王德立,徐国强,贾丽红.2013.GRAPES的积云对流参数化方案性能评估及其改进试验.气象,39(2):166-179.

GRAPES 的积云对流参数化方案性能 评估及其改进试验^{*}

王德立1 徐国强2 贾丽红3

深圳市国家气候观象台,深圳 518040
 国家气象中心/数值预报中心,北京 100081
 新疆气象台,乌鲁木齐 830002

提要:利用 GRAPES(Global/Regional Assimilation and Prediction System)单柱模式(Single Column Model, SCM),采用 GCSS WG4 第三次个例资料,对 BMJ、SAS 和 KFeta 三种积云参数化方案进行了数值试验和诊断分析,得到如下结论:BMJ 和 KFeta 方案都能较好地模拟出与观测相符的降水,而 SAS 则相对较差;BMJ 方案在对流层中高层位温误差较小,低层偏冷严重,同时该方案具有较强的水汽向上输送能力,易造成低层偏干,中高层偏湿,因此其调整的大气层结过于稳定;KFeta 方案倾向于造成低层偏冷偏湿,但低层偏冷幅度相对于其他方案较小,在对流层高层则由于对流穿透过强导致严重偏冷。针对 KFe-ta 方案对流穿透过强的问题,本文提出了一种新的对其垂直速度方程进行修改的方案,并且考察了 Anderson 等提出的修改流出层方案。数值试验表明,这两种修改都能有效地减小高层冷误差;综合来看,本文提出的修改方案的预报效果更令人满意。

关键词: GRAPES_SCM, 积云参数化方案, GCSS WG4, KFeta 方案
 中图分类号: P435
 文献标识码: A
 doi: 10.7519/j.issn.1000-0526.2013.02.005

The Evaluation of Cumulus Parameterization Schemes in GRAPES Model and Its Improved Experiments

WANG Deli¹ XU Guoqiang² JIA Lihong³

1 Shenzhen National Climate Observatory, Shenzhen 518040

2 Numerical Prediction Centre, National Meteorological Centre, Beijing 100081

3 Xinjiang Meteorological Observatory, Urumqi 830002

Abstract: By using the GRAPES (Global/Regional Assimilation and Prediction Enhanced System) Single Column Model and the GCSS WG4 Case 3 data, the numerical experiments were conducted to evaluate the cumulus parameterization schemes, such as BMJ, SAS and KFeta. The results show that BMJ and KFeta can simulate the precipitation that consistents with the observation, while SAS is relatively poor. The potential temperature errors of the middle and upper troposphere simulated by BMJ are smaller, but cool bias of the lower troposphere is serious, meanwhile, it has stronger ability to transport water vapor upward which leads to the lower troposphere drier, middle and high troposphere wetter, so that the atmosphere adjusted by BMJ is too stable. KFeta has a trend to be cooler and wetter at lower troposphere and mainly produces cold bias, but the magnitude of lower troposphere is smaller compared to other schemes, at upper levels serious cool bias is caused by excessive overshoot. In order to solve the problem of KFeta excessive overshoot, this

* 国家自然科学基金(41275104)、公益性行业(气象)科研专项(GYHY201106044、GYHY200706045 和 GYHY201006016)共同资助
 2011 年 11 月 30 日收稿; 2012 年 8 月 4 日收修定稿
 第一作者:王德立,主要从事数值天气模式物理过程研究. Email:wangdeli85@126.com
 通信作者:徐国强,主要从事数值预报物理过程研究. Email:xugq@cma.gov.cn

paper proposes a new modified scheme in which the vertical velocity equation is modified, and the modified scheme proposed by Anderson et al. also is examined. Numerical experiments show that both modified schemes can reduce high-level cold bias effectively; In general, the new modified scheme is more satisfactory.

