张林,杨洪平,邓鑫,等. 2014. 基于模板匹配法的长乐雷达强超折射回波识别.气象,40(3):364-372.

基于模板匹配法的长乐雷达强超折射回波识别

张林¹杨洪平¹邓鑫²胡学英¹都二斌³

1 中国气象局气象探测中心,北京 100081
2 国家气象信息中心,北京 100081
3 北京科技大学,北京 100083

提 要:我国有许多新一代天气雷达架设在高山上,由于海拔高度较高,加上地球曲率的影响,在使用 VCP11/VCP21 模式 探测时,造成较大的探测盲区,对低层降水回波的探测能力严重不足。长乐新一代天气雷达经过调整观测模式后,采用负仰 角扫描有利于中小尺度灾害性天气系统的监测和预警,但同时会带来地物回波增强、海浪回波及超折射等负面效应。基于 此,通过大量个例统计并分析长乐雷达在特定大气条件下的强超折射回波特征,借助模式识别理论提出了一个新方法"模板 匹配法"识别强超折射回波。利用大量强超折射回波数据的检验和分析,结果表明该方法能够在不影响负仰角扫描模式下有 效滤除长乐雷达的强超折射回波。目前该方法正在试运行,即将应用到中国新一代天气雷达建设业务软件系统开发 ROSE 项目中。

关键词:高山雷达,强超折射回波,模板匹配 中图分类号: P412 **文献标志码:** A

doi: 10.7519/j.issn.1000-0526.2014.03.012

One Method Based on Template Matching to Remove Strong Anomalous Propagation Echo at Changle Site

ZHANG Lin¹ YANG Hongping¹ DENG Xin² HU Xueying¹ DU Erbin³

1 Meteorological Observation Centre of CMA, Beijing 100081

2 National Meteorological Information Centre, Beijing 100081

3 University of Science and Technology Beijing, Beijing 100083

Abstract: In China, there are several weather radars built in high mountains. Due to the high altitude and the curvature of earth, low level observation is limited if the conventional volume scan strategies (VCP12/VCP22) are adopted. At Changle Site, new volume scan strategies which adopt 0° or negative elevation angles bring lots of benefits for monitoring and warning severe weather, but also increase the chance of disadvantages, such as ground clutter, wave clutter, anomalous propagation (AP) and so on. This paper discusses the characteristics of strong AP clutter at Changle Site, introducing a method based on template matching to remove it. The method does not have any impact on new volume scan strategies, but can remove the strong AP effectively. Now the method is running in test, and to be used in the Radar Operational Software Engineering (ROSE).

Key words: mountainous radar, strong anomalous propagation echo, template matching

* 中国气象局气象探测中心青年基金项目"强超折射回波识别方法研究"资助
2012 年 10 月 5 日收稿; 2013 年 5 月 23 日收修定稿
第一作者:张林,研究方向:天气雷达及风廓线雷达资料应用.Email:zhanglin1834@163.com

引 言

我国 CINRAD/SA 新一代天气雷达采用的是 美国 WSR-88D 天气雷达的观测模式,最低观测仰 角为 0.5°(李柏等,2013),该观测模式适合于平原 地区的雷达,而我国地形比较复杂,山区较多、丘陵 地区大,不少新一代天气雷达架设在高山顶上,当高 山顶上雷达采用最低仰角为 0.5°模式观测时,在距 离雷达 200 km 处,波束中心海拔高度已经超过了 4 km,低层降水回波的探测能力远远不足,进而导 致雷达定量估测降水值偏低。

