熊洁,李俊,王明欢,2021.随机参数扰动在一次山地暴雨集合预报中的对比研究[J]. 气象,47(8):953-965. Xiong J, Li J, Wang M H,2021. Comparative study of stochastically perturbed parameterization in ensemble forecast of a mountain rainstorm event [J]. Meteor Mon,47(8):953-965(in Chinese).

随机参数扰动在一次山地暴雨集合 预报中的对比研究*

熊 洁 李 俊 王明欢

中国气象局武汉暴雨研究所暴雨监测预警湖北省重点实验室,武汉 430205

提 要:基于 WRF v3.9 模式使用随机参数扰动 MYNN 边界层方案和 RUC 陆面过程方案参数对我国西南山地一次特大 暴雨模拟,对比评估出山地暴雨集合预报中针对 MYNN 边界层、RUC 陆面过程方案随机参数扰动的较优设置,主要结论如 下:随机扰动 MYNN 边界层方案(SPPM)和 RUC 陆面过程方案(SPPR)参数试验,扰动的主要是地面和模式低层的变量,扰 动能量从模式低层逐步向高层发展,两者相比扰动边界层方案能获得更大的扰动能量;较去空间相关尺度而言,SPPM 方案 对去时间相关参数的变化更敏感,而 SPPR 方案由于其扰动能量总体偏小,去空间和时间相关参数的变化对其集合预报性能 影响相对较小;SPPM 方案中去时间相关选择 6 h,去空间尺度选择 70 km 可以获得较好的集合预报技巧,SPPR 方案中相对 而言去时间相关选择 6 h,去空间尺度选择 50 km 可以获得较好的集合预报技巧。

关键词:随机参数扰动,边界层参数化方案,陆面过程参数化方案,山地暴雨

文献标志码:A

中图分类号: P456,P435

DOI: 10.7519/j.issn.1000-0526.2021.08.004

Comparative Study of Stochastically Perturbed Parameterization in Ensemble Forecast of a Mountain Rainstorm Event

XIONG Jie LI Jun WANG Minghuan

Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, CMA, Wuhan 430205

Abstract: Based on WRF v3.9 model, the stochastically perturbed parameterization is used to perturb MY-NN boundary layer and RUC land surface process scheme parameters to simulate a heavy rainstorm in southwestern mountains of China. The optimal settings for parameter perturbations of MYNN boundary layer and RUC land surface process in mountain rainstorm ensemble forecast are explored. The main conclusions are as follows. In the random disturbance MYNN boundary layer scheme (SPPM) and RUC land surface process scheme (SPPR) parameters, the disturbance is mainly for the variables at the surface and the lower level of the model. The disturbance energy gradually develops from lower levels to higher levels in the model, and the SPPM can get greater disturbance energy than SPPR. The SPPM scheme is more sensitive to the variation of temporal correlation parameters than the spatial correlation parameters. However, as the perturbation energy of SPPR scheme is generally small, the variations of spatio-temporal correlation parameters have relatively small influence on its ensemble prediction performance. In SPPM scheme, a better ensemble prediction skill can be obtained by the temporal correlation selection for 6 h and

* 国家重点研发计划(2018YFC1507200 和 2016YFE0109400)共同资助

2020年8月3日收稿; 2021年6月21日收修定稿

第一作者:熊洁,主要从事大气物理和数值预报研究. E-mail:xiongjie8707@sina.com

通讯作者:李俊,主要从事区域数值模式和集合数值预报技术研究. E-mail:lijun@whihr.com.cn

the spatial scale selection for 70 km, while in SPPR scheme, a better ensemble prediction skill can be obtained by the temporal correlation for 6 h and the spatial scale for 50 km.

Key words: stochastically perturbed parameterization (SPP), boundary layer parameterization, land surface process parameterization, mountain rainstorm

引 言

西部山地突发性暴雨是我国重大自然灾害之一,其预警与防范是国家防灾减灾重大而迫切的战略需求。西部山地突发性暴雨的预报难点,除自身的非线性特征外,与长江流域等其他区域的暴雨相比,具有更加复杂的环境条件:如观测资料缺乏、地形陡峭、下垫面状况复杂等,加之模式不可避免的缺陷以及初始条件的有限误差(Kalnay,2005),单一模式对西部山地暴雨的预报存在着较大的不确定性,而发展集合预报技术是目前解决预报不确定性的重要手段。

目前对短期不确定过程的研究主要集中在初值 和模式的不确定研究方面。初值扰动方法以奇异向 量法(SV)和增长模繁殖法(BGM)为代表,对于模 式不确定性的研究多是通过不同物理方案的组合或 采用不同模式的组合(杨学胜,2001;杜钧,2002)。 近年来,随机物理过程作为多物理过程的一种可能 的替代方案,在模式不确定性的研究中越来越被重 视(杜钧和李俊,2014;陈涛等,2019)。集合预报模 式随机物理扰动方法(Bowler et al, 2008; Berner et al,2009; Palmer,2012)相比于多物理方案具有 更一致的集合,描述的是模式物理过程随机误差引 起的预报不确定性(Jankov et al, 2017)。目前主要 有三种具有代表性的模式随机物理扰动方法:(1)利 用随机扰动净倾向来表征模式不确定性(Palmer et al,2009)的模式随机物理倾向扰动(SPPT),可改 善集合离散度与概率预报技巧(袁月等,2016;Leutbecher et al,2017);(2)利用随机扰动流函数来表征 模式不确定性的随机动能后向散射补偿法 (SKEB),可改进集合离散度不足的问题(Shutts, 2005;Berner et al, 2009);(3)利用随机扰动物理参 数化方案内的关键参数来表征各参数不确定性 (Ollinaho et al, 2017)的随机参数扰动(SPP)方法。 SPP 表征在物理过程中靠近其源的参数化趋势的一 些关键随机误差(陈静等,2003;Bowler et al,2008; Baker et al,2014;Jankov et al,2017),相对于 SPPT 和 SKEB 的优点在于可以保持模式的物理一致性,

保持确定性参数化所遵循的水分、动量和能量的局 部预算守恒,且不会引起计算不稳定。Jankov et al (2017)研究表明 SPP 和 SPPT、SKEB 方案的组合 较多物理过程集合预报法能得到更大的集合离散 度,并指出 SPP 与其他随机物理扰动方法组合可替 代多物理过程法,进一步验证了 SPP 方案应用到高 分辨率集合预报的可行性。随机物理参数扰动 SPP 方法近年来受到广泛关注和重视(王璐和沈学顺, 2019)。