Key words: GRAPES_SCM, cumulus parameterization scheme, GCSS WG4, KFeta Scheme

引 言

众所周知,积云对流过程是大气中重要的过程, 它通过感热、潜热和动量输送等反馈作用影响大尺 度环流,并在决定大气温度、湿度场的垂直结构中起 着关键的作用,也影响大众最为关心的降水预报。 由于数值模式分辨率的限制,一般数值模式中要求 对积云对流过程进行参数化。由于现有模式的模拟 结果对积云对流参数化方案的选择极为敏感,研究 积云参数化方案对提高模式性能有重要意义。

积云参数化方案的评价研究是积云参数化方案 研究的重要内容,它为积云参数化方案的应用、改进 和研发提供依据。评价积云参数化方案的研究方法 主要有三种,第一种是完全预报法,即是采用一般的 数值模式给定初始场和边界条件进行积分,将积分 结果跟观测比较。这种方法是评价积云参数化方案 的最基本方法,但是,这种评价方法的缺点也是明显 的。在完整的数值模式积分过程中,不仅包含了初 始场和边界条件的误差,也包含模式动力过程、其他 物理过程参数化方案造成的误差,因此无法将结果 优劣完全归因于积云参数化方案(Lord,1982)。第 二种方法是半预报方法(Lord, 1982; Ramanathan, 1980),即在某一给定观测时间,由观测估计的大尺 度平流项、地表通量和辐射加热等变量驱动积云参 数化方案,将获得的降水、视热源和视湿汇等变量跟 观测相比较,来判断积云参数化方案的优劣。半预 报方案的优点是明显的,不包含模式动力过程产生 误差,也没有其他物理过程参数化方案造成的误差, 因此方便诊断检查积云参数化方案问题所在。第三 种方法是使用单柱模式进行评价,单柱模式(Single Column Model, SCM),由 Betts 等(1986)提出,是 只有一个维度(垂直方向)的模式,相当于数值模式 中的一个格点柱,但同时又可以独立于数值模式的 其他部分,其预报方程为

 $\frac{\partial A}{\partial t} = \frac{\partial A}{\partial t} \bigg|_{\rm LS} + \frac{\partial A}{\partial t} \bigg|_{\rm PHY}$

其中,A表示水平动量、位温和水汽混合比等预报变 量,下标 LS 表示由观测给定的随时间变化的大尺 度强迫项,下标 PHY 表示物理过程参数化方案产 生的倾向项。因此,单柱模式在积分时,不仅要由观 测提供大尺度热力和动力初始条件,也要由观测提 供随时间变化的大尺度强迫项。利用单柱模式评价 的方法,与完全预报方法相比,不需要考虑物理过程 对大尺度动力过程反馈作用,不包含在完整模式中 动力过程产生的误差;与半预报方法相比,因单柱模 式可以包含一整套物理过程,可以方便地考察积云 参数化方案与其他物理过程的耦合情况。显然,利 用单柱模式进行评价的方法是介于完全预报和半预 报之间的方法。目前,国内对积云参数化方案的评 价方法主要采用完全预报方法(王建捷等,2001;徐 国强等,2005),这主要是因为一方面这些研究更注 重为积云参数化方案的应用方面服务,而较少着重 于对积云参数化方案的改进或研制研究,另一方面 也是因为使用半预报方法和单柱模式对资料质量要 求较高,不易获取。

我国自主研发的 GRAPES 模式在实际业务中 表现良好,值得进一步发展(熊秋芬,2011;纪永明 等,2011;陈超君等,2012)。杨军丽等(2012)基于 GRAPES 全球模式建立了单柱模式(GRAPES_ SCM),该单柱模式性能良好,可用于检验和改进 GRAPES 模式中各种物理过程参数化方案,从而最 终提升 GRAPES 模式性能。因此本文采用该单柱 模式,利用 GCSS WG4 第三次个例模拟所用资料 (Krueger et al, 1999),对 GRAPES 模式中的 Betts-Miller-Janjic 方案(Betts et al, 1986; Janjic, 1994)、 Kain-Fritsch eta 方案(Kain et al, 1990; Kain, 2004) 和 Simplified Arakawa-Schubert 方案(Arakawa et al,1974;Grell,1993)进行数值试验分析,评价各方 案的优缺点,并据此对 Kain-Fritsch eta 方案进行修 改,将修改后的方案放入单柱模式和 GRAPES_meso 模式(陈德辉等,2008;徐国强等,2008)进行检 验,以期得到有正效果的修改方案。