针对高山雷达低空探测能力不足的问题,有不 少学者提出了负仰角观测模式。美国强风暴实验室 Brown 等(2002)和 Vincent 等(2003)根据现在使用 的 WSR-88D 天气雷达体扫模式,对位于蒙大纳州、 密苏拉市附近一座高山上的 KMSL 多普勒雷达通 过负仰角模拟不同天气的探测效果,对比+0.5°与 一 0.8° 仰 角 的 探 测 情 况,结 果 表 明: 当 采 用 最 低 $+0.5^{\circ}$ 仰角扫描时,在雷达附近估测雨强约为 80%,距雷达 220 km 外仅有 1%;但当采用最低 -0.8°仰角扫描时, 远距离 220 km 外估测雨强仍 可达80%~95%。负仰角扫描能明显提高低对流 层天气系统的探测能力,如辐合/辐散场、下击暴流、 阵风锋等,提高定量估测降水准确率和台风、暴雨等 灾害性天气的远距离监测、预警能力(刘晓阳等, 2010; 王德胜等, 2012; 钟敏等, 2012; 张亚萍等, 2013; 庄薇等, 2013)。张沛源等(2009) 指出为了对 近地面层进行探测,进行零度或负仰角扫描是必要 的,但由于地球曲率的影响,需要考虑遮挡问题。徐 八林等(2008)研究认为:负仰角扫描能明显提高雷 达远距离回波探测效果,可弥补常规业务扫描模式 下高山雷达探测低层回波能力不足的问题,对文山 雷达一次冰雹过程探测分析,认为负仰角扫描对强 对流天气能获得较好的低层探测效果。

关于地物回波的识别,各种研究成果均表明模 糊逻辑法具有较好的识别效果。目前逐步将该方法 推向实际业务中。该方法原理是从雷达资料中提取 用于区分不同雷达回波(如降水、地物)的物理量,然 后根据降水、地物回波的特征设置隶属函数,对这些 物理量模糊化处理,得到所有物理量对于不同类型 回波的 0~1 取值范围的判据,对这些判据进行加权 累加,当某点地物回波的判据超过事先给定的阈值 时,该点就被识别为地物回波。刘黎平等(2007)在 这方面做了大量的工作,开展用新一代天气雷达体 扫资料基于模糊逻辑的分布式超折射地物回波识 别,江源等(2009)运用 CSI(critical success index) 评判标准确定了模糊逻辑超折射地物回波识别的最 佳线性梯形隶属函数,通过识别效果分析表明改进 后的方法可以更好地识别地物/超折射回波,减少对 降水回波的误判。

2011年,经过中国气象局批准,福建省气象局 组织长乐新一代天气雷达开展负仰角观测模式试 验,结果证明了上述问题,负仰角扫描模式的确提高 了中尺度对流性天气系统的探测能力,有利于监测 台湾海峡的台风天气过程(张扬成,2012)。但是长 期的业务运行发现,负仰角扫描模式同时又带来了 一些问题,诸如在特定大气条件下台湾岛反射回来 的超折射回波,该超折射回波轮廓与台湾地形非常 一致,大量统计结果表明该超折射回波强度值高,垂 直梯度小,采用模糊逻辑法不能较好地识别。因此 需要根据回波特征设计新的方法给予解决,基于此, 本文借助模式识别理论提出一种新的方法,即模板 匹配法,根据该超折射回波与台湾地形相一致的特 征,设计模板对负仰角扫描模式下带来超折射回波 给予滤除,以至于不会对负仰角在业务上的使用造 成实质性影响。

1 长乐雷达负仰角观测模式

长乐雷达继续保留使用 VCP11、VCP21 两种降 水观测模式,同时增加 VCP12 和 VCP22(分别由 VCP11 和 VCP21 改进而得)两种降水模式,调整后 的降水观测模式增加到 4 种。VCP12 模式共 18 个 仰角,VCP22 模式共 9 个仰角(表 1)。对 VCP12 模 式,低层 5 个仰角即-0.5°、0°、0.49°、0.99°、1.48° 采用分离取样方式 CS/CD,中间的 7 个仰角即 1.97°、2.48°、3.05°、3.70°、4.46°、5.35°、6.41°采用 交替扫描方式 B,高层的 6 个仰角即 7.63°、9.08°、 10.79°、12.75°、15.21°、18.34°采用不考虑距离折叠 的连续多普勒方式 CDX;对 VCP22 模式,低层 4 个 仰角即-0.3°、0°、0.49°、1.45°采用分离取样方式 CS/CD,中间的 3 个仰角即 2.40°、3.35°、4.30°采用 交替扫描方式 B,高层的 2 个仰角即 6.0°、9.9°采用 不考虑距离折叠的连续多普勒方式 CDX。

