李显风,周自江,李志鹏,等,2017.基于江西省水文资料对中国融合降水产品的质量评估[J].气象,43(12):1534-1546.

基于江西省水文资料对中国融合降水 产品的质量评估*

李显风1 周自江2 李志鹏1 潘 旸2 师春香2

沈 \hat{H}^2 徐 宾² 谷军霞²

1 江西省气象信息中心,南昌 330096
 2 国家气象信息中心,北京 100081

提要:利用江西省 2015年4月至 2016年3月水文站观测降水数据,在小时尺度上,对中国国家气象信息中心研制的5和 10 km 融合降水产品进行质量评估,同时与美国国家海洋大气局(NOAA)气候预测中心卫星反演降水产品(CMORPH)、中国 国家气象信息中心研制的东亚区域多卫星集成降水产品(EMSIP)两套卫星降水产品进行对比评估。研究分析各类降水产品 的数据误差及其时空变化规律,验证融合降水产品在特征区域的适用性。研究结果表明:融合降水和卫星降水均能较好地反 映年内小时降水的变化趋势,与水文站观测降水相比,四套降水资料均存在一定程度低估,其中卫星降水产品低估较大。融 合降水产品的数据质量较高,其中5 km 融合降水产品的数据精度(R=0.81,RMSE=2.12 mm・h⁻¹,RE=-5.4%)基本优于 10 km 融合降水产品(R=0.78,RMSE=2.3 mm・h⁻¹,RE=-5.1%),卫星降水产品与水文站观测降水存在较大的偏差, CMORPH和EMSIP的相关系数分别仅为 0.19 和 0.24。各降水产品误差具有相同的月变化趋势,融合降水产品的误差变化 幅度明显要小于卫星降水产品。四套降水产品的相关性随着降水量级增大而增加,融合降水产品能够准确反映降水的空间 结构和中心位置,5 km 融合降水产品对强降水的监测能力更具有优势。

关键词:融合降水产品,卫星降水产品,水文站观测降水,质量评估

中图分类号: P339 文献标志码: A DOI: 10.7519/j.issn. 1000-0526. 2017. 12. 009

Quality Assessment of China Merged Precipitation Product Using Hydrological Data in Jiangxi Province

LI Xianfeng¹ ZHOU Zijiang² LI Zhipeng¹ PAN Yang² SHI Chunxiang² SHEN Yan² XU Bin² GU Junxia²

Jiangxi Meteorological Information Centre, Nanchang 330096
 National Meteorological Information Centre, Beijing 100081

Abstract: In this paper, the quality of 5 km and 10 km merged precipitation developed by China National Meteorological Information Centre is assessed based on the hydrological observed precipitation. Besides the U.S. National Oceanic and Atmospheric Administration (NOAA) climate prediction center satellite precipitation products (CMORPH) and the East Asian multi-satellite integrated precipitation (EMSIP) developed by National Meteorological Information Centre are also assessed by comparing the two merged precipitation products. The data error of each precipitation product and its spatio-temporal variation characteristic are analyzed to verify the applicability of merged precipitation product in this selected region. The

^{*} 国家自然科学基金项目(91437220)、公益性行业(气象)科研专项(GYHY201506002 和 GYHY201306045)及中国气象局"气象资料质量 控制及多源数据融合与再分析"创新工程项目共同资助

²⁰¹⁶年11月28日收稿; 2017年7月25日收修定稿

第一作者:李显风,主要从事气象系统与数据产品应用开发.Email:lixianfeng223@163.com

通信作者:周自江,主要从事气象资料与服务技术、气候变化与气象灾害研究. Email:zzj@cma.gov. cn

results show that the merged precipitation and satellite precipitation can well reflect the variation tendency of annual hourly precipitation. Four precipitation products all have a certain underestimate compared with the hydrological observed precipitation, and the underestimate of the satellite precipitation is larger. Merged precipitation has better quality, and the accuracy of the 5 km merged precipitation (R=0.81, RMSE=2.12 mm • h⁻¹, RE=-5.4%) is better than the 10 km merged precipitation (R=0.78, RMSE=2.3 mm • h⁻¹, RE=-5.1%). There is a great difference between the satellite precipitation products is only 0.19 and 0.24, respectively. The error of each precipitation product has the same monthly variation tendency, and the error variation range of the merged precipitation of the four precipitation products in different rainfall level is also discussed, which shows that the correlation of the four precipitation products increases with the increase of precipitation. Merged precipitation products can accurately show the spatial structure and the central location of precipitation, 5 km merged precipitation takes great advantage in monitoring the severe precipitation events.

