向纯怡,吴立广,田伟,等.2016.多平台热带气旋表面风场资料在台风结构分析中的应用.气象,42(11):1315-1324.

多平台热带气旋表面风场资料在台风结构 分析中的应用^{*}

向纯怡^{1,2} 吴立广¹ 田 伟¹ 刘青元¹

1 南京信息工程大学气象灾害省部共建教育部重点实验室,南京 210044

2 国家气象中心,北京 100081

提要:本文利用 2007—2014 年美国海洋和大气管理局的多平台热带气旋表面风场资料(Multiplatform Tropical Cyclone Surface Wind Analysis, MTCSWA)对西北太平洋和南海区域内共 210 个编号热带气旋进行了统计分析。结果表明, MTC-SWA 资料中的最大风速(V_{MAX})相较最佳路径强度偏弱 10%~15%, 对于较弱的台风存在一定的高估。最大风速半径(R_{MAX})与台风强度之间存在一定的线性关系且在不同区域具有不同的分布特征。由于 R_{MAX}与台风的强度有关, 对于强度达到强热带风暴以上级别的各个海区内台风其结构差异不明显, 而对于强度较弱的台风(强热带风暴以下)其最大风速半径具有一定的区域分布差异。对台风各级风圈半径的分析结果显示:7级风圈半径通常是东部大于西部, 而 10 和 12 级风区半径没有这种现象。利用 MTCSWA 的内核区高分辨率对 1215 号超强台风布拉万分析发现, 在其内外眼墙置换过程中, 内外眼墙之间的距离(R₂ - R₁)逐渐减小, 内眼墙的风速(V₁)逐渐减小, 而外眼墙的风速(V₂)逐渐增加, 且在此过程中伴随有台风强度的短暂波动。最后结合 MTCSWA 资料和数值预报讨论了一种台风结构参数的客观估计方法, 其检验结果表明该方法对 R_{MAX}和各级风圈半径均有一定的估计能力。

关键词: MTCSWA,最大风速半径,结构特征,眼墙置换,客观估计 中图分类号: P444 **文献标志码:** A **doi**: 10.7519/j.issn.1000-0526.2016.11.003

liestions of MTCSWA Data to the Characteristic Analysis of

Applications of MTCSWA Data to the Characteristic Analysis of Tropical Cyclone Structure

XIANG Chunyi^{1,2} WU Liguang¹ TIAN Wei¹ LIU Qingyuan¹

1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjiang University of Information Science and Technology, Nanjing 210044

2 National Meteorological Centre, Beijing 100081

Abstract: Based on Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) data from NOAA/NES-DIS during 2007-2014, statistic characteristics of 210 named TCs' structures in the North Western Pacific and the South China Sea are analyzed. Compared with the maximum wind speed (V_{MAX}) from CMA-best tracks, the V_{MAX} from MTCSWA is 10%-15% smaller on average. Overestimation, especially for weaker TCs, is observed. Statistical relationship is provided between radius of maximum wind speed (R_{MAX}) and V_{MAX} , and the density distributions of R_{MAX} in different regions are calculated. For those TCs stronger than STS, the density distributions show no regional differences while the less intensified groups show obvious structure distributions in the North Western Pacific, the Northern and Eastern China Seas and the South China Sea. Especially, in the South China Sea, the distribution difference gets much broadly from 50 to 100 km. By analyzing the distributions of four quadrants, the eastern parts of R_{34} is comparably larger than that in western parts, but there is no such a character in both R_{50} and

 ^{*} 国家重点基础研究发展计划(973 计划)(2013CB430103 和 2015CB452803)及国家气象中心预报员专项(Y201405)共同资助
 2016 年 4 月 15 日收稿; 2016 年 8 月 29 日收修定稿
 第一作者:向纯怡,主要从事台风预报工作. Email: xiangcy@cma.gov. cn

R₆₅. From the case study of Super-TY Bolavan (1215), an eye-wall replacement and inner-core structure change can be observed. During that ERC period, the distance between inner and outer eye-wall (R₂-R₁) is reduced along with V₁'s decreasing and V₂'s increasing. Meanwhile the original intensity shows temporary fluctuation.
Key words: Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA), R_{MAX}, structure characteristics, eye-wall replacement, objective estimation

引 言

台风是影响我国的重要灾害性天气系统之一。 台风强度是由其中心附近最大风速(V_{MAX})和海平 面最低气压(MSLP)表示,再通过蒲氏风力等级划 分为热带低压(TD)、热带风暴(TS)、强热带风暴 (STS)、台风(TY)、强台风(STY)和超强台风(Super TY)。实际上多数台风都是非对称结构,即使 强度相同的台风也会出现不同的结构特征。因此, 包括最大风速半径(R_{MAX}),7级(R₃₄)、10级(R₅₀)和 12级(R₆₅)风速半径在内的台风风圈结构特征,决 定一个台风潜在破坏力和可能影响范围。许映龙等 (2010)指出目前我国对于台风风雨短临预报业务尚 未建立,风雨预报特别是强风范围和落区预报水平 远不能满足防台抗台的需求。提高台风预报的准确 性不仅应该包括其路径和强度,也应包括其可能的 风雨影响范围、持续时间以及台风内部中尺度过程 造成的强风雨局地性分布等,为更准确地做出台风 风雨预报以及精细化灾害防御提供可能。