随着模式的发展,物理过程越来越详尽。其中, 大气边界层是直接受地表强迫影响的对流低层大气 (Stull,1988),其参数化方案描述了边界层及自由 大气的动量、热量、水汽等物理量的垂直湍流输送, 陆面过程参数化方案描述地气之间水汽、热量和动 量的交换(周文艳等,2019),两者直接影响地气间热 量、水汽、动量的输送,进而影响暴雨发生发展的热 力、动力和水汽条件,影响暴雨过程的模拟。研究表 明,边界层高度日变化振幅随海拔高度的增加而增 大(徐桂荣等,2014),西部山地地形复杂,边界层变 化很不均一,模式中的边界层方案对于次网格湍流 过程、陆面过程方案及地气间的能量交换很难准确 表征,而不准确的来源之一是方案中参数的不确定。 随机参数扰动通过随机扰动物理过程参数化方案中 的不确定性关键参数或变量来表征预报的不确定 性,提供可能性预报。

Ollinaho et al(2017)指出随机型时空尺度参数 的设置会影响随机参数扰动方法的概率预报效果, 随机型去空间相关系数值越大,截断波数越小,扰动 的空间尺度越大,而去时间相关系数值越大,两个时 次间随机场相关性越大,随时间变化频率越低。已 有的工作多为对 SPPT 和 SKEB 方案的参数敏感性 的研究(蔡沅辰等,2017;闵锦忠等,2018;张涵斌等, 2019),对 SPP 方案的相关参数敏感性的研究相对 较少,且多集中在对流参数化相关经验参数的随机 扰动上(谭燕和陈德辉,2007;李俊等,2015;智协飞 等,2020),而边界层方案和陆面过程方案中同样存 在很难准确表征的参数和变量,是模式不确定性的 重要来源,而一个集合预报系统通常应包含多种不 确定性来源并采用相应的扰动技术(杜钧和李俊, 2014),因此,为探索不同随机型时间尺度和空间尺 度参数的设置对随机扰动边界层、陆面过程参数方 案集合预报效果的影响,了解上述两种物理方案随 机扰动的增长特性,为今后多种物理方案随机扰动 在山地暴雨集合预报的综合运用提供科学依据,本 文使用 WRF v3.9 分别基于随机边界层和陆面过 程参数扰动方案构造3 km 水平分辨率的山地暴雨 集合预报。通过2018年5月21—22日我国西南山 地一次特大暴雨的随机参数扰动集合预报敏感性试 验,对比评估集合预报效果及其对时空尺度参数设 置的敏感性,获取适合西部山地暴雨的时空扰动参 数,进而为综合运用多种随机物理方案、科学发展适 用于山地暴雨集合预报系统的模式扰动技术提供依 据。

1 随机参数扰动方法

1.1 MYNN 边界层参数化方案及其不确定性参数

MYNN 边界层参数化方案是基于 Mellor and Yamada(1974)提出的 M-Y 二阶湍流动能闭合模型 发展起来的。与 M-Y 模型相比, Nakanish(2001)主 要发展了浮力作用的计算,提出了一个新的计算湍 流尺度的 L 方程,形成了 MYNN Level-3 边界层方 案。该方案具有更真实的湍流运动表征,使用了较 少的试验和观测得到的闭合常数(Huang and Peng,2017),但L方案中近地表的、依赖边界层厚 度的、受浮力效应限制的三个长度尺度仍存在不确 定性(Nakanish,2001)。此外,MYNN Level-3 方案 中还存在次网格云和粗糙度两个不确定性参数,次 网格云为 Nakanishi and Niino (2006)在 MYNN Level-3 方案中融入凝结物理过程引入的,代表了边 界层内的浅积云, 粗糙长度则表征的是地表与大气 的相互作用,反映地表对风速的消减作用,直接影响 边界层的发展。

本研究中针对 MYNN Level-3 方案中湍流混 合长度、次网格云和粗糙长度等不确定参数,采用随 机参数扰动(SPP)方法进行随机扰动,以下简称 SPPM。SPPM 中直接扰动湍流混合长度、次网格 云两个诊断量,而热量和湿度粗糙长度通过扰动 Zilintikevich 系数 Czil 来实现(王璐璐等,2020)。 SPPM 方案中对参数的扰动影响着边界层及自由大 气中次网格热量、水汽、动量等物理量的垂直湍流输 送,进而影响暴雨发生发展的热力、动力和水汽条 件,影响暴雨过程的模拟。

1.2 RUC 陆面过程参数化方案及其不确定性参数

RUC(rapid update cycle)陆面方案(Smirnova et al,2000)包含了6层土壤模式,充分考虑了土壤 温度和湿度的变化,在保持水和能量平衡的基础上 细致地考虑了地气间动量、感热、潜热和水汽输送等 物理过程,与不同下垫面的地表特征密切相关。不 同下垫面在模式里表现为不同的地表反照率、粗糙 度、土壤孔隙度、最小叶孔阻抗值,其中,地表反照率 是指地表反射的太阳辐射通量与入射的太阳辐射通 量的比值,地表粗糙度指下垫面的粗糙程度,土壤孔 隙度为土壤孔隙占土壤总体积的百分比,最小叶孔 阻抗为植被通过叶孔蒸散传输水分时所受阻力的大 小(倪悦,2013)。这些参数的差异根据植被类型来 区分,目前仍存在不确定性。

本研究中针对 RUC 方案中土壤孔隙度、地表 反照率、地表粗糙度和最小叶孔阻抗等不确定参数, 采用 SPP 方法进行随机扰动,以下简称 SPPR 方 法。SPPR 方法中对参数的扰动直接或间接影响着 地气间热量、动量和水汽的输送,如地表反照率的扰 动直接影响陆气之间能量的分配,地表粗糙度的扰 动主要影响大气的动能分配,土壤孔隙度的扰动影 响土壤湿度改变陆气之间能量和水汽的交换,最小 叶孔阻抗的扰动影响植被的蒸腾作用和植被周边环 境场的能量分配(陈海山等,2014),进而对地表通 量、环流形势和水汽场产生影响,最终使得降水发生 变化。

1.3 随机参数扰动方法及参数设置

SPP 方法是针对模式物理参数化方案中不确定 的参数 *X* 加入时空相关的随机扰动(Jankov et al, 2017),可以用下式表示:

$$X_{p} = [1 + r(x, y, t)]X \tag{1}$$

式中: X_p 为扰动后参数值,r(x,y,t)表示时空相关的随机扰动场。

$$r(x,y,t) = \sum_{k=-K/2}^{K/2} \sum_{l=-L/2}^{L/2} r_{k,l}(t) e^{2\pi i \left(\frac{kx}{X} + \frac{ly}{Y}\right)}$$
(2)

