黄小燕,王小平,王劲松,等,2017.1970—2012 年夏半年中国大气 0℃层高度时空变化特征[J]. 气象,43(3):286-293.

1970-2012 年夏半年中国大气 0℃ 层高度 时空变化特征

黄小燕1 王小平1 王劲松1 冯建英1 王圣杰2 陈 뿇¹

1 中国气象局兰州干旱气象研究所,甘肃省干旱气候变化与减灾重点实验室, 中国气象局干旱气候变化与减灾重点开放实验室,兰州 730020 2 西北师范大学地理与环境科学学院,兰州 730070

提 要: 基于 1970—2012 年夏半年(4—9 月)84 个探空站和地面气象站资料,分析中国地区近 43 年大气 0℃层高度变化趋 势。结果表明:中国夏半年近 43 年来 0℃层高度在 2800~5200 m,平均值为 4442 m,呈南高北低的趋势,海拔 200 m 以上探 空站的 0℃层高度随海拔的上升呈显著上升趋势。夏半年 0℃层高度总体呈上升趋势,平均每年上升 2.23 m,通过了 0.01 的 显著性水平检验。6、7 和 9 月的上升趋势分别为 1.82、2.03 和 5.38 m • a⁻¹,且都通过了 0.05 的显著性水平检验。夏半年大 部分探空站 0℃层高度呈上升趋势,其中北方的上升趋势大部分通过了 0.05 的显著性水平检验,且上升幅度大于南方地区。 夏半年 84 个站点 0 ℃ 层高度与地面温度都呈正相关性,相关系数在 0.07~0.89,且北方地区相关系数较高。 关键词:中国,0℃层高度,平均气温,空间分布,气候变化

文献标志码:A

中图分类号: P467

DOI: 10.7519/j.issn. 1000-0526. 2017. 03.004

Spatio-Temporal Changes of 0°C Isotherm Height in China During Summer Half Year of 1970-2012

HUANG Xiaoyan¹ WANG Xiaoping¹ WANG Jinsong¹ FENG Jianving¹ WANG Shengjie² CHEN Fei¹

1 Institute of Arid Meteorology of CMA, Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Key Open Laboratory of Arid Climate Change and Reducing Disaster of CMA, Lanzhou 730020

2 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070

Abstract: Based on the meteorological data at 84 sounding and surface stations in China during summer half year from 1970 to 2012, the interannual variation of 0 °C isotherm height (H_0) is analyzed. The result indicates that the mean H_0 is between 2800 m and 5200 m in China during summer half year of the last 43 years, and the south H_0 is higher than the north H_0 , mainly controlled by latitude and altitude. The annual mean H_0 increases by 2. 23 m \cdot a⁻¹, which has passed the 0. 01 level of significance test. The change trend (p < 0.05) on a monthly basis is reported for 1.82, 2.03 and 5.38 m \cdot a⁻¹ in June, July and September, respectively, and all have passed the 0.05 level significance test. During 1970-2012, the H_0 at most sounding stations in China shows an increasing trend in summer half year. The increasing trend at northern stations is mostly over the 0.05 level, and the ascending range is generally larger than at the southern stations. The mean H_0 is positively correlated to mean air temperature in summer half year with correlation

^{*} 公益性行业(气象)科研专项(GYHY201506001-4)、国家自然科学基金项目(41175081、41201370 和 31300376)、干旱气象科学基金 (IAM201412)及甘肃省自然科学基金(1208RJYA025)共同资助 2015年12月9日收稿; 2016年11月14日收修定稿 第一作者:黄小燕,主要从事全球气候变化方面的研究工作.Email:xyhuang0529@sina.cn

287

coefficients between 0.07 and 0.89. The correlation coefficients for the north are higher than that for the south.