如何准确分析和预报台风风场结构是目前国内 外台风业务预报领域的难点之一。Knaff 等(2000) 认为台风的风场结构是估计其潜在威胁的重要因 素,对于登陆台风而言由于海陆分布和地形差异的 影响,更容易造成台风三维结构的不对称分布。 Mueller 等(2006)研究指出相同强度的台风由于环 境风场的垂直分布差异以及台风自身的移动方向差 异,可能存在差别很大的风场结构。雷小途等 (2005)利用热带气旋风场分布的经验模型估计其8 级大风圈半径。方翔等(2008)和王新等(2009)利用 AMSU-B微波资料分析了热带气旋不同高度的水 汽分布特征和水汽输送。Kelvin 等(2011)运用 QuikSCAT 反演的风场资料对比分析了西北太平 洋和大西洋区域内热带气旋的大风圈半径分布特 征。Delia 等(2011)也用了 QuikSCAT 反演的风场 资料计算了可以反映热带气旋结构紧密程度的参 数。潘旸等(2011)利用地面降水分析产品和卫星反 演降水产品分别分析了台风莫拉克登陆过程中的降

水空间结构及其演变特征。赵放等(2012)利用多普 勒雷达组网资料和四维变分风场反演技术研究了登 陆台风的结构演变过程。严卫等(2013)利用 CloudSat 卫星反演的热带气旋过境数据资料分析 了大西洋飓风的云、降水和热力结构在不同演变阶 段内的结构分布特征。钱燕珍等(2013)利用红外云 顶亮温资料和雷达观测资料研究了强台风海葵登陆 前后的结构和强度变化。张增海等(2014)用 MetOP-A 极轨卫星搭载的 ASCAT 散射计反演的 风场资料与沿岸浮标站观测进行了对比分析。Wu 等(2015)利用观测资料和卫星反演的风场资料研究 发现台风强度和结构之间存在非线性相关关系。柴 乾明等(2016)利用 CloudSat 和 TRMM 卫星数据 分析了热带气旋眼壁及螺旋云带中的云宏微观结构 特征。Knaff 等(2016)运用红外卫星资料和全球数 值模式发展了利用热带气旋的位置、强度和移动路 径估计台风风场结构的客观方法。

由于缺少常规观测,远海台风的监测主要还是 依赖于卫星资料。20世纪70年代开始,美国国家 海洋和大气管理局(以下简称 NOAA)的 Dvorak (1975;1984)利用可见光和红外卫星图像分析技术 和有限的飞机观测资料,开展了利用卫星红外和可 见光图像的台风分析技术,简称德沃夏克(Dvorak) 技术。随着微波遥感资料的广泛应用, Demuth 等 (2004)利用 AMSU 微波资料建立台风风圈半径的 统计方法。Mueller 等(2006)利用多年的飞机观测 资料和红外卫星资料对大西洋和东太平洋的台风风 场结构进行了客观估计。Knaff等(2007a;2007b) 在此基础上改进了红外反演风场算法,发展了多源 卫星资料融合技术,将红外风场(IRWD)、云导风 (CDFT)、洋面风(QuikSCAT、ASCAT)等资料通过 最小代价法融合成台风表面风场。该算法逐渐发展 成为多平台热带气旋表面风场资料(Multiplatform Tropical Cyclone Surface Wind Analysis, MTC-SWA)。目前该技术已经被应用到全球各个海域台 风的客观风场反演中(Knaff et al, 2011)。在北大 西洋地区已使用了热带气旋风场观测再分析资料 H* wind (Powell et al, 1998)对 MTCSWA 资料进

行了验证和评估,两者平均误差在距离台风中心 50 km 范围以外小于 5 m • s⁻¹,在距离台风中心 50 km 范围以外偏离程度较大,超过 5 m • s⁻¹ (Knaff et al, 2010)。田伟等(2016)利用卫星资料 和近海浮标资料对该套资料在中国东部海域的效果 进行了评估,结果表明 MTCSWA 资料所表现的台 风非对称结构特征与卫星观测一致。

目前,在西北太平洋及南海地区仍然缺少可靠 的台风结构观测资料,现有资料的时空分辨率并不 能满足实际台风结构分析和预报的需要。MTC-SWA资料集的引入可弥补台风结构观测资料的不 足,为定量化分析台风结构特征提供了可能。

1 资料及方法

1.1 MTCSWA 资料说明

本文中用到的西北太平洋和南海区域的海表面 风场资料 MTCSWA 资料来源于 NOAA/MESDI-S^①,可通过 FTP 准实时下载(滞后 1~2 h)。该资 料覆盖了台风中心周围直径为 15°的区域,水平分 辨率达 0.1°,时间间隔为 6 h,即世界时 00,06,12 和 18 时。风场资料包括两层:10 m 高度和飞行高度 (即飞机观测资料可达到的一般高度,约 600~ 700 hPa)。