式中: $k \approx n l$ 分别代表经向(K+1)和纬向(L+1)个 波数分量, $e^{2\pi i \left(\frac{K}{X}+\frac{K}{Y}\right)}$ 为在 0 $< x < X \approx 0 < y < Y$ 的 矩形区域内的正交基函数构成的傅里叶模,谱系数 $r_{k,l}(t)$ 满足如下的一阶自回归过程:

 $r_{k,l}(t + \Delta t) = (1 - \alpha)r_{k,l}(t) + g_{k,l}\varepsilon_{k,l}(t)$ (3) 式中: α 是由设定的去时间相关尺度 τ 决定,两者关 系为 $\tau = \Delta t / \alpha$; $\varepsilon_{k,l}(t)$ 是一个复杂白噪音过程; $g_{k,l}$ 是 依赖波数的噪音振幅, 计算参考 Weaver and Courtier(2001), 具体公式如下:

$$g_{k,l} = F_0 e^{-4\pi\kappa \rho_{k,l}^2}$$
(4)

$$F_{0} = \left\{ \frac{\eta_{k,l}{}^{2} \left[1 - (1 - \alpha)^{2}\right]}{2 \sum_{k} \sum_{l} e^{-8\pi \kappa \rho_{k,l}{}^{2}}} \right\}^{1/2}$$
(5)

式中: $\rho_{k,l} = \sqrt{k^2/X^2 + l^2/Y^2}$ 表示有效经向波数, F_0 代表一个标准化常数, κ 为预设的去空间相关尺度, $\eta_{k,l}^2$ 表示波谱方差。

扰动形态由格点标准偏差 η、去空间相关尺度 κ 和去时间相关尺度τ三个参数确定。目前关于这三 个参量值该如何设定并没有一致结论,但是根据 SPP 方案扰动形态的原理可知,去空间相关尺度 κ 和去时间相关尺度 τ 表示随机序列的时、空变化速 率,控制扰动的空间结构变化。已有的一些研究表 明,随机扰动的时空参数与天气过程相关,其设置应 与天气系统的尺度相适应(闵锦忠等,2018),而且扰 动结构和扰动振幅相比,前者更重要(李俊等,2009; 杜钧和李俊,2014)。为探究适用于我国西部山地暴 雨的随机扰动参数调整规律,本研究中的 SPPM 试 验以Jankov et al(2017)的工作为参考(该工作中设 定格点标准偏差 η、去空间相关尺度 κ 和去时间相 关尺度 τ 的默认值分别为 0.15、700 km 和 6 h),与 扰动振幅相关的格点标准偏差η保持0.15不变,重 点研究与随机扰动结构变化关系密切的时空扰动参 数(去空间相关尺度 κ 和去时间相关尺度 τ),并结 合 2018 年 5 月 21-22 日四川、重庆地区这次山地 暴雨过程的时空特征(强降水时段集中,与中尺度系 统的移动紧密相关,具体见2.1节个例简介),以及 西部山地更复杂多变的边界层特征,在缺省参数的 基础上,将去空间相关尺度由 700 km 减小为 70 km 进行试验,将去时间相关设定为6h、3h进行敏感 性试验;同上,在本研究中的 SPPR 试验中,也参照 WRF 中的默认值,将 SPPR 去空间相关尺度、去时 间相关尺度设定为 500 km/50 km、6 h/3 h 进行敏 感性试验,而与扰动振幅相关的格点标准偏差 η 与 原试验的缺省值保持一致。

2 试验方案设计

2.1 个例简介

2018年5月21-22日受500hPa低槽和西南

涡东移影响(图略),在四川、重庆地区发生了一次山 地特大暴雨过程,5月21日12时至22日12时(世 界时,下同)四川西南部到重庆西北部大部分地区 24 h 累计降水量达到 25 mm 以上, 超过 100 mm 的 国家级气象站点有 324 个,最大降水量站点为四川 省乐山市沐川县芹菜坪站(海拔高度为1015 m),达 到 363.9 mm,另外峨眉山市九里镇兴阳村(海拔高 度为 785 m)和乐都新沟村(海拔高度为 948 m)这 两个站点降水量超过 300 mm,最大小时雨强为 114.8 mm • h^{-1} (峨眉山市双福镇露华村,海拔高 度为 668 m)。伴随西南低涡的东移,强降水中心依 次位于四川盆地西南部(21日12-18时)、四川盆 地东北(21日18时至22日00时)、重庆与湖北恩 施交界处(22 日 00-06 时),24 h 雨带整体呈西 南一东北走向,是一次较典型的具有山地背景的强 降水过程(过程雨量见图 1a)。

2.2 控制试验设计

本文采用 WRF v3.9(Skamarock et al,2005) 对其进行数值模拟。控制试验(CTL)模式采用单层 无嵌套,水平分辨率为3km,水平格点数为699× 699,垂直为51层,初始场与侧边界条件均由GFS 全球预报资料提供,主要物理过程包括:Thompson 云微物理方案、MYNN3边界层参数化方案、RRT-MG辐射方案和RUC陆面过程方案等,关闭对流 参数化方案。模式积分36h(2018年5月21日00 时至22日12时)。控制试验模拟的21日12时至 22日12时24h累计降水(图1b)和实况对比,可见 CTL模拟的雨带走势和实况较吻合,四川盆地西南 部降水大值落区得到较好模拟,而重庆西北部降水 大值区则在控制试验的模拟结果中偏弱,重庆东南 部和湖北西南部的降水模拟偏大。

2.3 随机参数扰动试验设计

随机参数扰动试验初始场与侧边界条件同样由 GFS全球预报资料提供,模式设置与CTL相同,调 整去空间相关尺度 κ和去时间相关尺度 τ设置 (表1),SPPM、SPPR分别对MYNN边界层参数化 方案不确定的参数(湍流混合长度、次网格云和粗糙 长度)和 RUC 陆面过程参数化方案不确定的参数 (土壤孔隙度、地表反照率、地表粗糙度和最小叶孔 阻抗)进行随机扰动,每组试验通过改变 SPP 中的 随机种子生成8个扰动成员,与控制成员一起构

图 1 2018 年 5 月 21 日 12 时至 22 日 12 时(a)实况和(b)控制试验模拟的 24 h 累计降水分布 Fig. 1 Distributions of 24 h accumulated precipitation of (a) observation, and (b) control experiment simulation from 12 UTC 21 to 12 UTC 22 May 2018

