易产生大风。在判断海陆下垫面对对流发展的影响时,不仅要看温度的差异,还要关注湿度条件差异,因此用假相当位温等温湿综合变量来分析更合适。本次过程中还有一些问题尚待进一步研究,如嵊泗附近中尺度涡旋形成的原因及其对地面大风产生的增量,入海前后冷池与垂直风切变相对强度对风暴结构的影响等。

致谢:感谢中国气象局干部培训学院的俞小鼎老师在 本文修改过程中给予的指导。

参考文献

- 陈淑琴,黄辉,周丽琴,等,2011. 对流单体在杭州湾入海时的强度变 化分析[J]. 气象,37(7):889-896. Chen S Q, Huang H, Zhou L Q, et al, 2011. Analysis on the intensity changes of convective cells in the Hangzhou Bay when entering the sea[J]. Meteor Mon,37(7):889-896(in Chinese).
- 陈淑琴,章丽娜,俞小鼎,等,2017. 浙北沿海连续3 次飑线演变过程 的环境条件[J]. 应用气象学报,28(3):357-368. Chen S Q, Zhang L N, Yu X D, et al, 2017. Environmental conditions of three squall lines in the north part of Zhejiang Province[J]. J Appl Meteor Sci,28(3):357-368(in Chinese).
- 陈涛,张芳华,符娇兰,等,2020.2014 年 5 月 8—9 日引发珠江口区 域强降水的两个长生命史 MCS 特征分析[J]. 气象,46(4):449-461. Chen T, Zhang F H, Fu J L, et al, 2020. Analysis of two successive rainstorm-induced long-lived mesoscale convective systems struck Pearl River Estuary during 8—9 May 2014[J]. Meteor Mon,46(4):449-461(in Chinese).
- 陈晓欣,俞小鼎,王秀明,2022.中国大范围雷暴大风事件(Derechos) 研究:时空分布、环境背景和对流系统形态特征[J]. 气象学报, 80(1):67-81. Chen X X, Yu X D, Wang X M, 2022. Investigation of derechos in China: spatiotemporal distribution, environmental characteristics, and morphology of derechos producing convective systems[J]. Acta Meteor Sin, 80(1):67-81(in Chinese).
- 戴建华,陶岚,丁杨,等,2012. 一次罕见飑前强降雹超级单体风暴特 征分析[J]. 气象学报,70(4):609-627. Dai J H, Tao L, Ding Y, et al,2012. Case analysis of a large hail-producing severe supercell ahead of a squall line[J]. Acta Meteor Sin,70(4):609-627 (in Chinese).
- 高梦竹,陈耀登,章丽娜,等,2017. 对流移入杭州湾后飑线发展机制 分析[J]. 气象,43(1):56-66. Gao M Z, Chen Y D, Zhang L N, et al,2017. Analysis on influence of convection after moving into

- 公衍铎,郑永光,罗琪,2019. 冷涡底部一次弓状强飑线的演变和机理 [J]. 气象,45(4):483-495. Gong Y D,Zheng Y G,Luo Q,2019. Evolution and development mechanisms of an arc-shaped strong squall line occurring along the south side of a cold vortex[J]. Meteor Mon,45(4):483-495(in Chinese).
- 侯淑梅,孙晶,郑怡,等,2020.山东省线状中尺度对流系统的天气学 特征[J]. 气象,46(8):1053-1064. Hou S M, Sun J, Zheng Y, et al,2020. Synoptic characteristics of linear mesoscale convective system in Shandong Province[J]. Meteor Mon,46(8):1053-1064(in Chinese).
- 李文娟,郦敏杰,李嘉鹏,等,2019.浙江省春季至夏初飑线分型及对 比分析[J]. 热带气象学报,35(4):480-490. Li W J, Li M J, Li J P, et al, 2019. Classification and comparative analysis of the squall lines from spring to early summer in Zhejiang Province [J]. J Trop Meteor,35(4):480-490(in Chinese).
- 梁建字,孙建华,2012.2009 年 6 月一次飑线过程灾害性大风的形成 机制[J]. 大气科学,36(2):316-336. Liang J Y,Sun J H,2012. The formation mechanism of damaging surface wind during the squall line in June 2009[J]. Chin J Atmos Sci,36(2):316-336(in Chinese).
- 刘香娥,郭学良,2012. 灾害性大风发生机理与飑线结构特征的个例 分析模拟研究[J]. 大气科学,36(6):1150-1164. Liu X E,Guo X L,2012. Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case[J]. Chin J Atmos Sci,36(6):1150-1164(in Chinese).
- 马淑萍,王秀明,俞小鼎,2019. 极端雷暴大风的环境参量特征[J]. 应 用气象学报,30(3):292-301. Ma S P, Wang X M, Yu X D, 2019. Environmental parameter characteristics of severe wind with extreme thunderstorm[J]. J Appl Meteor Sci,30(3):292-301(in Chinese).
- 沈杭锋,翟国庆,朱补全,等,2010.浙江沿海中尺度辐合线对飑线发 展影响的数值试验[J].大气科学,34(6):1127-1140. Shen H F, Zhai G Q, Zhu B Q, et al, 2010. A model study of impact of coastal mesoscale convergence line on development of squall line over Zhejiang Province[J]. Chin J Atmos Sci,34(6):1127-1140 (in Chinese).
- 盛杰,郑永光,沈新勇,2020. 华北两类产生极端强天气的线状对流系 统分布特征与环境条件[J]. 气象学报,78(6):877-898. Sheng J, Zheng Y G, Shen X Y,2020. Climatology and environmental conditions of two types of quasi-linear convective systems with extremely intense weather in North China[J]. Acta Meteor Sin, 78(6):877-898(in Chinese).
- 孙继松,戴建华,何立富,等,2014.强对流天气预报的基本原理与技 术方法:中国强对流天气预报手册[M].北京:气象出版社:83-85.Sun J S, Dai J H, He L F, et al, 2014. Fundametal and Technical