Key words: merged precipitation product, satellite precipitation product, hydrological observed precipitation, quality assessment

引 言

降水的时空分布和变化对水文循环,地-气交互 和水资源利用等方面有着重要的意义,降水也是陆 面、水文和生态模型中一项重要的输入参数。地面 站点降水是最准确的降水观测资料,但受自然环境 和人为因素等影响,地面站点观测无法覆盖到大面 积海洋、无人区以及地形相对复杂的区域,站点观测 降水难以反映气候空间总体变化及连续过度的基本 特征。卫星反演降水具有覆盖范围广、全天候连续 观测的独特优势,能够准确反映降水的时空变化特 征。但卫星观测本质上是间接观测,其反演降水产 品的精度相对较低,必须通过地面观测资料订正来 提高产品质量(Ebert et al, 2010)。因此近年来将 地面观测降水量与卫星反演降水产品融合逐渐成为 了国际社会研制高质量降水产品的主流趋势。目 前,国际上已经发展了较多基于台站观测和卫星反 演的高分辨率融合降水产品,如 GPCP(Global Precipitation Climatology Project) 月产品 (Huffman et al,1997)、GPCP 旬产品(Xie et al,2003)、GPCP 1DD(One-Degree Daily) 日产品(Huffman et al, 2001), TRMM 3B42 (Tropical Rainfall Measuring Mission 3B42)(Huffman et al, 2007)降水产品等。

中国多源融合降水产品研制也已逐步开展,中 国国家气象信息中心先后发展了基于全国3万~4 万多个自动气象站和美国国家海洋天气局气候预测 中心卫星反演降水产品(CMORPH)融合的 0.1°分 辨率、逐小时降水融合产品(以下简称"10 km 融合 降水产品", Shen et al, 2014)和基于全国自动气象 站、CMORPH 卫星降水产品以及雷达估测降水产 品融合的 0.05°分辨率、逐小时多源降水融合产品 (以下简称"5 km 融合降水产品",潘旸等, 2015)。 已有研究结果表明,中国区域融合降水产品的时、空 精度远高于卫星降水产品(沈艳等, 2013;江志红等, 2013;张蒙蒙和江志红, 2013;宇婧婧等, 2015;黄勇 等, 2015)。但当前研究主要针对的是 10 km 融合 降水产品而且是对整个中国区域的评估分析,该产 品在特定区域范围的数据质量如何有待进一步评 估,研究缺少对 5 km 融合降水产品的评估分析以 及两套融合降水产品之间的长时间序列对比评估。

两套融合降水产品均使用了自动气象站数据, 因此自动气象站数据与融合降水产品自然高度相 关,采用自动气象站观测降水对上述融合降水产品 进行评估将无法真实地检验产品的数据质量。利用 独立观测降水作为检验真值,客观评价融合降水产 品的数据精度非常必要。依托江西省山洪地质灾害 防治气象保障工程及江西省山洪地质灾害防治县级 非工程措施建设等项目支持,2015年4月,江西省 气象部门与水利部门实现了所属自动气象站,自动 水位雨量站(以下简称"水文站")每小时雨量观测数 据的实时共享。水文站主要分布在重点中小河流重 要河段、山洪沟、存在病险隐患水库和大中型水闸、 鄱阳湖区重点圩垸,站点密度高且总体布设均匀。

因此本研究利用江西省 2015 年 4 月至 2016 年 3 月水文站观测降水数据,在小时尺度上,分别对 5 和10 km 两套融合降水产品进行独立评估,同时与 CMORPH 和中国国家气象信息中心的东亚区域多 卫星集成降水(EMSIP)两套卫星降水产品进行对 比评估,对比四套降水产品与水文站观测降水的时 间变化趋势,采用相关系数(R)、均方根误差 (RMSE)、偏差(BIAS)、相对误差(RE)等统计指标,在 时间及空间尺度上对各降水产品误差进行定量评估, 并在此基础上,进一步分析产品误差的季节性变化规 律以及在不同降水量级和强降水过程的对比分析。

1 数据与处理方法

1.1 独立检验数据

水文站主要采用南京水利水文自动化研究所防 汛设备厂生产的 JDZ05-1 型雨量计,仪器分辨率为 0.5 mm,每时次观测数据通过专线网络传输至江西 省气象局,由于水文局仅传输发生降水的站点数据, 因此本研究所用的水文站数据均为有效降水数据 (降水量>0)。参考全国自动气象站小时降水资料 的质量控制方法(任芝花等,2010),对收集的水文站 降水数据进行气候极值、区域界限值、时间一致性、 空间一致性和数据完整性等全面质量控制处理,剔 除质量控制异常站点及异常时次数据,得到质量控 制后 3476 个全省均匀分布的站点(图 1)一年(2015 年 4 月至 2016 年 3 月)逐小时观测降水数据,以该 数据作为独立检验样本,对降水产品进行质量评估。

1.2 降水产品数据

1.2.1 融合降水产品

(1) 10 km 融合降水产品

利用质量控制后的全国近4万个自动气象站观 测的小时降水量和 CMORPH 卫星反演降水产品, 采用概率密度匹配(probability density function, PDF)(宇婧婧等,2013)和最优插值(optimal interpolation, OI)(潘旸等,2012)两步数据融合方案生 成逐小时 0.1°分辨率融合降水产品。该产品首先 通过"变化时空尺度匹配的 PDF 订正方案"来订正 CMORPH 卫星降水产品的系统偏差,其次对观测 误差标准差、背景误差标准差和背景误差协相关等 OI中的核心参数进行了不同区域和不同季节的调 试。此外进一步采用"分降水量级"改进卫星产品误 差形式,改进了对强降水的低估问题(Shen et al, 2014)。产品空间覆盖范围为0°~60°N、60°~ 160°E。产品可以通过中国气象局业务内网下载。