Key words: China, 0°C isotherm height, mean temperature, spatial distribution, climatic change

引 言

在对流层中,气温一般随高度的增加而减小,当 地面气温上升至0℃以上时,在高空中则会出现0℃ 等温面,此时0℃等温面所对应的海拔高度就是气 象学上说的大气0℃层高度。0℃层高度变化表征 高空冷气团和暖气团的环流变化,因此0℃层高度 是气象预报工作提前反映气温的一个有效指标,其 变化趋势总是提前于地面气温的变化趋势(宫恒瑞 等,2010)。在全球气候变化的背景下(Haeberli et al,2007;Solomon et al,2007),我国大部分地区气 候变化发生重大改变(Sun et al, 2010; Chu et al, 2010; Wang et al, 2011; 张强等, 2010; 王劲松等, 2012;张宇等,2013;肖子牛等,2016;李维京等, 2015;肖冰霜等,2016)。高空大气是气候系统的重 要组成部分,确定高空气温变化已成为气候变化研 究不可或缺的部分,近年来迅速成为气候变化研究 的热点之一(Chen et al, 2012)。0℃层高度是大气 探测的一个重要特性层,也是一种温度指标,反映了 高空大气中的温度特征,受地面观测场环境的影响 较小,研究其变化趋势能较好地反映当地气候变化 特征(Zhang et al, 2010; Free and Seidel, 2005; Herman et al, 2010).

早期研究多开展于国外(Bradley et al,2009; Diaz and Grahau,1996),近年来关于我国 0℃层高 度变化研究也逐渐丰富起来。Zhang and Guo (2011)利用中国的探空站点资料,从冰川、积雪与冻 土三个方面就 0℃层高度对中国西部冰冻圈的影响 作出分析,发现 0℃高度与冰冻圈主要指标表现出 较好的一致性。对西北地区的研究发现西北地区近 50年来夏季 0℃层高度呈先下降后上升趋势,且 0℃层高度与平均气温有较好的相关性(黄小燕等, 2011;Huang et al,2013)。对天山乌鲁木齐河源 1 号冰川开展的研究表明,冰川平衡线海拔与年均 0℃层高度存在较高的一致性(张广兴等,2009; Zhang et al,2012)。Wang et al(2014)发现平原区 监测到的大气 0℃层高度与邻近高海拔山区的地面 气温存在较好的相关性,这一认识对于实测资料稀 缺的高海拔地区气候重建乃至模拟参数的获取提供 了新思路。孙桂丽等(2010)探讨了气候变化与叶尔 羌河流域冰川湖突发洪水的关系,发现突发性洪水 发生与其前 8 d 的 0℃层高度显著上升密切相关。 Chen et al(2012)研究表明近 50 年来,天山北坡和 祁连山北坡夏季 0℃层高度上升趋势显著,天山南 坡上升趋势不明显。以上这些研究仅限于部分区 域,对整个中国的 0℃层高度变化研究甚少。本文 采取实测的探空资料,研究近 43 年中国 0℃层高度 的空间分布及其变化趋势,有助于更加深刻地认识 我国气候变化的形成,同时希望对未来我国生态环 境和国民经济建设等提供一种新的依据。

1 数据来源与研究方法

从 0℃层高度的计算方法来看,主要有 3 种:利 用定位探空资料进行插补计算、利用卫星遥感资料 反演以及利用全球再分析资料插补计算。其中第一 种方法是获取 0℃层高度的传统方法,也被广泛运 用于国内外研究之中(Zhang and Guo,2011),即利 用规定层位的资料,选出最接近 0℃层之上与之下 的层位进行线性插补,从而得到 0℃层高度所在位 置及其他参数(Bradley et al,2009)。本文也选用这 一方法进行计算。

本文所用气象资料由中国气象科学数据共享服 务网(http://cdc.nmic.cn)提供,选取区域内资料 连续性较好的84个探空站及对应地面气象站 1970—2012年夏半年(4—9月)的逐月资料(图1)。 通过观测发现,0℃层基本上介于925~400 hPa标 准气压层之间,因此选择925、850、700、500和400 hPa五个标准气候层逐月平均00和12时(世界协 调时)两时次的位势高度和温度作为基础数据。0℃ 层高度的计算步骤为:先分别判断出每月平均00和 12时两个时次0℃所在位置的上下两个标准气压 层,然后利用线性插值法计算出每个时次的0℃层 高度(假定温度在925~400 hPa垂直方向上均匀变 化),再取两个时次的平均值,最后得到0℃高度月 值。利用线性插值法计算0℃层高度的公式如下 (Wang,2008):