Table 1 The SPP experiments and stochastic perturbation pattern setting					
试验序号	试验名称	扰动成员数/个	去空间相关(_τ)/km	去时间相关(κ)/h	格点标准偏差(ŋ)
1	SPPM_700_6	9	700	6	0.15
2	SPPM_700_3	9	700	3	0.15
3	SPPM_70_6	9	70	6	0.15
4	SPPM_70_3	9	70	3	0.15
5	SPPR_500_6	9	500	6	0.30
6	SPPR_500_3	9	500	3	0.30
7	SPPR_50_6	9	50	6	0.30
8	SPPR_50_3	9	50	3	0.30

表 1 随机参数扰动试验及扰动形态设置

成9个成员的集合预报。获得 SPPM、SPPR 最优 去时、空相关尺度配置的基础,组合进行试验(记为 SPPM+SPPR,根据后文的分析可知 SPPM_70_6 和 SPPR_50_6 各项评分相对较优,SPPM+SPPR 试验即为 SPPM_70_6 和 SPPR_50_6 的组合),以 探究在对流尺度中同时扰动 MYNN 边界层、RUC 陆面过程方案参数的预报效果。

2.4 检验资料

文中地面、高空变量检验采用欧洲中心全球第 五代再分析资料 ERA5 作对比,降水检验采用国家 气象信息中心 0.1°×0.1°网格化逐时实况降水融合 资料(沈艳等,2013)做对比。检验前使用双线插值 方法将集合预报的变量插值成与实况和再分析资料 一致的分辨率,文中所有地面参数定量评估均基于 0.1°×0.1°的格点分辨率,高空参数定量评估均基 于 0.25°×0.25°的格点分辨率。本研究重点关注随 机扰动边界层、陆面过程参数化方法在山地暴雨集 合预报中的敏感性及其扰动效果,因此主要针对这 次过程的主要降水时段(21 日 12 时至 22 日 12 时, 对应模式模拟 12~36 h 预报时段)和主要降水落区 (图 1 所示区域)进行检验分析。

3 集合预报效果检验与分析

3.1 近地面变量预报检验

SPPM 与 SPPR 方案主要表现了地面-近地层的湍流混合过程,其对近地面变量的预报产生着显著影响。因此首先对 2 m 温度、10 m U 风和 10 m V 风的离散度、均方根误差(RMSE)和离散度/均方根误差值检验。离散度为集合成员与集合平均的标准偏差,在一定范围内离散度越大越能包含真实大气的各种可能性。RMSE 检验预报场与分析场之间的差异,值越大则预报误差越大。对一个理想可信度高的集合预报系统,RMSE 与离散度应该有相同的幅度与变化率(Berner et al,2011)。

图 2 展示了 9 组试验 2 m 温度、10 m U 风和 10 m V 风的离散度、RMSE 和离散度/均方根误差值 评分,总体而言(图 2a、2d、2g),SPPM 方案的离散度 大于 SPPR 方案,表明扰动边界层方案能比扰动陆面 方案获得更大的扰动能量。两种方案对温度和风场 扰动的量级相当,其中温度扰动多在 0~0.6 K, 最大可达到 0.602 K,风场扰动多在 0~0.9 m • s⁻¹,

图 2 各试验模拟的 2018 年 5 月 21 日 00 时至 22 日 12 时(a~c)2 m 温度、(d~f)10 m U 风和(g~i)10 m V 风 的(a,d,g)离散度、(b,e,h)均方根误差和(c,f,i)离散度/均方根误差值随时间的变化 Fig. 2 The spread (a, d, g), RMSE (b, e, h) and spread/RMSE ratio (c, f, i) of all experiments for the 2 m temperature (a-c), 10 m U wind (d-f), 10 m V wind (g-i) from 00 UTC 21 to 12 UTC 22 May 2018

最大可以达到 0.903 m • s⁻¹。各组试验温度离散度 增长随时间的演变趋势相似,均在积分的前 12 h 增 长迅速,其后趋于平缓,在积分 24 h 稍有下降后又快 速增长,可能与温度的日变化有关;各组试验风场离 散度增长随时间的演变趋势也相似,均在积分的前 12 h 增长迅速,其后趋于平缓,风场的离散度在积分 前 12 h 达到饱和,之后随着积分时间的增长变化不 大。

在 SPPM 的 4 组试验中,固定去空间相关尺度对 比不同去时间相关尺度试验的地面变量离散度可以 发现,去时间相关尺度 6 h 的所有试验 2 m 温度离散 度均高于 3 h,说明 SPPM 中去时间相关系数的值越 大,可以获得更大的离散度增长;在相同的去时间相 关参数下,SPPM 将去空间相关尺度由700 km 调整 为70 km 时对 2 m 温度离散度有一定的增大。SPPM 方案各地面变量与 ERA5 的均方根误差 4 组试验相 差不大,离散度/均方根误差评分 SPPM_70_6 较其他 3 组试验评分最优。在 SPPR 的 4 组试验中,温度和 风场的离散度和均方根误差都差异不大,离散度/均 方根误差评分也相当,SPPR 方案由于其扰动能量总 体偏小,使得去空间和去时间相关参数的变化对其集 合预报性能影响也相对较小。SPPM+SPPR 组合试验与 SPPM_70_6 地面变量的离散度非常接近。

3.2 高空变量预报检验

SPPM 与 SPPR 方案对高空变量垂直分布的影 响如何,在此检验了高空温度、U风场和水汽场集合 预报效果。总体来看 SPPM 和 SPPR 方案各变量离 散度大值中心在 700 hPa 以下,两种方案扰动呈现从 低层向高层扩展的趋势。图3展示了不同集合预报 试验中在 850 hPa 高度层的温度、U 风场和水汽场的 平均离散度、均方根误差和离散度/均方根误差值随 时间的变化。整体来看 SPPM 方案的离散度大于 SPPR 方案,表明扰动边界层方案比扰动陆面方案能 获得更大的扰动能量。两种方案对温度、风和水汽扰 动的量级相当,离散度增长随时间演变均在积分前 12 h 增长迅速。温度离散度在850 hPa、700 hPa(图 略)迅速增长后趋于平缓,而 500 hPa 高度(图略)迅 速增长后有下降趋势后缓慢增大,温度均方根误差 850 hPa 随着积分时间的增加呈增大趋势,700 hPa 和 500 hPa 高度随积分时间的变化相对比较平缓; U风场离散度在 850 hPa 和 700 hPa 迅速增长后呈