图 1 为长乐雷达在 VCP21 和 VCP22 模式下雷

达电磁波射线传播路径的模拟仿真,从图中可以看出:在 VCP21模式下,200 km 以外低空探测能力受到很大的限制,但当采用 VCP22模式时,0°和 -0.3°仰角扫描弥补了远距离处低层降水回波的探 测,有助于提高中尺度天气系统的监测能力,特别是 当沿海台风进入雷达探测范围时,采用 VCP22 模式 更有利于监测和预警信息的提前发布。

表 1 长乐雷达改进扫描方式对照表 Table 1 Comparision of VCP11 (VCP12) and VCP21 (VCP22) in Changle radar site

VO	VCP11		VCP12		CP21	VCP22		
仰角	扫描方式	仰角	扫描方式	仰角	扫描方式	仰角	扫描方式	
0.5	CS/CD	-0.5		0.5	CS/CD	-0.3		
1.45		0		1.45		0	CS/CD	
2.4		0.49	CS/CD	2.4		0.49		
2.4		0.99		3.35	В	1.45		
3.35		1.48		4.3		2.4		
4.3	В	1.97		6		3.35	В	
5.25		2.48		9.9		4.3		
6.2		3.05		14.6	CDX	6	CDX	
7.5		3.7	В	19.5		9.9		
8.7		4.46						
10		5.35						
12	CDX	6.41						
14		7.63						
16.7		9.08						
19.5		10.79						
		12.75	CDX					
		15.21						
		18.34						

2 雷达电磁波传播特征

如图 2 所示, A 点处的曲率 k 计算公式:

$$k = -\frac{\cos_{\alpha}}{n} \frac{\mathrm{d}n}{\mathrm{d}z} \tag{1}$$

式中, α 为波束与地面的夹角,n为大气折射指数。 从中可以看出,如果大气为均有介质,dn/dz=0,不 管仰角如何变化,雷达射线都是直线;当雷达垂直发 射时(即 $\alpha=90^{\circ}$),不管折射指数如何变化,k=0,雷 达射线总保持为垂直向上直线传播;除这两种情况 之外,雷达射线的曲率均不为零,射线都会发生弯 曲,曲率大小与射线的仰角和折射指数梯度的大小 有关。

图 3 给出了雷达射线传播路径示意图,分为三 种情况:(1) 如果实际大气折射处于零折射和临界 折射之间, $dn/dz > -1/R_e$,仰角将随探测距离的增 加而变大,高度随传播距离的增加而变高;(2) 如果 实际大气折射为临界折射状态, $dn/dz = -1/R_e$,仰 角始终不变, $\alpha_0 > 0$ 时,高度随探测距离的增加而变 高; $\alpha_0 = 0$ 时雷达射线与地表平行,高度不变;(3) 如

图 2 球面分层大气中雷达射线示意图 Fig. 2 Ray path in spherical layered atmosphere

(Dotted line represents negative refraction)

果实际大气中出现超折射,dn/dz <-1/R_e,仰角将 随探测距离增加而变小,并在等于零之后继续下降 至负值。在仰角变为零之前,射线高度随探测距离 的增加而变高,仰角变为负值后,射线高度随探测距 离的增加而变低。dn/dz 绝对值越大,曲率 k 越大, 超折射越严重,雷达射线触及地表,导致异常传播 (俞小鼎等,2006;张培昌等,2005)。

大气折射指数与气压、温度、湿度的变化关系式 如式(2)所示,大气折射指数随高度的变化公式如式 (3)所示:

$$n = \left[\frac{77.6}{T}P_{d} + \frac{77.6}{T}\left(1 + \frac{4810}{T}\right)e\right] \times 10^{-6} + 1$$
$$N = (n-1) \times 10^{6}$$
(2)

$$\frac{\mathrm{d}N}{\mathrm{d}Z} = \frac{\partial N}{\partial T}\frac{\mathrm{d}T}{\mathrm{d}Z} + \frac{\partial N}{\partial p_d}\frac{\mathrm{d}p_d}{\mathrm{d}Z} + \frac{\partial N}{\partial e}\frac{\mathrm{d}e}{\mathrm{d}Z} \tag{3}$$