(2) 5 km 融合降水产品

利用质量控制后全国近4万个自动气象站观测的小时降水量、CMORPH卫星反演降水产品和中国气象局气象探测中心研制的逐小时雷达定量估测降水产品,利用 PDF 订正雷达和卫星降水的系统偏差,然后采用贝叶斯模式平均法(Bayesian model averaging, BMA)(Duan et al, 2007;潘旸等,2015) 生成雷达和卫星联合降水场,最后采用 OI 方法实现背景场与观测场的有效结合,生成逐小时0.05°分辨率的"地面-卫星-雷达"三源降水融合产品。产品空间覆盖范围为 15°~60°N、70°~140°E。产品可以通过中国气象局业务内网下载。

1.2.2 卫星降水产品

卫星降水数据是融合降水产品的重要数据源, 大量的卫星降水产品评估研究表明,CMORPH 降 水产品是目前国际上质量较高的卫星降水产品 (Kubota et al, 2009; Shen et al, 2010; 胡庆芳等, 2013;廖荣伟等,2015),在对中国区域的降水观测和 研究中得到了广泛的应用,CMORPH 降水产品也 是 5 和 10 km 融合降水产品的数据源。EMSIP 降 水产品为我国首个自主研制的多卫星集成降水,两

图 1 江西省水文站空间分布图 Fig. 1 Spatial distribution of hydrological stations in Jiangxi

套卫星降水产品均使用多种微波降水和红外降水数据(表1),与CMORPH降水产品相比,EMSIP降水产品增加了我国的FY-3B、FY-2E卫星数据,通过两套卫星降水产品的对比分析,探讨EMSIP降水产品数据质量改进效果,对提高我国自主卫星产品的综合应用以及在融合降水产品的质量改进等方面具有重要意义。

(1) CMORPH 降水产品

CMORPH数据是美国国家海洋大气局(NO-AA)气候预测中心在多种微波降水数据和红外数 据的基础上研制的全球降水产品(Joyce et al, 2004)。该产品首先将 TRMM/TMI、NOAA-18、 NOAA-19、DMSP-F16、DMSP-F17 和 DMSP-F18 等微波降水数据拼接为时间分辨率为 30 min 全球 降水数据,然后利用两个时次之间的红外亮温数据 计算降水云团的位移,并采用时间权重插值方法实 现降水量的计算。CMORPH 降水充分利用了微波 降水数据精度高和红外数据时空分辨率高的优势, 其空间分辨率为8 km,时间分辨率为30 min,空间 覆盖范围为60°S~60°N。产品可以通过FTP免费 下载(ftp://ftp.cpc.ncep.noaa.gov)。

(2) EMSIP 降水产品

东亚区域多卫星集成降水产品(EMSIP)首先 利用 PDF 订正的方法将 FY-3B、NOAA-18、NO-AA-19、MetOp-A、MetOp-B、DMSP-F16、DMSP-F17 和 DMSP-F18 等极轨卫星的微波降水,与 TRMM/TMI 降水产品之间的系统性差异剔除,然 后利用 FY-2E 红外云图计算的云移动矢量,将 9 颗 低轨卫星微波降水产品前后位移,并利用降水系统 的前后移动模拟降水系统的发生发展,最终形成了 FY-2E 的红外观测信息与诸多低轨卫星微波降水 产品的集成产品(徐宾等,2015)。该产品空间分辨 率为 0.0625°×0.0625°,时间分辨率为 60 min,空间 覆盖范围为 0°~65°N、60°~160°E。产品可以通过 中国气象局业务内网下载。

表 1 各降水产品数据说明

产品夕称	伸田数 据源	容间分辨家	时间分辨家	覆 盖 茄 围	下裁抽址
/ HI 13 1/1	区/自然/直协	工时力が平	时间力が平平	後血化凹	「我地址
5 km 融合	自动气象站观测数据、CMORPH 降水产品、	0.05°	60 min	$15^\circ \sim 60^\circ N$,	由国与免局业冬内网
降水产品	产品 雷达估测降水产品		00 11111	$70^\circ \sim 140^\circ \mathrm{E}$	平四 【豕 <u>河</u> 亚芳内内
10 km 融合		- 10		$0^{\circ} \sim 60^{\circ} N$	
降水产品	目动气象站观测数据、CMORPH 降水产品	0.1	60 min	$60^\circ \sim 160^\circ E$	甲国气象局业务内网
	GOES系列卫星、Meteosat系列卫星、MT-				
CMORPH	SAT2, TRMM/TMI, GPM/GMI, NOAA-	Q 1	20	$60^{\circ}\mathrm{S}\sim\!60^{\circ}\mathrm{N}$	ftp://ftp.cpc.ncep.
降水产品	18、NOAA-19、MetOp-A、MetOp-B、DMSP- F16、DMSP-F17 和 DMSP-F18	o kin	50 mm	$0^{\circ} \sim 360^{\circ} E$	noaa. gov
PMCID	TRMM/TMI、GPM/GMI、FY-2E、FY-3B、			0° (5°N	
EMSIP 降水产品	NOAA-18, NOAA-19, MetOp-A, MetOp-B,	0.0625°	60 min	$0 \sim 65 \text{ N},$ $60^{\circ} \sim 160^{\circ} \text{E}$	中国气象局业务内网
	DMSP-F16、DMSP-F17 和 DMSP-F18				