1.2 MTCSWA 资料融合技术

MTCSWA 资料主要包括了以下四类卫星反演 风场资料(表 1)。

表 1 MTCSWA 中使用的不同卫星资料的 传感器类型和观测高度

Table 1	Satellite	data	used	in	MTCSWA
---------	-----------	------	------	----	--------

数据类型	传感器类型	资料高度
微波 AMSU	NOAA-15,16,18	$850\!\sim\!700~\mathrm{hPa}$
云导风 CDFT	GOES 静止卫星	600 hPa
QuikSCAT	K波段雷达(13.4 GHz)	10 m
A-SCAT	C波段雷达(5.22 GHz)	10 m
红外风场 IRWD	GOES 静止卫星	$700\!\sim\!850~\mathrm{hPa}$

其中,微波(AMSU)是通过平衡方程利用温度 反演得到风场,在台风内核区的准确度较低,因而适 合对环境气流进行估计;云导风(CDFT)在高云覆 盖时资料空缺率高,通常只能反映台风外围雨带结 构;QuikSCAT和A-SCAT资料是利用观测海表粗 糙度来反映表面风场,但其估计准确度在强降水条

①http://www.ssd.noaa.gov/PS/TROP/mtcswa.html

件下有所降低。以上三类资料主要用于反映外核区 和外围螺旋雨带的风场结构,并不能反映台风内核 区风场结构特征。红外风场(IRWD)是利用 Mueller 等(2006)基于飞机观测资料和红外图像建立统 计关系,通过计算最大风速半径(R_{MAX})和尺度参数 (V₁₈₂)构建出 Rankine 涡旋模型,并得出台风的对 称风场,最后叠加上台风自身的运动矢量得到台风 内核区风场。上述四类观测资料由于不同来源的卫 星风场资料观测起始时间、时间间隔和空间分辨率 均不一致,在风场资料融合时采用时间权重函数和 最优插值方法以达到数据时空的统一。另一方面, 不同类型卫星风场资料高度也不一致,其中 Quik-SCAT 和 ASCAT 风场资料均是 10 m 高度上的风 场资料,而其他三种卫星风场资料在近飞行高度,其 中红外风场(IRWD)的算法中直接用到了飞机观测 资料作拟合真值,因此反演出来的风场并不是台风 底层风速大小,而是与飞行高度相当约 600~700 hPa高度上的风场。Franklin 等(2003)利用 GPS 下投式探空研究了大西洋飓风的风场结构特征,提 出了将飞行高度(约 700 hPa)转换到 10 m 风场的 转换因子,利用该转换因子将飞行高度的资料转订 正到 10 m 高度,同时将风场向低压区旋转 20°以增 加低层的涡度。

1.3 MTCSWA 资料适用性分析

首先利用收集整理的 2007—2014 年的 MTC-SWA 资料和用中国气象局整编的最佳路径资料 (Ying et al, 2014),对该资料在西北太平洋和南海 区域内的资料可靠性和估计误差进行初步分析。

为检验该资料对热带气旋强度的估计效果,用最 佳路径资料中的最大风速(S_{MAX})与 MTCSWA 资料 的最大风速(V_{MAX})结果进行了对比分析(图 1)。总 体上看,MTCSWA 资料计算得到的最大风速相较于 最佳路径数据中的强度结果偏弱,两者的平均相对误 差(MREs)为 12.5%。对于强台风及以上级别的热 带气旋,两套资料的一致性较好,说明对于强度越强 的台风 MTCSWA 卫星资料可以更好地反映其强度 特征,而较弱的热带气旋(STS 级别以下)该资料相对 于最佳路径中的强度存在一定的高估。

进一步检验该套资料对西北太平洋和南海台风的估计效果,利用2013—2014年中国气象局地面自

图 1 最佳路径资料的最大风速(S_{MAX})与 与 MTCSWA 最大风速(V_{MAX})的散点分布图 (粗线为一元线性拟合线,细线为多元线性拟合线) Fig. 1 Scatter plot of CMA S_{MAX} from best track and V_{MAX} from MTCSWA (Thick line is one element linear fitting; thin line is multi-element linear fitting)

动站逐小时站点观测资料的风速、风向进行了定量 检验。首先提取了我国沿海岸基气象站、海岛自动 站、海洋气象浮标、石油平台站,同时剔除了风速观 测的不合理值。再根据站点位置距离台风中心的相 对距离将自动站观测资料转换到以台风中心为原 点,相对距离为半径的极坐标系中。同时提取对应 时刻的 MTCSWA 资料中 10 m 风场中相对位置上 的风向和风速进行比较,结果如图 2 所示。MTC-SWA 的风速估计(图 2a)与观测样本的线性拟合方 程为: MTCSWA = 9.38 + 0.45OBS, 标准残差为 3.58, 拟合曲线(虚线)偏向理想直线(实线)的右侧, 说明对比地面观测风速 MTCSWA 存在整体低估, 且对于风速值越大的热带气旋估计误差越大。整体 而言,平均绝对误差(MAEs)为 4.6 m • s⁻¹与 Knaff 等(2014)之前对大西洋飓风的检验结果相当。图 2b 说明两者在风向上的一致性较好,大量样本均集中 于理想直线(实线)的两侧,两者的(MAEs)为11.6°,