从式(3)推导可得,当大气处于逆温或逆湿状态时 (dT/dZ>0, de/dZ>0),由于 $\partial N/\partial T < 0$ 和 $\partial N/\partial e$ <0,则 dN/dZ 为负值且绝对值较大,容易出现超折 射现象。

逆温越明显, dN/dZ 为越小(dN/dZ 为负值, 绝对值越大),曲率 k 越大,超折射越严重;高层湿度 增加但没有形成降水,对射线影响不如温度明显。

3 长乐雷达强超折射回波特征

图 4 为 2011 年 4 月 16 日北京时 07:31:56 长 乐雷达采用 VCP22 体扫模式下 4 个低仰角反射率 因子回波图,由图可知,在雷达东北方向 100~300 km 范围内,探测到对流性降水回波,与 0.5°和 1.5° 的仰角探测对比,一0.3°和 0°仰角所探测到降水回 波的范围明显增大,强度明显增强,表明 VCP22 模 式提高了中远距离回波的探测能力。

对比图 1 长乐雷达 VCP22 模式下射线传播路 径与图 3 超折射条件下雷达低仰角射线传播路径示 意图,若大气处于逆温或逆湿状态下,电磁波射线容 易弯向地面传播造成超折射,由于长乐雷达采用负 仰角扫描,则电磁波射线更容易弯向地面传播,形成 的超折射更为严重。如图 4 所示,在距雷达东南方 向 150~300 km 处为超折射回波,是由台湾岛地形 反射而形成的,其形状轮廓与台湾岛地形非常一致, 在-0.3°、0°,有时也会在 0.5°仰角出现。

目前,业务上使用模糊逻辑法识别超折射回波, 模糊逻辑法是指运用统计方法分析各种雷达回波特 征,找出地物回波不同于降水回波的特点,对这些特 征给以相同的权重,得到一个表明每个距离库中受 地物回波影响可能性的量化数值,最终识别出那些 超过某一阈值的地物回波信息。Kessinger等 (2003),江源等(2009),刘黎平等(2007)方法中使用 的反映地物和降水回波差异的7个物理量,包括从 回波强度中提取的4个特征量:反射率水平纹理 (TDBZ)、反射率垂直梯度(GDBZ)、沿径向方向的 变号(SIGN)、沿径向的库间变化程度(SPIN);从径 向速度和速度谱宽中提取的3个特征量:径向速度 的区域平均值(MDVE)、方差(SDVE)、速度谱宽的 区域平均值(MDSW)。

经过统计可知,长乐雷达的超折射回波在回波 水平纹理、回波库间变化程度、径向速度及谱宽等特 征量与"一般超折射回波"的变化几乎一致。不同的 是"一般超折射回波"多数都只出现在最低仰角0.5° 层上,在1.5°仰角层以上几乎不会出现,而长乐雷 达的超折射回波是在负仰角扫描模式下造成的,在 低两层仰角-0.3°和0°仰角层上都特别明显,有时 候也会在第三层0.5°仰角上出现,其回波强度值 高,垂直梯度小。为了区分它与一般超折射回波,称 之为高山雷达的"强超折射回波"。

模糊逻辑法中反射率垂直梯度特征量定义为 GDBZ=w(R)($Z_{up} - Z_{low}$),w(R)=1时,GDBZ= ($Z_{up} - Z_{low}$)。w(R)=1/($H_{up} - H_{low}$)时,为 Zhang 等(2004)和 Steiner 等(2002)提出的给定距离库在 当前仰角和上层仰角的反射率因子差与对应高度差 的比值计算垂直变化 VDBZ=($Z_{up} - Z_{low}$)/($H_{up} - H_{LOW}$),江源等(2009)分析了降水回波和地物回波 的特征差异,参加分析的真实地物回波点有 43251 个,对流性降水回波点有 11119 个,层状云降水有 107558 个,对所有真实回波点计算的特征量进行统 计分析,结果表明,权值 w(R)=1时,GDBZ<-20 为地物或超折射回波的概率很大;当 w(R)=1/ ($H_{up} - H_{low}$)时,VDBZ<-15 为地物或超折射回波 的概率很大。统计图 4 所示的长乐雷达强超折射回