根据水文站点经纬度坐标,计算各站点对应格 点位置[式(1)和式(2)],分别提取 5 km 融合降水 产品、10 km 融合降水产品、CMORPH 降水产品和 EMSIP 降水产品的格点降水值,得到与观测降水相 同时段范围(2015 年 4 月至 2016 年 3 月)的全部站 点的逐小时格点降水序列。

$$x = \operatorname{int}\left(\frac{lon - lon_\min}{gridsize_x} + 0.5\right)$$
(1)

$$y = \operatorname{int}\left(\frac{lat - lat_\min}{gridsize_y} + 0.5\right)$$
(2)

式中, *x* 和 *y* 分别为经度和纬度方向的格点坐标, *lon* 和 *lat* 分别为站点经纬度坐标, *lon_min*, *lat_min* 分别为降水产品的起始经纬度坐标, *gridsize_x* 和 gridsize_y 分别为降水产品的经纬度方向的网格大小。

1.3 评价方法

采用相关系数(R)、均方根误差(RMSE)、偏差 (BIAS)和相对偏差(RE)等统计指标对各降水产品 的数据质量进行定量评价,各统计指标的计算公式 如下:

$$R = \frac{\sum_{i=1}^{n} (S_i - \overline{S}) (G_i - \overline{G})}{\sqrt{\sum_{i=1}^{n} (S_i - \overline{S})^2 \sum_{i=1}^{n} (G_i - \overline{G})^2}}$$
(3)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (S_i - G_i)^2}{n}}$$
(4)

$$BIAS = \frac{1}{n} \sum_{i=1}^{n} (S_i - G_i)$$
 (5)

$$RE = \frac{1}{n} \sum_{i=1}^{n} \frac{(S_i - G_i)}{G_i}$$
(6)

式中,n为样本总数, S_i 为格点降水值, G_i 为观测降水值, \overline{S} 和 \overline{G} 分别为格点和观测降水的平均值。

2 结果分析

2.1 水文与气象站点观测降水对比

水文站点观测降水的数据质量是进行融合降水 产品和卫星降水产品质量评估的前提和基础,利用 国家气象自动站观测降水资料对水文站观测降水进 行对比分析,以检验水文气象站点观测降水在降水 产品评估分析中的适用性。从全部国家气象自动站 (以下简称气象站)和水文站中选取 20 对气象站与 水文站邻近站点(站点距离小于1km)(表 2),分别 提取邻近站点逐小时水文站观测降水和气象站观测 降水(样本总数为11514个)。从邻近站点降水散点 分布图可以看出(图 2),两套观测降水具有较好的 一致性,大部分数据点分布在1:1等值线附近,仅 少数点偏离较大,两套观测降水的相关系数为0.88。 由于邻近站点的气象站和水文站不是真正的同一地 理位置上的实际观测,而降水具有很强的空间异质 性,导致两套降水产品有一定的偏差,两者的均方根 误差为 1.96 mm • h^{-1} ,水文站观测降水量级总体 上要强于气象站观测降水,其相对偏差为6.3%。对 于 60 min 分辨率降水,20%以内的 RE 就比较理想 (沈艳等,2013),气象和水文观测降水误差明显优于 这一标准。

表 2 气象-水文邻近站点 Table 2 Neighboring site between meteorological station and hydrological station

			-		
序号	邻近站点 (气象站号,水文站号)	站点距离 /km	序号	邻近站点 (气象站号,水文站号)	站点距离 /km
1	(57699,62312050)	0.39	11	(58506,61632600)	0.99
2	(59093,81120900)	0.72	12	(57789,62309200)	0.97
3	(58707,62301650)	0.65	13	(57786,61136355)	0.87
4	(58710,62408000)	0.71	14	(58619,62402200)	0.76
5	(58806,62303350)	0.64	15	(58616,62417200)	0.59
6	(57993,62326310)	0.87	16	(58514,62601200)	0.46
7	(57992,62305350)	0.96	17	(58512,60113860)	0.37
8	(57990,62306250)	0.88	18	(58510,62640400)	0.61
9	(57994,62305300)	0.34	19	(57895,62301150)	0.59
10	(57793,62310900)	0.39	20	(58601,62518200)	0.09

图 2 气象-水文邻近站点降水散点图 Fig. 2 Scatter map of meteorological and hydrological observation precipitation at the neighboring site

2.2 降水产品逐小时序列对比

利用每个时次发生降水的站点,计算江西省每 个时次的平均观测降水值和平均格点降水值,生成 观测降水与格点降水逐小时序列对比图(图 3a~ 3d),由于5 km 融合降水产品缺少 2015 年 4 月数 据,因此图 3a 中 5 km 融合降水产品逐小时变化曲 线从 2015 年 5 月开始。从图中可以看出,四套降水 产品具有与水文站观测降水相一致的逐小时变化趋 势,均表现出在 3—8 月降水量大,因该时期江西省 处于汛期过程,而在非汛期的 9 月至翌年 2 月降水 量明显偏小的特征。与观测降水相比,四套降水产 品均表现出一定程度的低估,仅有少量时次的格点

(c) CMORPH, (d) EMSIP

降水值高于观测降水。与融合降水产品相比, CMORPH和EMISP卫星降水低估程度更大。5 和10km融合降水产品在3—8月强降水时期偏差 较大,尤其在7和8月偏差明显。而在9月至次年 2月弱降水时期,两套降水产品与观测的降水量级 基本一致,CMORPH降水和EMSIP降水在全年均 出现较大的偏差。因部门业务侧重不同,水文站侧 重于观测易发生山洪地质灾害的强降水过程,对强 降水会存在一定程度的高估,这也是导致在 3—8 月 格点降水与观测值偏差较大的主要原因。