图 2 地面观测资料(横轴)与 MTCSWA 资料(纵轴)同样本的风速(a)及风向(b)散点分布图 (粗线为理想曲线,细线为线性一元拟合)

Fig. 2 Scatter plot of surface observations (lateral axis) and MTCSWA (vertical axis) (a) wind velocitiy, (b) wind direction

(Thick line is ideal line, thin line is one elementlinear fitting)

这可能与观测站点的风向受到站点海拔高度和局地 地形的影响有关。

2 台风结构特征分析

台风强度是由其中心最大风速(V_{MAX})和最低 气压(MSLP)来确定,然而台风结构不仅与台风自 身强度有关,还与台风大小、移动以及环境气流有 关。Holland 等(1984)提出了台风切向风分布的概 念模型,认为台风的结构从里到外可以分为内核区 (眼区环流)、外核区(眼墙环流)以及尺寸变化(外围 环流)等,本节将利用 MTCSWA 资料具体分析台 风的大风圈结构、眼墙区结构及其内核区演变的特 征。

2.1 大风圈结构特征

目前,国际上通常采用台风不同风速等级的半 径作为反映台风风圈结构的参考指标,包括7级风 圈半径(R₃₄)、10级风圈半径(R₅₀)和12级风圈半径 (R₆₅)。7级风圈可以认为是台风最外围环流,与台 风的尺度大小有关,R₃₄半径大小可以认为是台风主 体环流所带来的大风影响范围;10级风圈半径反映 了台风强风雨的影响范围,因为根据蒲氏风力等级, 10级风可以造成树木倒伏和建筑遭到破坏,R₅₀被 认为是台风防御的重要参考指标;最内圈的12级风 圈出现时强度都达到台风级以上,此时的台风内核 区环流对称,眼墙区结构完整,因此 R₆₅半径所影响 的地区将受到台风猛烈风雨袭击,有时瞬时风力远 超过平均风力,破坏程度极强,因此 R₆₅是判断台风 强灾害范围和影响程度的重要依据。

为进一步认识热带气旋不同象限风圈半径的分 布规律,先对各个象限的风圈半径做统计分析,结果 如图 3 所示。可以发现:在西北太平洋和南海地区 出现的热带气旋,平均而言 7 级风圈半径东部大于 西部,而 10 和 12 级则没有这个特征,这可能跟季风 环流与台风本体环流的结合有关。10 和 12 级风圈 东北象限的平均值最大,而东南象限的平均值小于 其他象限,这可能与西北太平洋和南海台风多以西 北路径移动有关。

2.2 台风眼墙区结构特征

不同强度热带气旋的眼墙(外核区)分布特征, 如图 4 所示。最大风速(V_{MAX})和最大风速半径 (*R_{MAX}*)之间存在一定的相关性,从其一元线性拟合 关系可以看出最大风速半径随着热带气旋的加强而 减小,而两者的多元线性拟合趋势线说明对于强热 带风暴级(V_{MAX} < 24.5 m • s⁻¹)以下台风最大风速 半径随强度增加而减小的趋势越快,而随着强度增 大,其最大风速半径减小的趋势减慢。而对于超强台

图 4 取入风速(V_{MAX})和取入风速+住
 (R_{MAX})的散点分布图
 (粗线为一元线性拟合线,细线为多元线性拟合线)
 Fig. 4 Scatter plot of V_{MAX} and R_{MAX}
 (Thick line is one element linear fitting, thin line is multi-element linear fitting)

风(V_{MAX} > 51.4 m • s⁻¹)其最大风速半径主要集中 在 60 km 以内。分析结果表明台风强度越强,台风 眼墙最大风速带越向台风中心收缩,即最大风速半 径越小,但这种趋势并不是线性的。

如前所述,台风最大风速半径与台风强度存在 一定的相关性,在具体台风分析中发现由于不同海 区的海洋特性和所处区域的气候背景差异会造成生 成于此的热带气旋也具有不同的结构特征。按台风 强度分为强热带风暴以上($V_{MAX} \ge 24.5 \text{ m} \cdot \text{s}^{-1}$, 图 5中实线)与强热带风暴以下(V_{MAX}≥24.5 m・ s^{-1} ,图中虚线),再对其最大风速半径(R_{MAX})的概率 密度分布进行对比,可以发现对于强热带风暴以上 强度其 R_{MAX} 的概率密度分布差异不大(峰值均在 50 km 左右),而对于强热带风暴以下强度三个区域 内 R_{MAX}的峰值分布从小到大依次为西北太平洋、我 国南海海域、我国东部和北部海域。其中出现在西 北太平洋的台风 R_{MAX}概率密度分布范围更广(60~ 120 km),说明其结构的差异性更大;南海区域台风 的最大风速半径概率密度分布在 80~100 km;而与 西北太平洋和南海台风相比,位于中国东部和北部 海域的台风的最大风速半径概率密度分布峰值在 100 km 附近。这说明由于 R_{MAX}本身就与台风的强 度有关,对于强度达到强热带风暴以上级别的台风