(a) -0.3° , (b) 0° , (c) 0.5° , (d) 1.5°

(Every circle represents 50 km)

波在 130°~140°径向、200~210 km 范围内的反射 率垂直梯度 GDBZ、VDBZ,结果如表 2 和表 3 所 示,在参与统计的 100 个强超折射回波点中,有 67 个回波点的 GDBZ>-20,有 50 个回波点的 VDBZ >-15,不符合地物、超折射回波特征统计结论,因此 模糊逻辑法不适合滤除长乐雷达的强超折射回波。

表 2	长乐雷达在 130°	~140°径向、	$200 \sim 210 \text{ km}$	范围内超折射	肘回波垂直梯度	GDBZ 特征统计
Table 2	The statistic of	GDBZ for 1	30° ~ 140° radi	al and $200 \sim 2$	10 km range in	Changle radar site

距离库	130	131	132	133	134	135	136	137	138	139
200	-29	-10	-20	-27	-27	-17	-16	-15	-26	-22
201	-18	-23	-21	-18	-18	-16	-20	-13	-17	4
202	-15	-14	-9	-10	-10	-14	-12	-12	-5	-16
203	0	-1	-11	-14	-4	-9	-10	-25	-1	-19
204	-22	-23	-20	-17	-15	-9	-13	-14	-35	-27
205	-15	-18	-9	-7	-19	-20	-28	-23	-14	-16
206	-2	-20	-14	-24	-27	-26	-11	-21	-22	-18
207	-17	-8	-20	-13	-13	-14	-4	-20	-25	-33
208	-16	-15	-10	-14	-16	-24	-27	-21	-19	-15
209	-17	-25	-20	-17	-14	-9	-19	-19	-14	-6

注:斜体表示模糊逻辑法不能识别的点

Italic represents the data that cannot be detected by fuzzy logic method

表 3 长乐雷达在 130°~140°径向、200~210 km 范围内超折射回波垂直梯度 VDBZ 特征统计

Table 3 The statistic of VDBZ for $130^{\circ} \sim 140^{\circ}$ radial and $200 \sim 210$ km range in Changle radar site

距离库	130	131	132	133	134	135	136	137	138	139
200	-26	— 9	-18	-24	-24	-15	-14	-13	-24	-20
201	-16	-20	-19	-16	-16	-15	-18	-11	-15	3
202	-14	-12	- 8	-9	-9	-12	-10	-11	-4	-14
203	0	-1	-10	-13	-4	-8	-9	-22	0	-17
204	-20	-21	-18	-15	-13	- 8	-12	-13	-32	-25
205	-14	-16	- 8	-6	-17	-18	-25	-21	-13	-14
206	-1	-18	-13	-22	-25	-23	-10	-19	-20	-16
207	-15	-7	-18	-11	-11	-3	-4	-18	-23	-30
208	-14	-13	-9	-13	-14	-21	-25	-19	-17	-13
209	-15	-22	-18	-15	-12	- 8	-17	-17	-12	-5

注:斜体表示模糊逻辑法不能识别的点

Italic represents the data that cannot be detected by fuzzy logic method

4 长乐雷达强超折射回波识别

4.1 模板匹配法原理

由于长乐雷达负仰角观测模式下的强超折射回 波是由台湾岛反射回来的,其回波形状轮廓与台湾 岛地形极其相似,因此可结合地形特征设计长乐雷 达的强超折射特征模板,与实际回波图相匹配,当相 似匹配度达到一定的比例,则认为是强超折射回波, 予以剔除。

模板匹配法为模式识别上的一种算法,多用在 计算机图像处理和特征识别等学科(谷秋顿等, 2011;李忠海等,2011),本文首次将该理论用于超折 射回波特征识别上,滤除长乐雷达负仰角扫描造成 的强超折射回波。其实质是以标准数据为模板,以 模板特点为依据实现强超折射特征匹配,标准数据 做成的模板与实际回波识别所用到的模板尺寸相一 致。模板匹配需要参数衡量,主要有:(1)求重合度 和差别函数;(2)求相似度;(3)相关度量标准;(4)相 似度指标等。

4.2 特征模板识别

具体识别步骤为:

(1)建立模板,由于该超折射回波是固定发生 在台湾岛所在的区域,因此需要对该区域内强超折 射回波的分布情况进行统计,该区域内的强超折射 回波分布在范围(方位 110°~165°,距离库 185~ 400)内,通过选取 20 个长乐雷达的强超折射回波个 例样本,观测时间在 2011 年 4 月 7—16 日之间,其 中每两个数据的观测时间间隔大于 1 h,对该区域 内的反射率因子数据做统计,求 20 个样本在强超折 射回波区域内每个点的均值,将均值做成标准数据 模板存储在计算机中;

(2)将待识别的回波数据与模板数据相匹配, 特征模板匹配的数学描述(付先平等,2011;严萍等, 2011);

$$D = \frac{1}{n} \sum_{k=1}^{n} A(k) \times [I(k) - T(k)]^{2},$$

式中,A(k)为第 k 个特征的权值,本文中权值都取 1,I(k)为待匹配数据的第 k 个特征,T(k)为模板数 据中第 k 个特征,D 为匹配值,表示匹配的特征与模 板数据特征的差异程度,匹配值越小,两个回波特征 越一致;

(3)统计降水回波、强超折射回波数据与模板 数据的匹配值,根据两类回波匹配值的差异制定相 似度指标,达到最优匹配。

4.3 识别结果分析

由于在强超折射发生时,发生降水的可能性非 常小,目前在个例分析中尚未遇到过在模板区同时 存在降水和地物这种情况。本文分两种情况对地物 进行识别,(1)在模板区只有地物回波;(2)在模板区 只有降水回波。

选取了长乐雷达 50 个地物回波样本和 50 个降 水回波样本,降水回波样本是指在模板区只有降水 回波,将这些样本数据与模板相匹配,计算匹配值, 结果如图 5 所示,匹配值越小,则相似度越高,在模 板区发生强超折射的可能性越大,本文将匹配值 D =200 设为相似度指标(阈值),即待识别的回波数 据经过与模板匹配后,当匹配值 D<200 时,则认为 是强超折射回波,给予剔除。另外抽取 50 个地物回 波样本和 50 个降水回波样本,统计当匹配值 D< 200 时地物回波识别率和降水回波误判率,结果如 表 4 所示,地物回波识别率和降水回波误判率,结果如 表 4 所示,地物回波的概率为 0%,充分表明采用 模板匹配法可以有效识别长乐雷达在特定大气条件 下的强超折射回波,且当模板区域只有降水回波时 不会被误判为地物回波。

表 4 匹配值 D=200 时识别结果

Table 4 The recognition result if matching value D = 200

识别率	强超折射回波识别准确率	降水回波误判率
百分比	94%	0 %

图 6 为模板匹配法对长乐雷达在模板区只有地 物和模板区只有降水时的识别结果。

5 结论和讨论

受地球曲率影响,高山雷达在现有的 VCP11/ 21 模式下探测盲区较大,对低层降水回波的探测能 力严重不足,在引进负仰角扫描模式 VCP12/22 后, 有效提高了对低层降水回波的观测能力,尤其是在 对台风等灾害性天气的远距离监测和预警中显得尤 为重要。

但是负仰角扫描也带来了负面效应,如长乐雷达的强超折射回波,本文分析了该强超折射回波的特征,得出以下结论:

(1)长乐雷达的强超折射回波不符合一般地物、超折射回波的特征统计结论,因此不宜采用模糊逻辑法滤除。

(2)由于该强超折射回波形状轮廓与台湾岛地 形极其相似,提出采用模板匹配法识别,选择合适的 模板,将待识别的回波数据与模板数据相匹配,计算 匹配值,匹配值越小,则相似度越高,发生强超折射 的概率越高。

(3) 抽取长乐地物和降水回波样本,针对本文 所用的模板做统计,当匹配值D<200时,地物回波

Fig. 6 The recognition result of template matching method (a) at 14:55:00 BT 7 April in 2011, matching value D = 100, (b) at 08:20:33 BT 16 April in 2011, matching value D = 92, (c) at 04:05:06 BT 8 May in 2011, matching value D = 352(Every circle represents 50 km)