2.3 降水产品日变化分析

利用站点逐小时有效降水资料(降水量在 0.5 mm·h⁻¹以上),计算一天 24 个时次(世界时) 的平均降水量,以分析降水产品的降水量日变化特 征。为突出日变化的对比效果,将各降水产品每个 时次的降水量减去各自的日平均降水值,得到观测 与降水产品逐小时日变化趋势图(图 4),从图中可 以看出,江西省降水日变化呈现一定的变化规律,降 水高值区位于下午至傍晚(06—10 时次),低值区位 于夜间至凌晨(13—18 时次)。两套融合降水产品 具有与观测降水比较一致的变化规律,但在降水高 值期(06—10 时次)融合降水产品有一定的低估, 10 km 融合降水产品低估更大。两套卫星降水产品 的日变化较观测降水有较大的偏差,其日变化更为 明显,而实际降水日变化不明显,而且降水峰值和低 值出现时次均有一定偏差。

2.4 降水产品误差空间特征

针对每套降水产品,利用站点的逐小时观测降 水和格点降水序列,计算每个站点的相关系数(R)、 均方根误差(RMSE)和相对偏差(RE)等统计指标, 得到各降水产品的不同评估指标的站点空间分布图 (图 5~图 8)。从图中可以看出,融合降水产品的数 据质量明显要优于卫星降水产品,5 km 融合降水产 品的各项统计指标要基本优于 10 km 融合降水产品, 而 EMSIP 降水产品的各项统计指标要基本优于 CMORPH 降水产品。两套融合降水产品的统计指标 具有相似的空间分布特征,其相关系数大部分都在 0.7 以上,部分站点达到 0.9 以上,相关系数在 0.7 以下站点较少,均方根误差大部分在2.0 mm·h⁻¹

Fig. 4 Daily precipitation variation of observation and precipitation products

Fig. 5 Spatial distribution of 5 km merge precipitation product evaluation index

(a) R, (b) RMSE (unit: mm \cdot h⁻¹), (c) RE (unit: %)

图 6 同图 5,但为 10 km

Fig. 6 $\,$ Same as Fig. 5, but for 10 km $\,$

图 8 同图 5,但为 EMSIP 降水 Fig. 8 Same as Fig. 5, but for EMSIP

以下,相对偏差普遍在 10%以内,偏差较大的站点 主要分布在赣东北和赣南局部山区,而在赣北及赣 中部平原地区数据质量总体相对较好。两套卫星降 水产品的统计指标也具有相似的空间分布特征,其 相关系数大部分处于 0.1~0.3,CMORPH 降水产 品的相关系数在 0.1 以下站点要多于 EMSIP 降水 产品,而相关系数在 0.3 以上的站点要明显少于 EMSIP 降水产品,两套产品的 RMSE 基本都在 3.0 mm•h⁻¹ 以上,RE 在-15%以下。利用单站 的统计指标值,进一步计算了各降水产品的各个统 计指标的全省平均值(表 3)。从江西全省统计结果 可以看出,5 km 融合降水产品误差最小,其次为 10 km 融合降水产品和 EMSIP 降水产品,CMOR-PH 降水产品误差最大。

表 3 各降水产品的统计指标平均值 Table 3 Average statistical index of each precipitation product

		-	
降水产品	R	$\frac{RMSE}{/\mathrm{mm} \cdot \mathrm{h}^{-1}}$	RE/%
5 km 融合降水产品	0.81	2.12	-5.4
10 km 融合降水产品	0.78	2.30	-5.1
CMORPH 降水产品	0.19	4.24	-36.9
EMSIP 降水	0.24	4.04	-35.8

2.5 降水产品误差季节性变化

利用站点每个月逐小时观测降水和格点降水, 计算各个降水产品逐月的相关系数(R)、均方根误 差(RMSE)、偏差(BIAS)值(图9)。从图中可以看 出,各统计指标的月变化明显,其中融合降水产品的 变化幅度明显要小于卫星降水产品,说明融合降水 产品的数据质量要更加稳定可靠。各降水产品统计 指标的月变化趋势基本一致。在月尺度上,5 km 融 合降水产品的各项统计结果最优,其次为 10 km 融 合降水产品和 EMSIP 降水产品,CMORPH 降水产 品最差,这一结果与全年统计结果一致(表 2)。5 和 10 km 融合降水产品各月的相关系数均在 0.6 以 上,5 km 融合降水产品仅 8 月相关系数低于 0.7(4 月数据缺失),其余月份均在 0.75 以上,10 km 融合 将水产品在4和8月相关系数低于0.7,分别为0.60和