下降趋势,而在 500 hPa 积分 12 h 后变化较平缓, 均方根误差在不同高度层差别较小;水汽离散度在 850 hPa 迅速增长后有增长趋势,在700 hPa 迅速增 长呈下降趋势,500 hPa 积分 12 h 后变化平缓,均方 根误差在 850、700、500 hPa 三个高度层大小差异不 明显。SPPM 的 4 组试验中, SPPM_70_6 温度、U 风场和水汽场的离散度、离散度/均方根误差评分最 优,SPPR的4组试验中各高空变量的离散度评分 相当。SPPM+SPPR 组合试验高空变量在积分前 24 h 的离散度略高于 SPPM_70_6,积分后 12 h 略 低于 SPPM_70_6,这种差异在 850 hPa 高度表现最 为明显。SPPM、SPPR 分别对 MYNN 边界层参数 化方案不确定的参数(湍流混合长度、次网格云和粗 糙长度)和 RUC 陆面过程参数化方案不确定的参 数(土壤孔隙度、地表反照率、地表粗糙度和最小叶 孔阻抗)进行随机扰动,边界层扰动相对陆面过程而 言,其扰动更加深厚,因而其模式变量的离散度更 大。

边界层参数化方案描述了行星边界层及自由大

气中次网格热量、水汽、动量等物理量的垂直湍流输送,陆面过程参数化方案描述了地气之间水汽、热量和动量的交换,两者直接影响地气间热量、水汽、动量的输送,进而影响暴雨发生发展的热力、动力和水 汽条件,影响暴雨过程的模拟。下文进一步对降水 预报的结果进行检验。

3.3 降水预报检验

集合预报与单一的确定性预报相比可以给出多 种可能性及其发生的概率,下面对此次山地暴雨过 程边界层(SPPM)和陆面过程(SPPR)参数随机扰 动集合预报的降水结果进行多方面的检验评估。

3.3.1 确定性预报(集合平均)检验

杜钧(2002)指出评估集合预报效果好坏的一项 重要指标是集合平均的检验,对集合平均的检验采 用单一模式预报检验相同的方法。图4给出21日 12时至22日12时的24h时间段内CTL、SPPM、 SPPR、SPPM+SPPR共10组预报逐6h降水的 ETS评分,对降水的检验均为21日12时至22日

图 3 各试验模拟的 2018 年 5 月 21 日 00 时至 22 日 12 时 850 hPa(a~c)温度、(d~f)U风和 (g~i)水汽混合比的(a,d,g)离散度、(b,e,h)均方根误差和(c,f,i)离散度/均方根误差值随时间的变化 Fig. 3 Simulated changes of the spread (a, d, g), RMSE (b, e, h) and spread/RMSE ratio (c, f, i) of the 850 hPa temperature (a-c), U wind (d-f), water vapor mixing ratio (g-i) from 00 UTC 21 to 12 UTC 22 May 2018

气 象

12 时这 24 h 内的 4 个 6 h 的预报样本累加到一起 的总体评分。总体而言,除 0.1 mm 外,两种物理方 案随机扰动的集合平均降水预报均优于控制预报, 这表明尽管只采用了物理过程的随机扰动,集合预 报系统的离散偏小(图7),但还是可以获得优于单 一控制预报的集合平均预报。此外,随机扰动边界 层参数化方案(SPPM)ETS 评分优于随机扰动陆面 过程方案(SPPR),这与 SPPM 方案能获得更大的扰 动能量(图 3)且扰动分布更合理有关(图 6,图 7b)。 对比相同扰动方案不同扰动参数的试验,改变时空 扰动参数对集合平均降水的影响相对较小,SPPM 的4组试验中,除25 mm 量级外,SPPM_70_6 的 ETS 评分优于其他 3 组参数的试验。SPPR 的 4 组 试验中, SPPR_500_6 和 SPPR_50_6 ETS 评分相 当,并且略高于 SPPR_500_3 和 SPPR_50_3。SP-PM+SPPR 组合试验中<50 mm 的降水 ETS 评分 与 SPPM_70_6 相当,≥50 mm 的 ETS 评分明显优 于各组试验。

图 5 为 9 组试验集合平均降水预报和控制预报 6 h 累计降水量与实况之间的 RMSE,其值可以反 映不同参数试验中雨量的集合平均预报和实况之间 的差距。如图所示,与图 4 的 ETS 评分类似,9 组 不同参数的集合平均降水的雨量预报误差均小于控 制预报,并且 SPPM 组试验的雨量预报误差小于 SPPR 组。在不同扰动参数的 4 组 SPPM 试验中, 在相同的去空间相关参数下,6 h 去时间相关参数 的雨量预报误差均小于 3 h 的,其中 SPPM_70_6 的 RMSE 值最小,即 SPPM_70_6 集合平均的降水强 度预报最优。而在4组 SPPR 试验中,集合平均预

报和实况的 RMSE 值相差不明显,这可能是 SPPR 试验和 SPPM 试验相比,其扰动的能量总体偏小, 不同扰动参数得到的集合平均预报比较相近造成 的。SPPM+SPPR 的 RMSE 较 SPPM_70_6 略高, 低于其他试验。

3.3.2 集合区间预报

计算9组试验集合预报6h累计降水在不同量 级上的离群率,即实况大于集合最大成员或者小于 集合最小成员的格点数占该实况出现总数的比例 (李俊等,2020)。如图6所示4个降水等级区间,随 着实况降水量级的增大,降水集合预报的离群率都 随之减小,但这种离群率随量级减小的趋势应是由 样本数减少造成的,不能反映随量级越大预报效果 越好。对比 SPPM 和 SPPR 两类扰动方案,SPPM 组试验的离群率明显低于 SPPR 组试验,也表明 SPPM方案能获得更大的扰动离散度,这与图 3 和 图 7 的结论一致。SPPM 组试验中,SPPM_70_6 各 降水量级上的离群率均最低。而在 4 组 SPPR 试验 中,6 h 累计降水在 0.1~10 mm 的实况离群率差别 不大,在 10~50 mm 的实况 SPPR_500_6 离群率最 低,≥50 mm 以上的实况 SPPR_50_6 离群率最低。 SPPM+SPPR 离群率较 SPPM_70_6 差别不大,没 有表现出明显的优劣势。