1 积云参数化方案简介

1.1 Betts-Miller-Janjic 方案(简称 BMJ 方案)

该方案是由 Betts-Miller 方案改进而来。 Betts-Miller方案是一种成熟的对流调整方案,其深 对流采用修正的湿绝热线,浅对流则采用混合线作 为最初猜想的对流调整参考廓线,然后再根据深对 流湿静态能守恒,浅对流无降雨发生等制约条件对 初始参考廓线调整得出最终的对流参考廓线。Janjic(1994)为了解决 Betts-Miller方案在实际应用中 的一些问题,对 Betts-Miller方案进行改进,形成所 谓的 Betts-Miller-Janjic方案。相对 Betts-Miller方 案,该方案主要修改有:(1)引入无量纲参数云效 (cloud efficiency)来表示对流组织性质,云效取决 于熵的变化、降水量和云的平均温度。深对流参考 廓线和松弛调整时间都根据云效的变化而变化;(2) 浅对流湿度参考廓线则保证熵的变化最小且非负。

1.2 Kain-Fritsch eta 方案(简称 KFeta 方案)

Kain-Fristch eta 方案是 Kain-Fritsch 方案的 改进版本。Kain-Fritsch 方案采用深对流在一定时 间内消耗大部分(约 90%)对流有效位能的假定作 为闭合假设,采用一个简单一维云模式来计算积云 对流对网格尺度的反馈效应。该云模式包含湿上升 流和湿下沉气流,还包含相对简单的微物理过程。 通过浮力分类机制来决定上升气流与环境的双向质 量交换(卷入和卷出),这是 Kain-Fritsch 方案的一 大特征。KFeta 方案对 Kain-Fritsch 方案主要改进 包括:引入浅对流过程、设定夹卷率下限和修改下沉 气流部分。

Simplified Arakawa-Schubert 方案(简称 SAS 方案)

该方案是 Grell(1993)根据 Arakawa-Schubert 方案(Arakawa et al, 1974)简化修改而成的。在 SAS方案中不再采用在一个格点中存在理想云谱 的假定,而是将之简化成只允许一种云存在(即深对 流或者浅对流)的假定。深对流包含上升气流和下 沉气流,采用准平衡假设作为闭合假设,分为动力控 制部分、静力控制部分和反馈部分。静力控制部分 主要包含云模式,计算云的热力性质;动力控制部分 决定对流的位置和大小;反馈部分则决定加热和减 湿的垂直分布。

2 数值试验设计

2.1 资料

单柱模式所用的资料为(Global Energy and Water Cycle Experiment Cloud System Study Working Group 4,GCSS WG4)第三次个例模拟所用资料。该资料来自(Atmospheric Radiation Measurement Program,ARM 计划)美国南部大平 原地区(观测场地中心位于 36.61°N、97.49°W) 1997年夏季的(Intensive Observing Period,IOP,6 月 18 日 23:30 至 7 月 17 日 23:30 UTC)。该观测数据集提供了包括局地对流和频繁大雨天气以及受大尺度对流和持续降水混合影响的天气在内的中纬 度夏季天气过程事件(Cederwall et al,1999),非常适合用于评价积云参数化方案性能的研究。

2.2 试验设计

本文所用的单柱模式跟文献(杨军丽等,2012) 中所用单柱模式基本一致,只是 Exner 气压变量设 置稍有差别,与原来 Exner 气压变量在积分过程中 保持不变不同,在本文中 Exner 气压变量在 3000 m 高度以下为模式变量诊断所得。