0.63,其余月份均在 0.7 以上。两套融合降水产品 RMSE 均在 4.0 mm • h⁻¹ 以下, BIAS 均在 $-1 \text{ mm} \cdot h^{-1}$ 以下。因各月降水不一,在4—8月强 降水时期(平均小时降水量在 $3.0 \text{ mm} \cdot h^{-1}$ 以上), 产品数据偏差较大, RMSE 均在 3.0 mm • h^{-1} 以 上,BIAS 均在-0.5 mm · h⁻¹以上;而在弱降水时 期,数据偏差明显降低,其中12、1和2月RMSE均 在 1 mm • h⁻¹ 以下, 11 月至翌年 3 月 BIAS 均在 $-0.3 \text{ mm} \cdot h^{-1}$ 以下。5 km 融合降水产品在强降 水过程(5-9月)各项统计指标要优于 10 km 融合 降水产品,而在弱降水时期(10月至翌年3月)两者 统计指标基本相当,说明 5 km 融合降水产品在强 降水过程的数据质量改善显著。与两套融合降水产 品相比, CMORPH 和 EMSIP 降水产品误差明显偏 大,各月的相关系数均在 0.3 以下,相关系数在 12 月至翌年3月和5-7月相关系数较高,均在0.2以 上,8和10月的相关系数为全年最低,均在0.1以 下。与融合降水产品一样,两套卫星降水产品数据 偏差也反映出在强降水时期较大,弱降水时期较小 的特征,5-8月 RMSE 均在5 mm • h⁻¹以上,BIAS $在-2.0 \text{ mm} \cdot h^{-1}$ 左右,而 12 月至翌年 2 月的 RMSE 在 2 mm • h^{-1} 以下, BIAS 在 -1.0 mm • h⁻¹以下。1月 RMSE 和 BIAS 为全年最低, EMSIP 和 CMORPH 的 RMSE 分别为 1.62 和 1.74 mm •

h⁻¹,BIAS 分别为一0.79 和一0.82 mm • h⁻¹。

2.6 不同降水量级的产品误差特征分析

根据降水强弱,将水文站小时观测降水量分为 4个等级,即0.5~1.0,1.0~2.5,2.5~8.0和8.0 mm • h⁻¹以上,分别对应小雨、中雨、大雨和暴雨四 个不同降水量级,分别计算各个降水产品在不同降 水量级下的 R、RMSE 和 RE(表 4)。从表中可以看 出,各降水产品的相关系数随着降水量级的增加而 增大,小雨和中雨的相关系数明显低于大雨和暴雨, 5 km 融合降水在暴雨量级相关系数达 0.59, 而 CMORPH 降水在小雨量级的相关系数仅为 0.04。 在同一降水量级下,5 km 融合降水产品的相关系数 最高,其次为10 km 融合降水产品和 EMSIP 降水 产品,而 CMORPH 降水产品最低。与降水的季节 性误差一样,不同降水量级的均方根误差和相对偏 差也表现出随着降水量的增加而增大趋势,在暴雨 量级四套降水产品的 RE 分别为 - 28.4%, -32.9%,-82.4% 和-80.8%。对于同一降水量 级,仅在小雨量级中表现为10 km 降水产品相对偏 差最低(RE=-0.6%),其余各统计指标均表现为 5 km 融合降水产品最优,其次为 10 km 融合降水产 品和 EMSIP 降水产品, 而 CMORPH 降水产品最 差。

降水等级 /mm•h ⁻¹	5 km 融合降水产品			10 km 融合降水产品		CMORPH 降水产品		EMSIP 降水产品				
	R	RMSE/ mm • h ⁻¹	RE / %	R	RMSE/ mm • h ⁻¹	RE / %	R	RMSE/ mm • h ⁻¹	RE / %	R	$\frac{RMSE}{\mathrm{mm} \cdot \mathrm{h}^{-1}}$	RE / %
≪1.0	0.27	0.81	-1.8	0.23	1.0	-0.6	0.04	1.75	-17.7	0.05	1.56	-16.7
1.0~2.5	0.26	1.26	-6.1	0.22	1.45	-6.2	0.05	2.47	-52.9	0.06	2.25	-50.9
2.5~8.0	0.43	2.37	-12.8	0.41	2.41	-15.0	0.07	4.60	-65.8	0.08	4.27	-65.4
>8.0	0.59	8.18	-28.4	0.54	8.74	-32.9	0.09	15.46	-82.4	0.15	15.0	-80.8

表 4 不同降水等级各降水产品的统计指标结果 Table 4 Statistical index of each precipitation product in different precipitation levels

2.7 不同站点距离的融合降水产品误差分析

5 km 融合降水产品和 10 km 融合降水产品使 用了江西省 2000 多个气象站点(包括国家站和区域 站)的观测降水资料,从融合产品技术看,在站点密 集的区域,融合降水产品质量主要依赖站点观测数 据,有地面降水观测的区域产品质量明显要高于缺 少地面观测降水的区域(沈艳等,2013;张蒙蒙和江 志红,2013)。由于水文站点和气象站点布设位置差 异,而且江西省水文站网密度要高于气象站点,在全 省范围存在气象站点未覆盖但有水文站点的区域。 按照水文站点与周边气象站点空间距离,并结合气 象站网密度,将 3476 个水文站点分为 4 个不同距离 等级,分别为 0~1 km,1~3 km,3~5 km 和 5 km 以上,空间距离越大说明该区域融合降水产品使用 的气象站观测降水资料少,反之站点降水资料多。 从统计结果可以看出(表 5),随着距离增大两套融 合降水产品的相关系数降低,而均方根误差和相对 偏差均增大,5 km 融合降水产品不论在气象站点覆 盖密集区域还是稀疏区域均较10 km融合降水产