3.3.3 离散度检验

在此采用 Talagrand 分布检验方法(李俊等, 2015)对9组试验集合降水预报的离散度进行检验 (图7)。在 SPPM 的4组试验中,从实况落在集合 区间之外的频率都大于区间之内可得集合预报的离 散度均偏小,这是由于本文只采用了物理过程随机 扰动方案,没有引入更多其他扰动。SPPM_70_6 实 况落在集合预报区间的频率较其他方案均大,这与 3.3.2 节离群率的结论类似,表明 SPPM_70_6 方案 的集合区间预报能更好地包含实况,结合 Talagrand 频率分布与理想频率分布之间的均方差,SP-PM_70_6 概率均方差小, SPPM_70_6 离散度分布 更接近理想状态,优于其他3组集合预报。SPPR 4 组集合预报中实况落在集合区间之外的频率同样都 偏大,不同扰动参数对 Talagrand 分布的影响不如 SPPM 方案显著,这与图 5 的结论类似,主要是由 SPPR方案总体的扰动能量偏小造成的。相对而 言,SPPR_50_6 实况落在集合预报区间的频率较其 他方案稍大,结合 Talagrand 频率分布与理想频率 分布之间的均方差,SPPR 50 6 概率均方差较其他 3 组试验稍小,其离散度分布更接近理想状态,优于其 他3组集合预报。SPPM+SPPR的 Talagrand 频率 分布和概率均方差评分较 SPPM_70_6 差别不大。

图 6 集合预报 6 h 累计降水量在不同量级上的离群率 Fig. 6 The outlier of the ensemble forecasts at different categories for the 6 h accumulated precipitation

图 7 集合预报 6 h 累计降水的(a) Talagrand 分布和 (b) Talagrand 分布与理想频率分布之间的概率均方差

Fig. 7 (a) Talagrand distribution and (b) the probability mean squared differences between the expected-probability and Talagrand distribution derived from the ensemble forecasts for 6 h accumulated precipitation

3.3.4 概率预报检验

李俊等(2015)指出集合预报可以提供定量的概 率预报,即从集合成员的预报中可以计算出某种天 气发生的相对概率。Roberts and Lean(2008)提出 的邻域空间检验方法 FSS 评分,可检验集合预报在 不同空间尺度上的概率预报能力。当 FSS=0 时预 报与实况完全不匹配,评分最低;但 FSS=1 时预报 与实况概率一致,评分最高;当 FSS≥0.5 时,所对 应的窗口尺度即为所谓降水预报的"可用预报尺度" (赵滨和张博,2018;李俊等,2020)。

图 8 给出所有集合预报 6 h 累计降水不同降水 量级在 10、50、90、130 km 邻域空间尺度上的 FSS 评分。9 组试验 6 h 降水 \geq 0.1 mm 的量级,在 10 km 尺度的 FSS 评分达到 0.75 以上,且 FSS 评 分随着邻域空间尺度增大而提高,即降水预报随着 邻域空间尺度的增大能获得更高的概率预报技巧, 这与李俊等(2020)结论一致。总的来看,SPPM 各 组试验 FSS 评分较 SPPR 高,其中 SPPM_70_6 试 验 6 h 累计降水 \geq 0.1 mm、 \geq 10 mm \gtrsim 50 mm 预 报在不同邻域空间尺度上的 FSS 评分为 SPPM 方 案中最高,SPPR 各组试验 FSS 评分相差不大。SP-PM+SPPR 试验 FSS 评分较 SPPM_70_6 差别不 大。

为进一步对比不同扰动参数下 SPPR 4 组试验 概率预报的相对优劣,计算 SPPR 集合 24 h 累计降

水预报在不同邻域空间尺度上的 FSS 评分(图略)。 FSS 评分演变与邻域空间尺度的演变趋势和图 8 类 似,其中 24 h 累计降水≥10 mm、≥50 mm 预报不 同邻域空间尺度上的 FSS 评分情况,SPPR_50_6 较 其他 3 组试验略高。

4 结论与讨论

本文基于 WRFv3.9 模式探究了在山地暴雨集 合预报中,使用 SPP 方法扰动 MYNN 边界层方案和 RUC 陆面过程方案参数对我国西南山地一次特大暴 雨预报中影响。同时,在研究中构造了多组数值模拟 试验调整 SPP 方法中的去时间相关尺度和去空间相 关尺度,通过对地面气象要素、物理量垂直分布及降 水检验进行对比分析,得到的主要结论如下:

(1)随机扰动 MYNN 边界层方案(SPPM)和 RUC 陆面过程方案参数(SPPR)中,由于扰动的主 要是地面和模式低层的变量,扰动能量从模式低层 开始发展,并逐步向高层扩展,模式低层变量的离散 度大于模式中高层。

(2)随机扰动 MYNN 边界层方案和 RUC 陆面 过程方案参数相比,扰动边界层方案能获得更大的 扰动能量,因此 SPPM 比 SPPR 方案能获得更优的 离散度分布,其集合平均预报和概率预报也优于 SPPR 方案。

图 8 集合预报 6 h 累计降水预报在不同邻域空间尺度上的 FSS 评分 (a)[0.1,10) mm,(b)[10,25) mm,(c)[25,50) mm,(d)≥50 mm
Fig. 8 The FSS score on the different neighborhood spatial scales for 6 h accumulated precipitation by ensemble forecasts
(a) [0.1,10) mm, (b) [10,25) mm, (c) [25,50) mm, (d) ≥50 mm

(3)不同的去空间相关参数和去时间相关参数 会改变随机扰动的时空分布,进而影响集合预报系 统的性能,就本次试验而言,集合预报系统对去时间 相关参数的变化更敏感。SPPR 方案由于其扰动能 量总体偏小,因而上述两个参数的变化对其集合预 报性能影响相对较小。

(4)对于 SPPM 试验而言,通过系统的检验, SPPM_70_6 在集合平均预报、离散度分布和概率预 报技巧等方面均优于其他扰动参数的组合,表明就 本次过程而言,随机扰动边界层方案中,去时间相关 选择 6 h,去空间尺度选择 70 km 可以获得较好的 集合预报技巧。而对于 SPPR 试验,不同扰动参数 对集合预报的技巧影响相对较小,这是由于该方案 的总体扰动能量偏小造成的,相对而言,在随机扰动 陆面方案中,去时间相关选择 6 h,去空间尺度选择 50 km 可以获得较好的集合预报技巧。

(5)混合使用随机扰动边界层和陆面过程参数 方案(SPPM+SPPR),系统扰动能量的增加并不显 著,混合扰动方案的模式变量的离散度演变与单独 机扰动边界层方案类似。降水的检验表明,除6h 降水≥50 mm ETS 评分混合扰动方案明显优于其 他试验,其他评分结果与随机扰动边界层参数相当, 这可能与 RUC 陆面过程方案参数方案的扰动能量 太小有关。