其结构差异不明显。而对于强度较弱的台风,最大 风速半径的发散程度更大。这样一方面与不同海域 台风自身的强度分布有关,另一方面也是因为热带 气旋靠近中国东部大陆时往往处于其生命发展后 期,台风结构发展成熟(有的已逐渐减弱变性),结构 趋于松散。另外,值得注意的是南海台风具有更为 复杂的眼墙结构分布特征,这主要由于南海台风中 除了在南海本地生成外,另有一部分从西北太平洋 移入到南海,因此具有与西北太平洋台风相似的结 构特征,同时受到南海局地海洋热力和季风环流等 作用的共同影响,南海台风往往会出现近海急剧加 强的现象(林良勋等,2006),因而也伴随着台风结构 的变化。

2.3 台风眼墙置换过程

台风眼(内核区)的形成和变化通常伴随着台风 强度而变化。Stikowski等(2011)利用飞机观测资料 研究发现眼墙的置换(eyewall replacement,ERC)过程 中台风的风场结构会发生明显变化,统计发现 ERC 过程平均经历约 36 h。Kossin等(2011)、Kossin (2014)研究发现 ERC 过程中台风的强度通常经历 增强、减弱和再度增强三个阶段,其眼区的风场结构 也随之发生明显的内外眼墙交替过程。也有不少研 究利用高分辨率的数值模式来模拟台风的双眼墙结 构和置换过程(李宁等,2007;康建伟等,2007;Zhou et al,2011).

为探讨 MTCSWA 资料对台风眼墙结构特征, 特别是对眼墙置换过程的表现效果,选取了 2012 年 第 15 号超强台风布拉万做具体分析。"布拉万" 2012 年 8 月 20 日 14 时(北京时,下同)在西北太平 洋上生成,之后缓慢向西北方向移动,并于 25 日 17 时加强为超强台风,25 日 20 时达到其强度极值(55 m・s⁻¹,920 hPa),之后以超强台风的强度进入我 国东海海面,并转为偏北方向移动,强度开始减弱 (任丽等,2013;陶亦为,2012)。通过微波资料分析 可以发现(图略),"布拉万"的 ERC 过程开始于 26 日 02 时前后,24 h 后完成眼墙置换过程。因此利 用这个时段内的 MTCSWA 资料对"布拉万"的 ERC 过程做具体分析。

首先,对 MTCSWA 资料做了极坐标转换,计 算其切向风的内外眼墙结构参数:内眼墙用 V_1 和 R_1 表示,外眼墙用 V_2 和 R_2 表示。结果如表 2 所 示,可以看到 26 日 02 时外眼墙刚刚出现,距离台风 中心约 70 km,且风速相对内眼墙较小,随着 ERC 过程的发展内外眼墙之间的距离($R_2 - R_1$)逐渐减 小;到 26 日 20 时两者已经非常接近,此后内眼墙被 外眼墙所替代,逐渐完成了眼墙的置换过程。在整 个 ERC 过程中,内眼墙的风速(V_1)逐渐减小,而外 眼墙风速(V_2)逐渐增加,其演变特征与前人对于 ERC 过程的观测研究及模拟的结果相似。

为了分析 ERC 过程中台风强度的变化情况,给 出了对应时刻基于红外卫星资料和德沃夏克技术开 发的客观自动分析系统 ADT (advanced dvorak technique)(Timothy et al,2007)和卫星资料集成产 品 SATCON(CIMSS Satellite Consensus)的强度分 析结果。可以发现两者对于"布拉万"的强度估计值 在这个时段内均有一个明显减弱阶段(26日08 时),ADT 的最终强度指数下降 0.9,ADT 和 SAT-CON 的 V_{MAX}估计值分别下降 22.4 和 15 kt;再次 增强阶段(26日14时)强度有所回升,但均弱于减 弱之前。通过卫星资料分析发现在 ERC 过程中台 风的强度会出现短暂阶段性波动。而在实际业务中 由于观测资料的有限,对 ERC 过程的强度的波动往 往缺乏有利的观测证据和预测手段。通过上述分析 发现 MTCSWA 资料在热带气旋的 ERC 过程中较 好地描述了其结果的演变特征,可以被用于对于台 风眼墙结构变化的分析中。

表 2 2012 年 8 月 26 日 02 时至 27 日 02 时 1215 号超强台风布拉万 ERC 过程 MTCSWA 内外眼墙结构变化及卫星分析结果对比