图 1 本研究使用的中国探空站分布图 Fig. 1 Spatial distribution of sounding stations in China used in this study

$$H_{i} = \frac{H_{j} - H_{k}}{T_{j} - T_{k}} (T_{i} - T_{k}) + H_{k}$$
(1)

式中,变量 H 代表高度(单位:m),T 代表温度(单位: \mathbb{C}),下标 i 为 0 \mathbb{C} 层的标识,j 和 k 分别为 0 \mathbb{C} 层上、下两个标准气压层的标识。

气象数据的均一性检验和订正是气候变化研究 要考虑的重要环节,目前国内常用的方法主要有标 准正态检验、二相回归等。近年,Wang et al(2007) 和 Wang(2008)在这些常规的检验统计量中引入了 惩罚因子,发展了惩罚最大 T 检验等方法。该方法 相较传统方法的优势在于其考虑了时间序列一阶滞 后自相关并改善了误报警率和检验能力的非均匀分 布问题。该方法已集成为软件系统 RHtest,对于我 国气候资料均一性检验与订正具有非常好的应用前 景(孙佳等,2014)。本文在计算 0℃层高度前,利用 惩罚最大 T 检验方法,以 NCEP/NCAR 再分析资 料为参照序列(Chen et al,2012)对 84 个探空站高 度和温度资料进行了均一化处理,从而达到消除或 减弱观测系统误差的目的。

气象要素的气候倾向率采用一次线性方程表示,即:

$$Y_i = a_0 + a_1 t_i \tag{2}$$

式中, Y_i 为气象要素, t_i 为时间(1970—2012 年), a_1 为线性趋势项(即为每年的气候倾向率)。

样条函数插值法(Spline)可以在空间插值时准 确地通过实测样点拟合出连续光滑的表面(Franre, 1982;李军龙等,2006),常用于气象要素插值中。本 文在 ArcGIS9.3 软件中通过 Spline 插值法绘制我 国夏季 0℃层高度的空间分布图,进行 0℃层高度的 空间差异分析。

2 0℃层高度平均值的空间分布

图 2 是近 43 年来中国夏半年平均 0℃层高度

的空间分布,可以看出全国 0℃层高度总体表现出 南高北低趋势,但也呈现出一定的地域差异。中国 北方有 13 个探空站 0℃层高度在 2800~3700 m,占 总站点的 15%,主要分布在东北和北疆地区,其中 黑龙江嫩江探空站 0℃层高度最低,为 2808 m;25% 的探空站 0℃层高度在 3700~4300 m,主要分布在 内蒙古西部、南疆地区、甘肃河西走廊及以西地区、 宁夏北部、陕西北部、山西南部、河北南部以及山东 北部地区;31%的站点 0℃层高度在 4300~4900 m 之间,主要分布在中国西藏西北部、青海、甘肃南部、 四川北部、陕西南部、湖北、河南、安徽、江苏、浙江等 地区;29%站 0℃层高度在 4900~5500 m,主要分布 在大约 30°N 以南的地区,其中西藏的拉萨最高,平 均 0℃层高度为 5464 m。

造成平均 0℃层空间分布的主要因素是纬度的 影响,此外与地形也有关系。因此计算夏半年及各 月平均 0℃高度与纬度和海拔高度的相关性分析可 得,各月平均 0℃层高度与纬度全显著的负相关性, 即 0℃层高度随着纬度的上升而降低,其中 9 月平 均 0℃层高度与纬度的负相关系数最高(-0.94), 且以上相关系数都通过了 0.01 的显著性水平检验。 平均 0℃层高度与所有海拔高度呈正相关性,但相 关系数不高,也没有通过显著性水平检验。各月平 均 0℃层高度与海拔大于 200 m 的相关性较好,都 通过了 0.01 的显著性水平检验,其中 4 月相关系数 达 0.53。说明大于 200 m 以下海拔对 0℃层高度影 响不大,200 m 以上 0℃层高度随着海拔的上升呈 显著的上升趋势。

深入分析各月平均0℃高度变化倾向率与纬度 的关系(表 1),将所有站点纳入考虑时,在 5—9 月 各月的相关系数均较好,且都通过了 0.01 的显著性 水平检验,其中6月相关系数最高,达0.84。不同月