辐射方案采用 RRTMG,微物理方案采用 WSM6,边界层方案采用 MRF,陆面方案采用 CoLM,不同的试验除了采用不同积云参数化方案 外,其他配置相同。

为了减少积分误差,参照文献(杨军丽等, 2012),分为4个子时间段进行模拟。子时间段1对 应的时间分别为世界时6月22日23:30至6月26 日23:30,子时间段2对应的时间为6月26日23: 30至30日23:30,子时间段3对应的时间为7月7 日23:30至12日23:30,子时间段4对应的时间为 7月12日23:30至17日23:30。

与文献(杨军丽等,2012)类似,为了克服单柱模 式对初始条件的敏感性,各个子时间段的初始场由 对应时间的观测给定后,通过在大气边界层(本研究 取为2km)内用标准差为0.5K的位温的随机序列 扰动和标准差为0.5g•kg⁻¹的水汽混合比的随机 序列扰动对位温和水汽混合比的初始场进行扰动, 这样可以得到多个不同初始场的样本,但本文采用 的扰动为伪随机序列扰动,这样既保证了初始场的 随机性,又保证了不同试验对应样本初始场的一致。 各个试验结果为 20 个样本的平均。

3 结果分析

3.1 降水分析

降水是评价积云参数化方案性能的重要参数之一,因此下面先看不同积云参数化方案模拟降水情况。子时间段1主要经历了3次降水过程,其中第 三次最强,达到2.5 mm • h⁻¹。从图1a可以看出, KFeta和BMJ方案都很好地模拟出子时间段1的3 个降水事件,而 SAS 方案则没有模拟出子时间段 1 的第二个降水事件,随后还模拟出了 1 mm • h⁻¹左 右的虚假降水。子时间段 2 经历了 2 弱 1 强的降水 过程,对于子时间段 2 的强降水过程,KFeta 和 BMJ 方案模拟的降水都跟观测非常的接近,达到 3 mm • h⁻¹,而 SAS 方案模拟的降水则明显小于观测,不 到 1.5 mm • h⁻¹。子时间段 3 主要经历了 3 个强度 相当的降水过程,强度在 1 mm • h⁻¹左右,KFeta 和 BMJ 方案都能较好地模拟出后两个降水过程,但是 第一个降水过程则模拟的强度过小,且启动较慢,随 后还模拟出了强度为 1 mm • h⁻¹的虚假降水,SAS 方案则完全没有模拟出第一次降水过程。对于子时 间段 4,KFeta 方案模拟的效果比较好,能模拟出这 个时间段主要降水特征,而SAS方案模拟的降水明

Fig. 1 Time series of rainfall $(a-d, unit: mm \cdot h^{-1})$ for subcases 1-4 with different cumulus parameterization schemes

显偏小。

表1给出了不同方案在4个子时间段内产生的 累积降水。可以看出,BMJ方案倾向于产生比观测 多的降水,比如子时间段1观测的累积降水为 37.24 mm,而 BMJ 模拟为44.6 mm,子时间段3观 测的累积降水为20.86 mm,BMJ方案则为31.48 mm。KFeta方案产生的累积降水量则跟观测值大 致相当。SAS方案则在子时间段4模拟的降水严 重偏小,只有8.75 mm,跟观测相差约12 mm。

表 1 累积降水 (单位:mm) Table 1 Accumulated rainfall in simulation

and observation (unit; mm)						
	子时间段	子时间段	子时间段	子时间段		
	1	2	3	4		
观测	37.24	32.79	20.86	20.86		
SAS	39.95	30.61	22.37	8.75		
BMJ	44.60	33.98	31.48	23.67		
KFeta	37.95	30.34	23.68	17.03		
KFeta_flux	37.21	29.64	21.49	13.41		
KFeta_w	38.55	30.77	23.89	17.59		