Table 2 Comparison of MTCSWA inner-outer eye-wall structure change and satellite analysis for Bolaven's ERC

from 02:00 BT 26 to 02:00 BT 27 August 2012

त्र मा	V_1	R_1	${V}_2$	R_2	ADT			SATCON		
LJ [L]	$/m \cdot s^{-1}$	$/\mathrm{km}$	$/\mathrm{m} \cdot \mathrm{s}^{-1}$	/km	CI	MSLP/hPa	$V_{ m MAX}/ m kt$	MSLP/hPa	$V_{\rm MAX}/{ m kt}$	
26日02时	53.4	47.7	38.2	72.1	5.8	931.1	109.8	914.0	125.0	
26日08时	50.9	48.5	40.4	59.2	4.9	951.6	87.4	927.0	110.0	
26 日 14 时	45.2	46.3	44.2	55.3	5.4	944.0	99.6	929.0	116.0	
26日20时	31.6	50.7	47.2	52.9	5.4	943.8	99.6	923.0	118.0	
27 日 02 时			48.3	50.3	4.6	957.2	79.6	935.0	101.0	

3 台风结构客观估计

3.1 台风结构客观估计方法

本文将利用 MTCSWA 热带气旋表面风场、欧 洲中心再分析资料和中国气象局整编的最佳路径资 料集构建简单的台风大风圈半径(R_{MAX})和各级风 圈半径的客观估计方法,并建立台风结构参数的统 计估计模型。Knaff 等(2016)最新的研究中利用常 规的热带气旋位置、强度和移动路径等常规参数结 合红外卫星资料客观估计热带气旋的结构特征,并 假设热带气旋的非对称结构仅是由其移动和位置造 成的。在此基础上,本文也试图通过建立客观估计 模型来找到台风结构与其位置、强度、移速移向以及 环境风切变之间的相关性,从而利用台风本身的强 度及运动信息来客观估计其结构特征。与前人研究 工作不同的是本文采用广义加性模型来构建台风结 构参数与各物理量之间的估计模型。广义加性模型 实际上是对传统线性模型的推广,在气象领域该模 型可以用于对某个气象物理量进行极大似然估计。 在广义线性模型的基本假设中各个预报因子之间必 须是相对独立的,而在广义加性模型中各个因子之间可以存在线性相关,因此更适合做气象要素的客观估计。

首先将 MTCSWA 原始资料转换到以台风中 心为原点的极坐标系,并通过计算其切向风的轴对 称平均得到其最大风速半径(R_{MAX})和7级(R₃₄)、10 $\mathcal{W}(R_{50})$ 和12级(R_{65})在各个象限(分别为东北、东 南、西南和西北)的风圈半径;再根据整编后的热带 气旋最佳路径资料和 EC 再分析资料计算台风移 向、移速和环境垂直切变(取台风中心 600 km 半径 范围内的平均)等物理量。具体各个物理量与结构 参数之间的相关系数和总解释方差如表 3 所示。可 以看到,环境风垂直切变与最大风速半径(R_{MAX})和 7、10、12级风速半径均呈反比,且通过 0.05 的显著 性水平检验,说明环境风场的大小可以直接影响台 风的结构特征。另外,热带气旋的强度(V_{MAX})与最 大风速半径(R_{MAX})呈反比,而与各级风圈半径成正 比,说明台风越强则台风眼墙结构越紧密,且大风半 径越大。值得注意的是,对于最大风速半径(R_{MAX}) 而言热带气旋所处的纬度较其经度的相关性更为显 著,这说明台风的最大风速半径具有明显的纬向分 布特征。

Table 3	Correlation	coefficients	between	several	structure	parameters	and	environmental	parameters
---------	-------------	--------------	---------	---------	-----------	------------	-----	---------------	------------

结构参数	总解释方差	经度	纬度	强度	移向	移速	整层切变	中低层切变
$R_{ m MAX}$	56.7%	-0.098	0.229 * *	-0.754**	0.212*	0.051	0.160*	0.134*
R_{34}	62.8%	0.199*	0.201*	0.862**	-0.182	0.083*	-0.159*	-0.167*
R_{50}	73.9%	0.171*	0.086*	0.815 * *	-0.199*	0.063*	-0.140*	-0.176*
R_{65}	82.2%	0.133*	0.032*	0.738**	-0.188*	0.032	-0.212**	-0.149*

**,*分别表示通过 0.01 和 0.05 的显著性水平检验。

* * and * represent those having passed the 0.01 and 0.05 significance test levels, respectively.

3.2 最大风速半径估计结果

利用上述方法对 2014 年的样本进行了独立样

本检验(即建模采用 2007—2013 年资料,未包含 2014 年样本数据)。首先,讨论对最大风速半径 (*R*_{MAX})的估计结果(*pR*_{MAX})进行检验。结果如图 6

所示,通过比较 pR_{MAX} 和 R_{MAX} 发现其趋势一致性在 100 km 范围内比较好,而大半径的估计性能上差异 较大,整体的平均误差值为 17.3 km。

分析结果 R_{MAX}的散点分布图 (粗线为一元线性拟合线,细线为多元线性拟合线) Fig. 6 Scatter plot of prediction model's *pR_{MAX}* and R_{MAX} (Thick line is one element linear fitting; thin line is multi-element linear fitting)

图 7 是 R_{MAX}估计误差随台风强度(V_{MAX})的分 布,可以看出较大的误差分布在热带风暴到强热带 风暴以下级别,这与前面的讨论结果一致,说明越弱 的台风最大风速半径的发散度越大,可预测性越低。