为了探讨 SPP 方法扰动 MYNN 边界层方案和 RUC 陆面过程方案参数的特点及其相关扰动参数 的设置,本研究只引入单一的扰动方案,因而集合预 报系统的离散度总体偏小,但即便如此,两种不同物 理过程随机扰动的集合平均均能获得比控制预报更 好的预报效果,表明这两种随机方案对集合预报系 统均具有正贡献。此外,扰动边界层方案比陆面过 程能获得更大的扰动能量,可能与模式中边界层方 案自身对降水的影响更大或者与天气过程的类型有 关(李昀英等,2010;陈海山等,2014),这个也是一个 值得进一步研究的课题。

通过一次典型西部山地暴雨个例的随机物理过 程试验,得到较小的去空间相关系数(70 km/50 km) 和较长的去时间相关系数(6 h),可以获得较优的集 合预报技巧,即在对上述物理方案参数的随机扰动 中,较小的扰动空间尺度和较低的扰动场随时间的 变化频率,可以获得较优的集合预报技巧,上述结论 还需要更多的试验予以验证。本文并没有对所有可 能的时空参数进行对比试验,已有的一些研究表明, 随机扰动的时空参数与天气过程相关,参数的选择 应与天气系统的尺度相适应(闵锦忠等,2018),但任 何一次天气过程都是不同尺度天气系统相互作用的 结果,因此两者之间的确切关系,还需要做进一步的 研究。此外,随机扰动时空尺度的选择与被扰动对 象(物理过程)之间的关系,也是一个值得深入研究 的课题,因此,在实际应用随机方案之前,非常有必 要针对特定地域和预报对象,开展最优的扰动参数 的试验。

参考文献

- 蔡沅辰,闵锦忠,庄潇然,2017.不同随机物理扰动方案在一次暴雨集 合预报中的对比研究[J]. 高原气象,36(2):407-423. Cai Y C, Min J Z, Zhuang X R, 2017. Comparison of different stochastic physics perturbation schemes on a storm-scale ensemble forecast in a heavy rain event[J]. Plateau Meteor, 36(2):407-423(in Chinese).
- 陈海山,倪悦,苏源,2014. 两次暴雨过程模拟对陆面参数化方案的敏 感性研究[J]. 气象学报,72(1):79-99. Chen H S,Ni Y,Su Y, 2014. Sensitivity of heavy rainfall events simulation to land surface parameterization scheme as simulated via the two cases[J]. Acta Meteor Sin,72(1):79-99(in Chinese).
- 陈静,薛纪善,颜宏,2003. 物理过程参数化方案对中尺度暴雨数值模 拟影响的研究[J]. 气象学报,61(2):203-218. Chen J,Xue J S, Yan H,2003. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation[J]. Acta Meteor Sin,61 (2):203-218(in Chinese).
- 陈涛,孙军,谌芸,等,2019.广州"5•7"局地突发特大暴雨过程的数 值可预报性分析[J]. 气象,45(9):1199-1212. Chen T,Sun J, Chen Y,et al,2019. Study on the numerical predictivity of localized severe mesoscale rainstorm in Guangzhou on 7 May 2017 [J]. Meteor Mon,45(9):1199-1212(in Chinese).
- 杜钧,2002. 集合预报的现状和前景[J]. 应用气象学报,13(1):16-28. Du J,2002. Present situation and prospects of ensemble numerical prediction[J]. J Appl Meteor Sci,13(1):16-28(in Chinese).
- 杜钧,李俊,2014. 集合预报方法在暴雨研究和预报中的应用[J]. 气 象科技进展,4(5):6-20. Du J,Li J,2014. Application of ensemble methodology to heavy-rain research and prediction[J]. Adv Meteor Sci Technol,4(5):6-20(in Chinese).
- Kalnay E,2005. 大气模式、资料同化和可预报性[M]. 蒲朝霞,译. 北 京:气象出版社. Kalnay E,2005. Atmospheric Modeling, Date Assimilation and Predictability[M]. Pu Z X, trans. Beijing: China Meteorological Press(in Chinese).
- 李俊,杜钧,王明欢,等,2009. 中尺度暴雨集合预报系统研发中的初 值扰动试验[J]. 高原气象,28(6):1365-1375. Li J,Du J,Wang M H,et al,2009. Experiments of perturbing initial conditions in the development of mesoscale ensemble prediction system for heavy rainstorm forecasting[J]. Plateau Meteor,28(6):1365-

1375(in Chinese).

- 李俊,杜钧,刘羽,2015.北京"7 · 21"特大暴雨不同集合预报方案的 对比试验[J]. 气象学报,73(1):50-71. Li J, Du J, Liu Y, 2015. A comparison of initial condition-, multi-physics- and stochastic physics-based ensembles in predicting Beijing "7 · 21" excessive storm rain event[J]. Acta Meteor Sin, 73(1):50-71(in Chinese).
- 李俊,杜钧,许建玉,等,2020. 一次特大暴雨过程高分辨率集合预报 试验的检验和评估[J]. 暴雨灾害,39(2):176-184. Li J, Du J, Xu J Y, et al,2020. The assessment and verification of high-resolution ensemble forecast for a heavy rainstorm[J]. Torr Rain Dis, 39(2):176-184(in Chinese).
- 李昀英,叶成志,钟中,2010. 陆面参数化方案对两例不同类型暴雨可 预报性的影响[J]. 大气科学,34(2):407-417. Li Y Y, Ye C Z, Zhong Z,2010. Impacts of land-surface process parameterization on model predictability of two kinds of heavy rainfall events[J]. Chin J Atmos Sci,34(2):407-417(in Chinese).
- 闵锦忠,刘畅,王世璋,等,2018.随机物理倾向扰动在风暴尺度集合 预报中的影响研究[J]. 气象学报,76(4):590-604. Min J Z, Liu C, Wang S Z, et al. 2018. Impact of stochastically perturbed parameterization tendencies on storm-scale ensemble forecast[J]. Acta Meteor Sin,76(4):590-604(in Chinese).
- 倪悦,2013. 陆面过程对两类暴雨的可能影响研究[D]. 南京:南京信息工程大学. Ni Y,2013. Possibleimpacts of land-surface process on two kinds of heavy rainfall events[D]. Nanjing: Nanjing University of Information Science and Technology(in Chinese).
- 沈艳,潘旸,宇婧婧,等,2013.中国区域小时降水量融合产品的质量 评估[J].大气科学学报,36(1):37-46. Shen Y,Pan Y,Yu J J, et al,2013. Quality assessment of hourly merged precipitation product over China[J]. Trans Atmos Sci,36(1):37-46(in Chinese).
- 谭燕,陈德辉,2007. 基于非静力模式物理扰动的中尺度集合预报试 验[J].应用气象学报,18(3):396-406. Tan Y,Chen D H,2007. Meso-scale ensemble forecasts on physical perturbation using a non-hydrostatic model[J]. J Appl Meteor Sci,18(3):396-406(in Chinese).
- 王璐,沈学顺,2019. 对流尺度集合预报与模式不确定性研究进展 [J]. 气象,45(8):1158-1168. Wang L, Shen X S, 2019. Review on the representation of model uncertainty in convection-allowing ensemble prediction system[J]. Meteor Mon,45(8):1158-1168(in Chinese).
- 王璐璐,闵锦忠,刘畅,2020. 基于 WRF 模式的对流尺度边界层方案 参数随机扰动方法研究[J]. 气象学报,78(4):636-647. Wang L L,Min J Z,Liu C,2020. A study on stochastic perturbed planetary boundary layer scheme parameters at convective scale based on WRF model[J]. Acta Meteor Sin,78(4):636-647(in Chinese).
- 徐桂荣,崔春光,周志敏,等,2014.利用探空资料估算青藏高原及下 游地区大气边界层高度[J].暴雨灾害,33(3):217-227.XuGR, CuiCG,ZhouZM,etal,2014. Atmospheric boundary layer heights estimated from radiosonde observations over the Qing-hai-Tibet