份0℃层高度变化趋势与纬度的相关系数有差异。 4月20°~30°N有25个站,0℃层高度变化趋势与 纬度的相关系数达到一0.54, 月通过 0.01 的显著性 水平检验,40°~50°N有23个站,相关系数达到一 0.50, 目通过 0.05 的显著性水平检验: 5 月 20°~ 30°N 相关系数为一0.40,40°~50°N 相关系数为 0.51, 目都通过 0.05 的显著性水平检验: 6 月 30°~ 40°N的36站两者相关系数达0.79,且通过0.01的 显著性水平检验,40°~50°N相关系数达 0.48,且通 过 0.05 的显著性水平检验;7 月 30°~40°N 相关系 数达 0.48, 且通过 0.01 的显著性水平检验, 但 40° ~50°N 两者呈负相关性,相关系数为一0.43,目通 过 0.05 的显著性水平检验;8 月各纬度带 0℃层高 度变化趋势与纬度的相关系数都没有通过显著性水 平检验;9月30°~40°N和40°~50°N两个纬度带 相关系数都呈显著的正相关性,且 40°~50°N 相关 系数最高,达 0.84。从以上分析可以看出纬度对 0℃层高度的变化有一定的影响。

0℃层高度变化趋势与海拔高度的关系也不容 忽视(表 2),从表 2 可以看出中国夏半年 0℃层高度 变化趋势与海拔相关系数为 0.22,且通过 0.05 的 显著性检验,但海拔>200 m 的站点呈负相关性,且 并没有通过显著性检验。不同月份℃层高度变化趋 势与海拔的相关系数也有所差异:4 月海拔>400 m 的站点呈负相关性,且随海拔的上升相关性也增大, 都通过 0.05 的显著性检验;6 月海拔>600 m 的站 点两者相关系数为-0.37,且通过 0.05 的显著性水 平检验;7 月海拔>0 m 的 84 站两者相关系数为 0.39,且通过 0.01 的显著性水平检验;8 月海拔> 0 m 的 84 站两者相关系数为 0.24,且通过 0.05 的 显著性水平检验。

表 1 1970—2012 年中国夏半年及各月 0℃ 层高度倾向率与纬度的相关系数 Table 1 Correlation coefficients between linear trends of 0℃ isotherm height and latitude in China during summer half year and different months of 1970-2012

纬度	站点数	4月	5 月	6月	7 月	8月	9月	夏半年
$20^\circ \sim 30^\circ N$	25	-0.54**	-0.40*	-0.20	0.20	0.20	-0.07	-0.27
$30^\circ \sim 40^\circ N$	36	0.33	0.06	0.79 **	0.48**	-0.01	0.46**	0.51**
$40^\circ \sim 50^\circ N$	23	-0.50*	0.51*	0.48*	-0.43*	0.17	0.84**	0.15
$20^\circ \sim 50^\circ N$	84	0.04	0.34 **	0.84 **	0.53**	0.37**	0.67**	0.68**

注:*、**分别表示通过 0.05、0.01 的显著性水平。

Note: * , ** have passed the 0.05,0.01 levels of significance test respectively.

表 2 同表 1,但为与海拔高度的相关系数

Tab	le	2	Same	as	Fig.	1,	but	for	the	corre	lation	with	altitud	le
-----	----	---	------	----	------	----	-----	-----	-----	-------	--------	------	---------	----

海拔/m	站点数	4 月	5月	6月	7 月	8月	9月	夏半年
>0	84	0.19	0.03	0.21	0.39**	0.24*	-0.08	0.22*
>100	64	0.12	-0.03	0.11	0.30*	0.07	-0.08	0.12
>200	52	0.10	-0.09	-0.10	0.16	-0.08	-0.16	-0.03
>400	43	-0.30*	-0.06	-0.31*	-0.07	0.03	-0.18	-0.21
>600	40	-0.32*	-0.03	-0.37*	-0.15	0.04	-0.24	-0.26
>800	35	-0.37*	0.05	-0.35*	-0.16	0.12	-0.20	-0.23
>1000	30	-0.38*	-0.04	-0.26	-0.06	0.29	-0.21	-0.18

注:*、**分别表示通过 0.05、0.01 的显著性水平。

Note: * , ** have passed the 0.05,0.01 levels of significance test respectively.