表 2 给出了 4 个子时间段不同方案模拟降水和 观测的相关系数和均方根误差。可以看出,除了 SAS 方案在子时间段 3 和 4 模拟的降水的相关系 数达不到显著相关外,其他方案在 4 个子时间段中 模拟降水的相关系数都通过了 0.001 的显著性检 验。

从上面的分析可以看出,不同方案对子时间段

1 和 2 的降水模拟的效果好,而子时间段 3 和 4 的 相对较差。这可能与子时间段 3 和 4 观测区域的平 均大尺度强迫不能很好地反映典型的强对流复合体 的热力结构特征有关(Xie et al,2002)。当然,除了 大尺度条件的不适当外,SAS 方案在子时间段 3 和 4 模拟的降水较差还可能与其激发机制有关,需要 更进一步的探讨。

表 2 模拟的降水与观测的相关系数和均方机	根误差
-----------------------	-----

Table 2	The correlation	coefficients an	d root-mean-square error	(RMSE)
---------	-----------------	-----------------	--------------------------	--------

of simulated rainfall with observation

	子时间段1		子时间段 2		子时间段 3		子时间段 4	
-	相关系数	RMSE	相关系数	RMSE	相关系数	RMSE	相关系数	RMSE
SAS	0.76	0.44	0.70	0.54	0.13	0.33	0.002	0.30
BMJ	0.87	0.32	0.93	0.31	0.67	0.31	0.67	0.24
KFeta	0.80	0.43	0.89	0.34	0.58	0.34	0.70	0.18
KFeta_flux	0.88	0.29	0.84	0.41	0.55	0.31	0.76	0.18
KFeta_w	0.77	0.41	0.91	0.32	0.54	0.33	0.65	0.20

3.2 位温和水汽混合比误差分析

积云参数化方案的主要目的就是在条件允许的 情况下(积云参数化方案被激发),通过调整温湿廓 线,形成降水,消除(或减弱)条件不稳定。因此积云 参数化方案对大气的温湿廓线必然有重要的影响。 图 2 给出了时间平均位温和水汽混合比误差的垂直 廓线。总的来看,不同方案的平均位温误差幅度在 -8~8 K内,水汽平均误差在低层最大,但也在-3 ~3g•kg⁻¹范围内,在10 km以上高度水汽误差接 近于零,这些结果与文献(Arakawa et al,1974)类 似。

从图 2 可以看出, BMJ 试验在子时间段 1~3 模拟的位温在 4 km 高度以下偏冷,幅度可以达到 -4~-2 K 之间,在 4~9 km 高度之间则误差较 小,主要表现为偏暖,特别是在子时间段 3, BMJ 方 案模拟的位温在 4~10 km 之间平均误差接近于 零。在子时间段 4, BMJ 试验模拟的位温在 0.5 km 高度以下存在着浅薄的偏暖层,在 0.5~11 km 之 间则表现为偏冷,误差的极大值在 2~3 km 高度 处,接近-4 K。从湿度误差来看, BMJ 试验在子时 间段 2~4 表现为低层偏干,在子时间段 1 则偏湿, 但相比于其他方案偏湿幅度最小。BMJ 试验在 4 个子时间段在 1.5 km 高度以上都表现为偏湿,这 体现了 BMJ 方案具有较强的水汽垂直输送能力。 从 BMJ 试验模拟温湿误差垂直结构(低层偏冷偏 干,中高层偏暖偏湿)可以看出,与实际观测相比,经 BMJ方案调整的大气层过于稳定。

KFeta 试验模拟的位温总体表现为偏冷,在 10 km 高度以下误差较小,3 km 高度以下位温误差 相比其他方案最小,但是在 12~14 km 处则总是比 其他两个方案偏冷,造成较大的误差。在湿度上,我 们还很容易看出 KFeta 试验相对于其他试验对流 层低层偏湿,只有在子时间段 4 偏干,但其偏干的幅 度依然小于 BMJ 和 SAS 试验。