 $pR_{MAX} - R_{MAX}$ at different TCs intensity

3.3 各级风圈半径估计结果

以7级风西北象限(R_{34NW})的估计结果检验为 例(图8),通过比较 *pP*_{34NW}和 R_{34NW}发现其趋势整体 一致,平均误差值为 36.2 km(图9)。误差随强度 的分布得较 pR_{MAX} 的估计结果发散度更大,说明 R_{34NW} 的可预测性较最大风速半径要低。

图 8 同图 6,但为 7 级风西北象限(R_{34NW}) Fig. 8 Same as Fig. 6, but for *pR*₃₄ and *R*_{34NW}

 $pR_{34NW} - R_{34NW}$ at different TCs intensities

最后给出所有象限不同风速半径估计结果的平均绝对误差(MAEs)如表4所示。从结果检验来看7级风圈(R_{34})的估计误差平均在30km左右,10级(R_{50})风圈半径的估计误差在20~25km,12级风圈(R_{65})半径的估计误差在15~20km。其中,西南象限整体误差较小,而西北象限和东南象限误差相对较大。

表 4 独立样本检验的平均误差检验(MAEs)(单位:km) Table 4 MAEs of Independent sample test (unit: km)

	西北象限	东北象限	东南象限	西南象限
R_{34}	36.2	31.3	39.9	23.3
R_{50}	23.8	22.1	29.4	20.1
R_{65}	20.3	15.4	17.9	16.7

通过对独立样本检验分析结果可以看出该方法 具有一定的客观估计能力,对于不同半径的风圈半 径预报能力略有差别。

4 结论和讨论

本文重点介绍了一种用多种卫星资料和融合技 术开发的高分辨率热带气旋表面风场资料,并运用 该资料分析了西北太平洋和南海台风的结构特征, 为认识台风风场结构特征提供参考。

首先,分析发现台风最大风速(V_{MAX})和最大风 速半径(R_{MAX})之间存在一定的线性关系,即台风强 度越强,台风眼墙最大风速带往台风中心收缩,但收 缩的趋势并不是线性的。由于 R_{MAX}本身就与台风 的强度有关,对于强度达到强热带风暴以上级别的 台风其结构差异不明显。而对于强度较弱的台风, 最大风速半径的发散程度更大。对于强热带风暴以 下强度三个区域内 R_{MAX}的峰值分布从小到大依次 为西北太平洋、我国南海海域、我国东部和北部海 域。其中出现在西北太平洋的台风 R_{MAX} 概率密度 分布范围最广(60~120 km),说明其结构的差异性 大;南海区域台风的最大风速半径概率密度分布在 80~100 km;而与西北太平洋和南海台风相比,位 于中国东部和北部海域的台风的最大风速半径概率 密度分布峰值在 100 km 附近。对台风各级风圈半 径的分析发现,平均而言7级风圈半径(R_{34})东部大 于西部,而10级风圈半径(R₅₀)和12级风圈半径 (R₆₅)则没有这个现象,这可能跟季风环流与台风本 体环流的结合有关。台风眼墙置换过程往往配合着 台风强度的短暂性波动,在 ERC 演变过程中,内外 眼墙之间的距离逐渐减小,内眼墙风速逐渐减小,外 眼墙风速逐渐增大,最终完成眼墙的替换过程。

本文最后探讨了一种利用 MTCSWA 资料和 数值模式产品的台风结构客观估计方法,将台风的 位置、移动和环境场切变与其结构特征联系起来,建 立了 R_{MAX}和各级风圈半径的估计模型。对独立样 本的检验结果说明该方法具有一定的估计能力,可 用于台风强度的客观分析和预报中。但是由于 MTCSWA 资料本身存在一定的局限性和分析误 差,对强台风级以上的热带气旋存在低估,因此其风 场结构也存在较大的误差。由于单纯的卫星反演资 料并不能完整地反映台风低层风场特征,仍需要补 充结合地面观测、探空和风廓线雷达等资料进行讨 正。在观测手段不断发展的情况下,如何有效利用 多源资料进行台风强度和风雨结构的分析及其融合 理论和方法研究值得不断探索。

