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Abstract: Two successive long-lived mesoscale convective systems (MCS-Al, MCS-A2) struck Pearl River
Estuary of South China during 8 —9 May 2014, and induced extreme precipitation over the region. From
noon of 8 May MCS-A1 sustained over than 11 h on land of South China, with slowly moving towards
southeast from east of Guangxi to Pearl River Estuary in Guangdong. The successive MCS-A2 sustained
more than 9 h, inducing rainfall of more than 400 mm along the coast of the Pearl River Estuary from early
morning to noon of 9 May. Weak cold surface layer sustained in the south of South China with weak sur-
face temperature gradience on the morning of 8 May before the convection burst. The initialization of con-

vection was connected with strengthening of surface south wind and topographic lifting near noon of 8 May.
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MCS-A1 evolved from training line/adjoining stratiform (TL/AS) to mesoscale vortex in convective organi-
zation under weak baroclinic environment. With propagation of surface cool pool due to MCS-A1’s precipi-
tation in the early night of 8 May, surface temperature boundary and wind convergence zone was pushed to
the southwest coast of Guangdong. In the late night of 8 May MCS-A1 moved out of land, then MCS-A2
was developing adjointly to the remnant cool pool boundary induced by MCS-A1 with low-level southwest
wind enhancing in the early morning of 9 May. MCS-A2 was composed by multiple parallel meso-8 scale
line-type convective systems, the extreme rainfall was related with quasi-stationary cool pool boundary,
train-moving cells in meso-f scale line-type convective systems with high precipitation efficiency. From late
night of 8 May to morning of 9 May, the balance between cool pool outflow and low-level vertical shear
could sustain upright convective cells of MCS-A2. In conclusion, with carefully researching on convective
feedback to boundary and surface layer, the forecast skills could be improved for heavy rainfall events in
weak synoptic-forcing environment during the pre-rainy season in South China.

Key words: pre-rainy season in South China, mesoscale convective system (MCS), heavy rainfall, cool

pool, line-type convection
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Fig. 1

Accumulated precipitation from 08:00 BT 8 to 20:00 BT 9 May 2014 (a), topography height

with several key surface stations (b, Arrows marked with time denote moving trajectory of

MCS-A1/A2 identified by low temperature center in satellite IR-channel images)
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(a) Geopotential height at 500 hPa (unit: dagpm) and wind at 850 hPa

(shaded area; PWAT, thick brown line: trough at 500 hPa, red short-dashed line: horizontal wind
shear at 850 hPa); (b) wind, 0. (red lines, shaded area) at 925 hPa, and sea-level pressure

(blue lines, unit; hPa; gray shaded area: topography higher than 1000 m) at 08:00 BT 8 May 2014
(mark “X”. initial location of MCS-A1)
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