3 0℃层高度变化特征

3.1 年际变化趋势

图 3 是 1970-2012 年夏半年及不同月份 0℃层

高度年际变化趋势。由图 3 可见近 43 年来,中国夏 半年 0℃层高度呈上升趋势,平均每年上升2.23 m, 且通过 0.01 的显著性水平检验。4—9 月 0℃层高 度总体均呈上升趋势,但通过显著性检验的月份较 少,6 和 7 月平均每年分别上升 1.82 和 2.03 m, 通过0.05的显著性水平检验,9月上升幅度最大,

平均每年上升 5.38 m,且通过 0.01 的显著性水平 检验。从 10 年滑动平均可以看出 4 月 0℃层高度 在 20 世纪 70 年代中期以前呈上升趋势,70 年代中 期至 80 年代末呈下降趋势,90 年代初至 2000 年代 初呈上升趋势,2002 年以后又呈下降趋势,即经历 了"上升一下降一上升一下降"4 个阶段;5 月 2003 年以前变化趋势较平稳,2003 年以后呈明显上升趋 势;6 月 80 年代末期以前上升趋势比较显著,之后 呈波动上升趋势;7 月 90 年代初期以前呈弱波动上 升趋势,之后呈先下降后上升趋势;8 月 70 年代至 2000 年代初期变化趋势平稳,之后呈明显上升趋 势;9 月 70 年代以来呈显著上升趋势。

3.2 倾向率的空间变化

图 4 是中国夏半年及各月 1970 年来 0℃层高 度变化趋势的空间变化,可以看出在全球变暖的大 背景趋势下,中国夏半年大部分地区 0℃层高度呈 上升趋势,变化趋势在一0.8~4.4 m・a⁻¹,且北方 大部分地区上升趋势大于南方地区,并通过0.05 或 者 0.01 的显著性水平检验。4—9 月各月变化趋势 也存在区域差异:4 月绝大部分探空站呈上升趋势, 变化趋势在一5.2~6.0 m・a⁻¹,只有东北黑龙江和 吉林以及长江三角洲附近的少部分探空站呈下降趋 势,其中延吉站倾向率为一5.2 m・a⁻¹,但只有云南 腾冲和海南海口 2 站上升趋势通过了 0.05 的显著 性水平检验。5和8月除长江三角洲附近少部分探 空站外大部分地区 0℃层高度呈上升趋势,但变化 幅度较小,在-1.3~3.6 m·a⁻¹,且基本上都没有 通过显著性水平检验,其中黑龙江嫩江探空站5和 8月的上升趋势分别为 3.6 和 3.4 m • a⁻¹。6月变 化趋势在 $-2.4 \sim 5.6 \text{ m} \cdot \text{a}^{-1}$,表现出明显的南北差 异,大约以长江为分界线,长江以北的地区呈明显上 升趋势,且大部上升趋势都通过了 0.05 或 0.01 的 显著性水平检验,其中甘肃酒泉探空站上升趋势最 大,为5.6 m·a⁻¹;长江以南大部分地区呈下降趋 势,且没有通过显著性水平检验,下降幅度小于长江 以北上升幅度。7月大部分探空站呈上升趋势,变 化趋势在 $-1.7\sim 6.6 \text{ m} \cdot a^{-1}$,以中国北方的上升幅 度较大,其中内蒙古额济纳旗探空站上升幅度最大, 达 6.6 m • a⁻¹,且通过 0.05 的显著性水平检验。9 月所有探空站均呈增加趋势,北方的增加幅度明显 大于南方地区,且北方大部分上升趋势都通过 0.05 或 0.01 的显著性水平检验。

4 0℃层高度与地面气温的关系

为了研究中国地面气温变化对中国夏半年 0℃ 层高度变化的响应。选取探空站对应的地面气象站 1970—2012 年 4—9 月平均气温,统计分析夏半年 及各月0℃层高度和对应地面气温的一元回归系数