识别准确率在 90%以上,且当模板区只有降水回波 时,不会被误判为地物回波。 水回波的观测能力,模板匹配法既不影响对低层降 水回波的探测,而且能解决其带来的强超折射回波 负面效应,目前该方法正在试运行,即将应用到中国

长乐雷达在采用负仰角模式下提高了对低层降

新一代天气雷达建设业务软件系统开发 ROSE 项目中。

参考文献

- 付先平,廖圣龙,袁国良.2011.一种基于小波系数投影的快速模板匹 配算法,大连海事大学学报,37(2):114-116.
- 谷秋顿,白艳萍.2011.基于模板匹配的车牌汉字识别方法及判别函数.电子科技,24(12):4-6.
- 江源,刘黎平,庄薇.2009.多普勒天气雷达地物回波特征及其识别方 法改进.应用气象学报,20(2):204-208.
- 李柏,古庆同,李瑞义,等.2013.新一代天气雷达灾害性天气监测能 力分析及未来发展,气象,39(3):266-280.
- 李忠海,李申,崔建国,等. 2011. 基于快速 SIFT 特征提取的模板匹 配算法.计算机工程,37(24):222-224.
- 刘黎平,吴林林,杨引明.2007.基于模糊逻辑的分布式超折射地物回 波识别方法的建立和效果分析.气象学报,65(2):252-260.
- 刘晓阳,杨洪平,李建通,等.2010.新一代天气雷达定量降水估测集成系统.气象,36(4):90-95.
- 王德旺,刘黎平,仲凌志,等.2012. 毫米波雷达资料融化层亮带特征 的分析及识别. 气象,38(6):712-721.
- 徐八林,刘黎平,徐文君,等.2008.利用低仰角扫描改进高山雷达低 层回波探测能力浅析. 气象,34(9):28-33.
- 严萍,曾金明.2011.一种有效的车牌字符识别法一模板匹配和特征 点匹配相结合的车牌字符识别法.西昌学院学报・自然科学 版,25(1):43-44.
- 俞小鼎,姚秀萍,熊廷南,等.2006.多普勒天气雷达原理与业务应用. 北京:气象出版社,63-64.
- 张培昌,杜秉玉,戴铁丕.2005. 雷达气象学. 北京:气象出版社,105-

106.

- 张沛源,胡绍萍.2009.天气雷达零仰角及负仰角探测存在的问题及 其解决办法/第26届中国气象学会年会第三届气象综合探测技 术研讨会分会场论文集.浙江杭州.
- 张亚萍,张勇,廖峻,等.2013.天气雷达定量降水估测不同校准方法 的比较与应用.气象,39(7):923-929.
- 张扬成.2012.新一代天气雷达负仰角探测能力浅析.第二届全国气象观测技术经验交流会论文集.北京.
- 庄薇,刘黎平,胡志群.2013.青藏高原零度层亮带的识别订正方法及 在雷达估测降水中的应用.气象,39(8):1004-1013.
- 钟敏,吴翠红,王珊珊,等.2012. CINRAD/SA 雷达两种识别跟踪产品的评估分析. 气象,38(6):722-727.
- Brown R A, Wood V T, Barker T W. 2002. Improved detection using negative elevation andles for mountaintop SAR-88Ds: Simulation of KMSX near Missoula, Montana. Wea Forecasting, 17:223-237.
- Kessinger C, Ellis S, Vanandel J, etc. 2003. The AP Cutter Mitigation Scheme for The WSR-88D. // Preprints, 31st Conference on Radar Meteorology, Amer Meteor Soc, 526-528.
- Steiner M, Smith J. 2002. Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J Atmos Ocean Tech, 19:673-680.
- Vincent T Wood, Rodger A Brown and Steven V Vasiloff. 2003. Improved Detection Using Negative Elevation Angles for Mountaintop WSR-88Ds: Simulations of the Three Radars Covering Utah. Wea Forecasting, 18(3):393-403.
- Zhang J, Wang S, Clarke B. 2004. WSR-88D Reflectivity Quality Control Using Horizontal and Vertical Reflectivity Structure. // Preprints, the 11th Conference on Aviation, AMS, P5, 41.