Plateau and its downstream area[J]. Torr Rain Dis,33(3):217-227(in Chinese).

- 杨学胜,2001. 业务集合预报系统的现状及展望[J]. 气象,27(6):3-9. Yang X S,2001. The new development and the outlook of the operational ensemble prediction system[J]. Meteor Mon,27(6): 3-9(in Chinese).
- 袁月,李晓莉,陈静,等,2016. GRAPES 区域集合预报系统模式不确 定性的随机扰动技术研究[J]. 气象,42(10):1161-1175. Yuan Y,Li X L, Chen J, et al,2016. Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system[J]. Meteor Mon,42(10):1161-1175(in Chinese).
- 张涵斌,范水勇,陈敏,等,2019. 区域集合预报基于 SKEB 和多物理 过程的混合模式扰动方法研究[J]. 气象,45(1):17-28. Zhang H B,Fan S Y,Chen M,et al,2019. Study on a synthetic model perturbation method based on SKEB and multi-physics for regional ensemble forecast[J]. Meteor Mon,45(1):17-28(in Chinese).
- 赵滨,张博,2018. 邻域空间检验方法在降水评估中的应用[J]. 暴雨 灾害,37(1):1-7. Zhao B, Zhang B, 2018. Application of neighborhood spatial verification method on precipitation evaluation [J]. Torr Rain Dis,37(1):1-7(in Chinese).
- 智协飞,董甫,张玲,等,2020. 基于不同微物理过程的广西沿海南风 型暖区暴雨的数值模拟研究[J]. 大气科学学报,43(5):867-879. Zhi X F,Dong F,Zhang L,et al,2020. Numerical simulation of southerly type warm-sector heavy rainfall in the coastal region of Guangxi using various cloud microphysics parameterization schemes in the WRF model[J]. Trans Atmos Sci,43(5): 867-879(in Chinese).
- 周文艳,罗勇,史学丽,等,2019. 陆面过程模式 BCC_AVIM 中地表 覆盖数据现状[J]. 气象,45(10):1476-1482. Zhou W Y,Luo Y, Shi X L,et al,2019. Status of land cover datasets for the BCC_ AVIW land surface model[J]. Meteor Mon,45(10):1476-1482 (in Chinese)
- Baker L H, Rudd A C, Migliorini S, et al, 2014. Representation of model error in a convective-scale ensemble prediction system [J]. Nonlinear Process Geophys, 21(1):19-39.
- Berner J, Ha S Y, Hacker J P, et al, 2011. Model uncertainty in a mesoscale ensemble prediction system:stochastic versus multiphysics representations[J]. Mon Wea Rev, 139(6):1972-1995.
- Berner J, Shutts G J, Leutbecher M, et al, 2009. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system[J]. J Atmos Sci, 66(3):603-626.
- Bowler N E, Arribas A, Mylne K R, et al, 2008. The MOGREPS short-range ensemble prediction system[J]. Quart J Roy Meteor Soc, 134(632):703-722.
- Huang Y,Peng X D,2017. Improvement of the Mellor-Yamada-Nakanishi-niino planetary boundary-layer scheme based on observational data in China[J]. Bound-Layer Meteor,162(1):1-18.
- Jankov I, Berner J, Beck J, et al, 2017. A performance comparison between multiphysics and stochastic approaches within a North

American RAP ensemble [J]. Mon Wea Rev, 145 (4): 1161-1179.

- Leutbecher M,Lock S J,Ollinaho P,et al.2017. Stochastic representations of model uncertainties at ECMWF:state of the art and future vision [J]. Quart J Roy Meteor Soc, 143 (707): 2315-2339.
- Mellor G L, Yamada T, 1974. A hierarchy of turbulence closure models for planetary boundary layers[J]. J Atmos Sci, 31(7):1791-1806.
- Nakanish M, 2001. Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data[J]. Bound-Layer Meteor,99(3):349-378.
- Nakanishi M, Niino H, 2006. An improved Mellor-Yamada level-3 model:its numerical stability and application to a regional prediction of advection fog[J]. Bound-Layer Meteor, 119(2): 397-407.
- Ollinaho P, Lock S J, Leutbecher M, et al, 2017. Towards processlevel representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble[J]. Quart J Roy Meteor Soc, 143(702): 408-422.
- Palmer TN,2012. Towards the probabilistic earth-system simulator: A vision for the future of climateand weather prediction[J].

Quart J Roy Meteor Soc, 138(665):841-861.

- Palmer T N, Buizza R, Doblas-Reyes F, et al, 2009. Stochastic parametrization and model uncertainty [R]. England; ECMWF Technical Memorandum; 42.
- Roberts N M, Lean H W, 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Mon Wea Rev, 136(1):78-97.
- Shutts G,2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems [J]. Quart J Roy Meteor Soc, 131 (612):3079-3102.
- Skamarock W C, Klemp J B, Dudhia J, et al, 2005. A description of the advanced research WRF Version 2[R]. NCAR Tech Note, 468+STR. Boulder: NCAR:125.
- Smirnova T G,Brown J M,Benjamin S G, et al,2000. Parameterization of cold-season processes in the MAPS land-surface scheme [J]. J Geophys Res Atmos,105(D3):4077-4086.
- Stull R B. 1988. An Introduction to Boundary Layer Meteorology [M]. Dordrecht:Springer.
- Weaver A, Courtier P, 2001. Correlation modelling on the sphere using a generalized diffusion equation[J]. Quart J Roy Meteor Soc,127(575):1815-1846.