(图5)。

由图 5 可以看出夏半年 84 个站点 0 ℃层高度 与地面温度都呈正相关性,相关系数在 0.07 ~ 0.89,且中国北方的相关系数大于南方地区。4—9 月各月两者相关系数也存在明显的区域差异:4 月 全国 0 ℃层高度与地面温度呈正相关性,东南沿海 地区相关系数较小在 0 ~ 0.6,东北、西北及西南地 区相关系数较大在 0.6~0.96,且有 15 个站点相关 系数>0.90,以内蒙古二连浩特站相关系数最大,为 0.96。5 月 84 气象站中只有 6 个站两者呈负相关 性,即 93%的气象站 0 ℃层高度与地面温度呈正相 关性。相关系数也是东南沿海低,而东北、西北和西 南地区较高,其中新疆阿勒泰相关系数为 0.96。6 月长江中下游一带有少部分气象站呈负相关性,其 他绝大部分气象站都呈正相关性。相关系数表现出 南北差异,即北方的相关系数高于南方地区,其中内 蒙古锡林浩特站相关系数为 0.94。7 月 84 个气象 站 0℃层高度与地面温度都呈正相关性,东北、西北 和西南大部分气象站相关系数较高,基本都在 0.6 以上。8 和 9 月全国 84 个气象站 0℃层高度与地面 温度都呈正相关性,且整体上看 9 月的相关系数略 高于 8 月。

5 结论与讨论

(1)1970年以来中国夏半年年平均0℃层高度在2800~5200m,表现出南高北低的趋势,但也呈现出一定的地域差异。造成这种空间分布的主要因素是纬度的影响,此外与地形也有关系,即大于200m以下海拔对0℃层高度影响不大,200m以上0℃层高度随海拔的上升呈显著上升趋势。

(2)从时间变化来看,1970年以来中国夏半年

象

Fig. 5 Same as Fig. 3, but for spatial distribution of regression coefficients $% \left({{{\rm{S}}_{{\rm{B}}}} \right)$

between 0° C isotherm height and mean surface temperature

年平均 0℃ 层高度呈上升趋势,平均每年上升 1.95 m,且通过 0.01 的显著性水平检验。4—9 月 各月 0℃层高度也均呈上升趋势,但只有 6、7 和 9 月的上升趋势通过了 0.05 或 0.01 的显著性水平检 验。

(3) 从空间变化来看,夏半年大部分探空站 0℃ 层高度呈上升趋势,北方的上升趋势大部分通过了 0.05 或 0.01 的显著性水平检验,且上升幅度大于 南方地区。4—9月各月上升幅度存在区域差异,比 较明显的是 9月所有站都呈增加趋势,且北方的增 加幅度显著大于南方地区。

(4)地面气温变化与0℃层高度变化也有一定的关系,夏半年84个站点0℃层高度与地面温度都呈正相关性,相关系数在0.07~0.89,且北方地区

相关系数较高。不同的月份也有差异但整体上都是 北方相关系数大于南方地区。

本文分析了中国 1970—2012 年夏半年 0℃层 高度时空变化特征。但明显不足的是仅讨论了 0℃ 层高度和纬度、海拔以及地面平均气温的关系,0℃ 层高度变化的其他影响要素还有待进一步深入讨 论。

参考文献

- 宫恒瑞,石玉,冯志敏,2010.春季融雪期0℃层高度与乌鲁木齐河径 流量的关系[J].干旱区研究,27(1):69-74.
- 黄小燕,张明军,王圣杰,等,2011.中国西北地区近50年夏季0℃层 高度及气温时空变化特征[J].地理学报,66(9):1191-1199.
- 李军龙,张剑,张丛,等,2006. 气象要素空间插值方法的比较分析 [J]. 草业科学,23(8):6-11.