	Table 5 Stat	tistical index of me	rge precipitation proc	luct in differ	ent station distance	S	
旺喜 /lrm		5 km 融合降水产品	⊐ И	10 km 融合降水产品			
叱芮/ KIII	R	$RMSE/ \text{ mm} \cdot \text{h}^-$	1 BIAS/ mm • h ⁻¹	R	$RMSE/ \text{ mm} \cdot \text{h}^-$	1 <i>BIAS</i> / mm • h ⁻¹	
<1	0.86	1.89	-0.35	0.82	2.13	-0.40	
$1 \sim 3$	0.82	2.14	-0.37	0.79	2.29	-0.41	
$3 \sim 5$	0.78	2.32	-0.39	0.75	2.47	-0.44	
≥ 5	0.76	2.42	-0.40	0.72	2.60	-0.44	

表 5 不同站点距离的融合降水产品统计指标结果 ale 5 Statistical index of merge precipitation product in different station of

品的数据质量有一定提高。

2.8 强降水过程分析

洗取 2015 年 6 月 17 日 12 时至 18 日 00 时(世 界时)江西省赣北强降水过程对四套降水产品进行 评估分析,验证各类降水产品在强降水过程的监测 能力。选取降水区域内南北位置上两个水文站点, 站号分别为 62551840(图 11 灰色框内)和 62438350 (图 11 黑色框内),从两个站点逐小时降水变化可以 看出(图 10),两套融合降水产品具有与水文站点观 测降水一致的变化趋势,降水峰值出现时次吻合一 致,而两套卫星降水产品与观测降水的变化趋势差 别较大,两个站点的降水变化可以反映出这次降水 过程自北向南变化过程,融合降水产品可以准确地 抓住这一变化特征。选取降水区域(28°~30°N、 114°~118.5°E),分别绘制水文站点、5 km 融合降 水产品、10 km 融合降水产品、CMORPH 降水产品 和 EMSIP 降水产品累积降水空间分布图(图 11), 从水文站点累积降水分布图可以看出,该降水过程 在东部山区、中部平原以及西部山区出现3个强降 水中心,在强降水中心的大部分站点的累积降水量 在 60 mm 以上,部分站点达 100 mm 以上,四套融 合降水产品均抓住了三个强降水中心,融合降水产 品的强降水中心位置与水文站观测降水非常相似, 而卫星产品的强降水中心位置出现较大的偏移,尤 其 CMORPH 降水产品偏移更大。与水文站点降水 相比,5和10km融合降水产品在降水空间结构和 降水量级上较为一致,其相关系数分别为 0.85 和 0.83, 而 CMORPH 和 EMPSIE 降水产品无论是降 水空间结构还是降水量级均有较大偏差,CMORPH 降水产品基本不能反映该降水过程空间结构特征, 其相关系数为 0.01。与 10 km 融合降水相比,5 km 融合降水产品具有更多的空间细节,降水分带更为 明显,强降水中心更加集中,而且整体降水量级也更 接近于观测值,其均方根误差和相对偏差均要低于

10 km 融合降水产品,从图中可以明显看出,在东部 山区降水中心 10 km 融合降水产品较 5 km 融合产 品偏差明显。

为进一步分析两套融合降水产品在强降水过程的差异,计算了不同降水强度下产品的均方根误差和相对偏差(图 12),从图中可以看出,20 mm・h⁻¹以下的降水两者的误差水平相当,但 20 mm・h⁻¹以上的降水5 km融合降水产品明显要优于 10 km融合降水产品,表现出降水强度越大,5 km降水产品的 RE 和 RMSE 的改进幅度越大,说明 5 km融合降水产品对强降水的把握更准确,体现了更高分辨率融合产品的优势。

3 结 论

本文提出了利用水文站观测降水资料对融合降 水资料进行独立性检验的思路和方法,以江西省区 域范围,在站点小时尺度上,对融合降水产品和卫星 降水产品进行评估分析,分别从降水的变化趋势、误

图 10 2015 年 6 月 17 日 12 时至 18 日 00 时 降水过程站点逐小时降水变化 (a)62551840,(b)62438350

Fig. 10 Hourly precipitation variation during the precipitation events at hydrological station (a) 62551840 and (b) 62438350 from 12:00 UTC 17 to 00:00 UTC 18 June 2015

图 11 2015 年 6 月 17 日 12 时至 18 日 00 时各降水产品与水文站点的过程累积降水量及散点对比图 (a)水文站点累积降水分布,(b)5 km 融合降水产品,(c)10 km 融合降水产品, (d)CMORPH 降水产品,(e)EMSIP 降水产品

Fig. 11 Accumulated precipitation of each precipitation product and hydrologic station and scatter diagram during precipitation events from 12:00 UTC 17 to 00:00 UTC 18 June 2015
(a) distribution of accumulated precipitation of hydrological stations, (b) 5 km merged precipitation, (c) 10 km merged precipitation, (d) CMORPH, (e) EMSIP

差的时空特征、不同降水量级、不同站网密度、强降 水过程等多方面对比评估了各类产品的数据质量, 研究主要结论如下:

(1)水文站点观测降水与气象站点观测降水具 有较好的一致性,两者的相关系数、均方根误差和相 对偏差分别为 0.88、1.96 mm • h⁻¹、6.3%。

(2)从区域平均上看,融合降水产品和卫星降水产品具有与观测降水比较一致的年内逐小时变化趋势,各类降水产品均能有效捕捉年内降水变化过程。两套融合降水产品具有与观测降水比较一致的日变化规律,而两套卫星降水产品日变化偏差明显。