参考文献

- 柴乾明,王文彩,黄忠伟.2016.基于卫星数据研究热带气旋眼壁及周 围螺旋云带宏微观结构特征.热带气象学报,32(2):172-182.
- 方翔,邱红,曹志强,等.2008.应用 AMSU-B 微波资料识别强对流云 区的研究. 气象,34(3):22-29.
- 康建伟,陆汉城,钟科,等.2007.台风内部的中尺度波动与多边形眼 墙的形成.热带气象学报,23(1):21-26.
- 雷小途,陈联寿.2005.热带气旋风场模型构造及特征参数估算.地球 物理学报,48(1):25-31.
- 李宁,王国,闵颖.2007.台风双眼墙结构的数值模拟及分析.气象,33 (T1):189-196.
- 林良勋,梁巧倩,黄忠.2006.华南近海急剧加强热带气旋及其环流综 合分析.气象,32(2):14-18.
- 潘旸,宇婧婧,廖捷,等.2011.地面和卫星降水产品对台风莫拉克降 水监测能力的对比分析.气象,37(5):564-570.
- 钱燕珍,高拴柱,黄思源,等.2013.强台风海鸥登陆前后强度变化的 观测分析.气象,39(10):1265-1274.
- 任丽,王承伟,张桂华,等.2013. 台风布拉万(1215)深入内陆所致的 大暴雨成因分析. 气象,39(12):1561-1569.
- 陶亦为. 2012. 2012 年 8 月大气环流和天气分析. 气象, 38(11): 1429-1435.
- 田伟,吴立广,刘青元,等. 2016. NOAA/NESDIS 多平台热带气旋风 场资料在中国东海区域评估. 热带气象学报,32(1):63-72.
- 王新,方翔,邱红,等.2009.应用 AMSU B 微波资料分析 0509 号 Matsa 台风水汽场分布特征. 气象,35(12):30-36.
- 许映龙,张玲,高拴柱.2010.我国台风预报业务的现状及思考.气象, 36(7):43-49.
- 严卫,韩丁,周小珂,等.2013.利用 CloudSat 卫星资料分析热带气旋的结果特征.地球物理学报,56(6):1809-1824.
- 赵放,冀春晓,高守亭,等.2012.浙江沿海登陆台风结构特性的多普 勒雷达资料分析.气象学报,70(1):15-29.
- 张增海,曹越男,刘涛,等.2014. ASCAT 散射计风场在我国近海的 初步检验与应用. 气象,40(4):473-481.
- Delia Y C, Kevin K M, Cheng S L. 2011. Some Implications of core regime wind structure in western north pacific tropical cyclones. Wea Forecasting, 26:61-75.
- Demuth J K, DeMaria M, Knaff J A, et al. 2004. Validation of and advanced microwave sounder units (AMSU) tropical cyclone intensity and size estimation algorithms. J Appl Meteor, 43: 282-296.
- Dvorak V F. 1975. Tropical Cyclone intensity analysis and forecasting from satellite imagery. Mon Wea Rev, 103:1333-1346.
- Dvorak V F. 1984. Tropical Cyclone intensity analysis using satellite data. NOAA Tech Rep NESDIS, 11-47.
- Franklin J L, Black M L, Valde K, 2003. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea Forecasting, 18:32-44.
- Holland G I, Merrill, R T. 1984. On the dynamics of tropical cyclone structural changes. Quart J Roy Meteo Soci, 110:723-745.
- Kelvin T F C, Johnny C L C. 2011. Size and strength of tropical cy-

- Knaff J A, DeMaria M. 2010. NOAA/NESDIS Multiplatform Tropical Cyclone Surface Wind Analysis Users Manual. NOAA Tech Rep NESDIS.
- Knaff J A, DeMaria M, Molenar D A. et al. 2011. An automated, objective, multi-satellite platform tropical cyclone surface wind analysis. J Appl Meteor Clim, 50:2149-2166.
- Knaff J A, Longmore S P, Molenar D A. 2014. An objective satellitebased tropical cyclone size climatology. J Climate, 27:455-476.
- Knaff J A, Sampson C R, et al. 2007a. Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea Forecasting, 22(4):781-791.
- Knaff J A, Slocum C J, Musgrave C R et al. 2016. Using routinely available information to estimate tropical wind structure. Mon Wea Rev, 144:1233-1247.
- Knaff J A, Zehr R M. 2007b. Reexamination of tropical cyclone windpressure relationship. Wea Forecasting, 22(1):71-88.
- Knaff J A.Zehr R M.Goldberg M D.et al. 2000. An example of temperature structure differences in two cyclone systems derived from the advanced microwave sounder unit. Wea Forecasting, 15:476-483.
- Kossin J P. 2014. Hurricane wind-pressure relationship and eyewall replacement cycles. Wea Forecasting, 30:177-181.
- Kossin J P, Sitkowski M. 2011. Predicting hurricane intensity and

structure changes associated with eyewall replacement cycles. Wea Forecasting, 27:484-488.

- Mueller K J, Demaria M, Knaff J A, et al. 2006. Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea Forecasting, 21(6):990-1005.
- Powell M D, Houston S H, Amat L R, et al. 1998. The HRD realtime hurreicane wind analysis system. J Wind Eng Ind Aerod, 77:53-64.
- Stikowski M, Kossin J P, Rozoff C M. 2011. Intensity and structure change during Hurricane eyewall replacement cycles. Mon Wea Rev, 139:3829-3845.
- Timothy L O. Christopher S V. 2007. The advanced dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea Forecasting, 22:287-298.
- Wu L G, Tian W, Liu Q Y, et al. 2015. Implication of the observed relationship between tropical cyclone size and intensity over the western north pacific. J Climate, 28, 9501-9506.
- Ying M, Zhang W, Yu H, et al. 2014. An overview of the China Meteorological Administration tropical cyclone database. J Atmos Oceanic Technol, 31: 287-301.
- Zhou X Q, Wang B. 2011. Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci, 68: 972-988.