- 李维京,左金清,宋艳玲,等,2015.气候变暖背景下我国南方旱涝灾 害时空格局变化[J].气象,41(3):261-271.
- 孙桂丽,陈亚宁,李卫红,等,2010.新疆叶尔羌河冰川湖突发洪水对 气候变化的响应[J].冰川冻土,32(3):580-586.
- 孙佳,李永华,李庆祥,等,2014.重庆气温资料均一性检验和订正的 初步分析[J].西南师范大学学报:自然科学版,39(9):173-179.
- 王劲松,李耀辉,王润元,等,2012. 我国气象干旱研究进展评述[J]. 干旱气象,30(4);497-508.
- 肖冰霜,马玉霞,赵天保,等,2016.基于均一化资料的中国大陆极端 温度的长期趋势[J]. 气象,42(3):339-346.
- 肖子牛,石文静,段玮,2016.云南夏季降水量在 21 世纪初的突变减 少及原因分析[J]. 气象,42(3):261-270.
- 张广兴,孙淑芳,赵玲,等,2009.天山乌鲁木齐河源1号冰川对夏季 0℃层高度变化的响应[J].冰川冻土,31(6):1057-1062.
- 张强,张存杰,白虎志,等,2010.西北地区气候变化新动态及对干旱 环境的影响——总体暖干化,局部出现暖湿迹象[J].干旱气象, 28(1):1-7.
- 张宇,李耀辉,魏林波,等,2013.南亚高压与西太平洋副热带高压对 我国西南地区夏季降水异常的影响[J].干旱气象,31(3):464-470.
- Bradley R S, Keimig F T, Diaz H F, et al, 2009. Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions[J]. Geophys Res Lett, 36, L17701. DOI: 10.1029/2009GL037712.
- Chen Z S, Chen Y N, Li W H, 2012. Response of runoff to change of atmospheric 0°C level height in summer in arid region of Northwest China[J]. Sci China: Earth Sci, 55:1533-1544.
- Chu Jianting, Xia Jun, Xu Chongyu, et al, 2010. Spatial and temporal variability of daily precipitation in Haihe River basin, 1958-2007[J]. J Geograph Sci, 20(2): 248-260.
- Diaz H F, Graham N E, 1996. Recent changes in tropical freezing heights and the role of sea surface temperature [J]. Nature, 383:152-155.
- Franre R, 1982. Smooth interpolation of scattered path by local thin plate[J]. Comp Maths with Appls Great Britain, 8(4):237-281.
- Free M, Seidel D J, 2005. Causes of differing temperature trends in radiosonde upper air data sets[J]. J Geophys Res Atmos, 110:

D07101. DOI: 10.1029/2004JD005481.

- Haeberli W, Hoelzle M, Paul F, et al, 2007. Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps[J]. Annals of Glaciology, 46(1):150-160.
- Herman B M, Brunke M A, Pielke R A, et al, 2010. Satellite global and hemispheric lower tropospheric temperature annual temperature cycle[J]. Remote Sensing, 2:2561-2570.
- Huang Xiaoyan, Wang Shengjie, Wang Jinsong, et al, 2013. Spatio-temporal changes in free-air freezing level heights in Northwest China, 1960-2012[J]. Quatern Int, 313-314:130-136.
- Solomon S, Qin D H, Manning M, et al, 2007. Climate Change 2007: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 1-996.
- Sun Huilan, Chen Yaning, Li Weihong et al, 2010. Variation and abrupt change of climate in Ili River Basin, Xinjiang[J]. J Geograph Sci, 20(5):652-666.
- Wang Shengjie, Zhang Mingjun, Li Zhongqin, et al, 2011. Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960[J]. J Geograph Sci, 21(2):263-273.
- Wang Shengjie, Zhang Mingjun, Pepin N C, et al, 2014. Recent changes in freezing level heights in High Asia and their impact on glacier changes[J]. J Geophys Res: Atmos, 119(4):1753-1765.
- Wang X L, 2008. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test[J]. J Appl Meteor Climat, 47(9):2423-2444.
- Wang X L, Wen Q H, Wu Y, 2007. Penalized maximal t test for detecting undocumented mean change in climate date series[J]. J Appl Meteor Climat, 46(6): 916-931.
- Zhang Guangxing, Sun Shufang, Ma Yufen, et al, 2010. The response of annual runoff to the height change of the summertime 0°C level over Xinjiang[J]. J Geograph Sci, 20(6):833-847.
- Zhang Mingjun, Wang Shengjie, Li Zhongqin, et al, 2012. Glacier area shrinkage in China and its climatic background during the past half century[J]. J Geograph Sci, 22(1):15-28.
- Zhang Yinsheng, Guo Y, 2011. Variability of atmospheric freezinglevel height and its impact on the cryosphere in China[J]. Annals of Glaciology, 52(58):81-88.