(3) 与观测降水相比,我国自主研制的 EMSIP 降水产品的数据质量要优于 CMORPH 降水产品, 通过卫星反演降水与观测降水融合应用,产品数据 质量有了显著提高,而进一步融合了雷达估测降水 的数据质量改进更大。用 EMSIP 降水产品替换 CMORPH 产品进行融合应用势必会进一步改善融 合降水产品的数据质量。

(4)由于江西省年降水量丰富但季节性分布不均,降水产品误差季节性变化明显,各降水产品误差 具有相同的月变化趋势,融合降水产品的误差变化 幅度明显要小于卫星降水产品,各降水产品在冬季 的相关系数要稍优于夏季,夏季的数据偏差要大于 冬季,5 km 融合降水产品的数据质量在夏季(6—9 月)较 10 km 融合降水产品有明显提高。

(5)各类降水产品与观测降水的相关性随着降水量级增大而增加,融合降水产品对降水有一定低估,但同一降水量级下的低估均比卫星降水产品有大幅减少。5 km 融合降水产品在气象站点覆盖密 集区域和稀疏区域均较 10 km 融合降水产品的数 据质量有一定提高。

(6) 通过降水过程个例分析表明:卫星降水产 品在降水空间结构与降水量级上偏差较大,融合降 水产品能够准确反映降水的空间结构和中心位置, 5 km 融合降水产品具有更精细的空间结构,对强降 水的把握更加准确,更加适用于该地区降水过程、特 别是灾害性暴雨的监测服务。

参考文献

- 胡庆芳,杨大文,王银堂,等,2013. 赣江流域高分辨率卫星降水数据 的精度特征与时空变化规律[J]. 中国科学:技术科学,43(4): 447-459.
- 黄勇,陈生,冯妍,等.2015.中国大陆 TMPA 降水产品气候态的评估 [J].气象,41(3):353-363.
- 江志红,卢尧,丁裕国,2013. 基于时空结构指标的中国融合降水资料 质量评估[J]. 气象学报,71(5):891-900.
- 廖荣伟,张冬斌,沈艳,2015.6种卫星降水产品在中国区域的精度特征评估[J]. 气象,41(8):970-979.
- 潘旸,沈艳,宇婧婧,等,2012. 基于最优插值方法分析的中国区域地 面观测与卫星反演逐时降水融合试验[J]. 气象学报,70(6): 1381-1389.
- 潘旸,沈艳,宇婧婧,等,2015.基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验[J].气象学报,73(1):177-186.
- 任芝花,赵平,张强,等,2010.适用于全国自动站小时降水资料的质 量控制方法[J]. 气象,36(7):123-132.
- 沈艳,潘旸,宇婧婧,等,2013.中国区域小时降水量融合产品的质量 评估[J].大气科学学报,36(1):37-46.
- 徐宾,师春香,姜立鹏,等,2015.东亚多卫星集成降水业务系统[J]. 气象科技,43(6):1007-1014,1069.
- 宇婧婧,沈艳,潘旸,等,2013. 概率密度匹配法对中国区域卫星降水 资料的改进[J]. 应用气象学报,24(5):544-553.
- 宇婧婧,沈艳,潘旸,等,2015.中国区域逐日融合降水数据集与国际 降水产品的对比评估[J]. 气象学报,73(2):394-410.
- 张蒙蒙,江志红,2013. 我国高分辨率降水融合资料的适用性评估

[J]. 气候与环境研究,18(4):461-471.

- Duan Q Y, Ajami N K, Gao X G, et al, 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging[J]. Adv Water Resourc, 30(5):1371-1386.
- Ebert E E, Janowiak J E, Kidd C, 2010. Comparison of near-realtime precipitation estimates from satellite observations and numerical models[J]. Bull Amer Meteor Soc,88(1):47-64.
- Huffman G J, Adler R F, Arkin P, et al, 1997. The global precipitation climatology project (GPCP) combined precipitation dataset[J]. Bull Am Meteor Soc, 78(1):5-20.
- Huffman G J, Adler R F, Morrissey M M, et al, 2001. Global precipitation at one-degree daily resolution from multisatellite observations[J]. J Hydrometeor, 2(1):36-50.
- Huffman G J, Adler R F, Bolvin D T, et al, 2007. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scale [J]. J Hydrometeor,8(1):38-55.
- Joyce R J, Janowiak J E, Arkin P A, et al, 2004. CMORPH: a

method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. J Hydrometeor, 5(3):487-503.

- Kubota T, Ushio T, Shige S, et al, 2009. Verification of high-resolution satellite-based rainfall estimates around japan using a gauge-calibrated ground-radar dataset[J]. J Meteor Soc Jpn Ser I,87A(3):203-222.
- Shen Y, Xiong A Y, Wang Y, et al, 2010. Performance of high-resolution satellite precipitation products over China[J]. J Geophys Res: Atmos,115(D2):D02114.
- Shen Y, Zhao P, Pan Y, et al, 2014. A high spatiotemporal gaugesatellite merged precipitation analysis over China[J]. J Geophys Res: Atmos, 119(6): 3063-3075.
- Xie P P, Janowiak J E, Arkin P A, et al, 2003. GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates[J]. J Climate, 16(13): 2197-2214.