Method of Severe Convetion Prediction in Middle and East China: Handbook of China Severe Convection Prediction [M]. Beijing: China Meteorological Press: 83-85(in Chinese).

- 吴海英,陈海山,蒋义芳,等,2013. "090603"强飑线过程动力结构特 征的观测与模拟分析[J]. 高原气象,32(4):1084-1094. Wu H Y,Chen H S,Jiang Y F,et al,2013. Observation and simulation analyses on dynamical structure features in a severe squall line process on 3 June 2009[J]. Plateau Meteor,32(4):1084-1094(in Chinese)
- 许爱华,孙继松,许东蓓,等,2014. 中国中东部强对流天气的天气形 势分类和基本要素配置特征[J]. 气象,40(4):400-411. Xu A H.Sun J S.Xu D B, et al,2014. Basic synoptic situation classification and element character of severe convection in China[J]. Meteor Mon,40(4):400-411(in Chinese).
- 杨吉,郑媛媛,夏文梅,等,2020.东北冷涡影响下江淮地区一次飑线 过程的模拟分析[J]. 气象,46(3):357-366. Yang J,Zheng Y Y, Xia W M,et al,2020. Numerical analysis of a squall line case influenced by northeast cold vortex over Yangtze-Huaihe River Valley[J]. Meteor Mon,46(3):357-366(in Chinese).
- 杨晓亮,杨敏,隆璘雪,等,2020. 冷涡背景下河北雷暴大风环境条件 与对流风暴演变个例分析[J]. 暴雨灾害,39(1):52-62. Yang X L,Yang M,Long L X, et al, 2020. Analysis of environmental condition and convective storm evolution of a thunderstorm gale event under cold vortex in Hebei[J]. Torr Rain Dis, 39(1):52-62(in Chinese).
- 章元直,苏涛,沈杭锋,等,2018. 一例底层涡旋扰动触发强对流的中 尺度分析[J]. 浙江大学学报(理学版),45(1):65-72. Zhang Y Z,Su T,Shen H F,et al,2018. A mesoscale analysis of low level vortex disturbance initiating severe convective weather[J]. J Zhejiang Univ (Sci Ed),45(1):65-72(in Chinese).
- Gallus W A, Snook N A, Johnson E V, 2008. Spring and summer severe weather reports over the midwest as a function of convective mode: a preliminary study[J]. Wea Forecasting, 23(1):101-113.
- Johns R H, Hirt W D, 1987. Derechos: widespread convectively induced windstorm[J]. Wea Forecasting, 2(1): 32-49.
- Lombardo K A, Colle B A, 2012. Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the Northeastern U. S. coast[J]. Mon Wea Rev, 140 (12):3805-3819.
- Meng Z Y, Yan D C, Zhang Y J, 2013. General features of squall lines in East China[J]. Mon Wea Rev, 141(5):1629-1647.
- Parker M D, Johnson R H, 2000. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 128(10): 3413-3436.
- Zhang L N, Sun J Z, Ying Z M, et al, 2021. Initiation and development of a squall line crossing Hangzhou Bay[J]. J Geophys Res: Atmos, 126(1):e2020JD032504.

(本文责编:戴洋)