SAS试验在子时间段1和2位温误差相对小, 整层主要表现为偏冷,但是后两个子时间段模拟的 位温在对流层7~9 km高度处偏冷严重,误差可以 达到-6 K左右,低层则偏暖。SAS试验在子时间 段1和2主要表现为偏湿,后两子时间段在1.5 km 高度以下都偏干,其中在子时间段4湿度误差达到 了-2.5 g·kg⁻¹。SAS方案在子时间段4的激发 不足与低层偏干和SAS方案在子时间段4的激发 不足与低层偏干和SAS方案在激发机制有很大关系。 与其他两方案相比,SAS方案在激发机制上的特点 是既限制了自由对流层与气块起始层之间高度差, 同时也考虑了上升气块对云下空气较为强烈的卷夹 作用,因此SAS方案在对流层低层偏干环境中激发 则更为吃力。

从上面分析可以得出,不同的积云参数化方案 可以产生很不相同大气温湿误差廓线,其中 BMJ 方 案模拟的大气层结过于稳定,低层偏冷偏干,中高层 则偏湿;KFeta 方案则表现为高层偏冷,低层偏冷偏 湿,但低层偏冷的程度小于 BMJ 方案。KFeta 和 BMJ 方案这些性能似乎能够在一定程度上说明在 许多台风模拟研究中(Li et al,2009; Davis et al, 2002; Deshpande et al,2010)发现使用 KFeta(或者 KF)方案模拟的台风要强于使用 BMJ 方案模拟的 台风强度的原因:与 KFeta 方案相比, BMJ 方案使 得台风环境气层低层更加倾向于偏冷偏干, 不利于 台风的加深发展。Liu 等(2001)利用 Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA CORE)的观测 资料同样发现了 KF 方案产生类似的误差,即高层 偏冷,低层偏湿。对于 KFeta 方案这些性能,我们 后面还要做一些相对深入的分析。

Fig. 2 Profiles of time-averaged potential temperature errors (a-d, unit: K) and water vapor mixing ratio errors (e-h, unit: $g \cdot kg^{-1}$) for subcases 1-4 of different cumulus parameterization schemes

3.3 视热源和视湿汇分析

视热源 Q₁ 主要是由辐射加热率、水汽的净凝 结产生的潜热和涡动垂直输送感热造成,而视湿汇 Q₂则是由水汽的净凝结和水汽的涡动垂直输送水 汽造成。当大气中存在对流活动时,可以较好地用 这两个变量考察积云对流对大尺度环境温度和湿度 的反馈作用。 为了简化起见,下面只分析子时间段 2。图 3 给出了子时间段 2 各个试验 Q₁ 和 Q₂ 的时间平均 值,以及积云参数化方案对 Q₁ 和 Q₂ 贡献部分 Q₁。 和 Q₂。廓线图(分别由积云参数化方案对模式反馈 的温度和湿度倾向所求得)。由图 3 可以看出,在子 时间段 2 中,不同方案模拟的 Q₁ 在 400 hPa 附近达 到最大,可以达到 4 K·d⁻¹左右,与观测的值都相 当接近,这主要是由于大尺度平流项都是由观测给 定的,同时也可以看出,不同方案模拟的 Q₁ 比观测 的 Q₁ 稍微小,这说明了模拟的位温相对观测相对 偏冷的原因。同时也可以看出,积云对流过程造成 的对流加热 Q₁。占据了 Q₁ 的主要部分。同时也可 以细心的发现,KF 方案模拟的 Q₁。在对流层上部 (200 hPa 以上)为负的视热源,表现为降温作用,说 明了 KFeta 方案模拟的对流层上部位温偏小主要 是 KF 方案的对流加热调整造成的。

在子时间段 2,不同方案模拟的 Q2 在 700 hPa

以上与观测值非常符合,但是在 700 hPa下,则相差 较大,不同方案模拟 Q_2 都比观测值小,其中 KFeta 方案模拟的 Q_2 比其他方案都弱。 Q_2 小,说明减湿 能力相对小,因此造成 KFeta 方案模拟对流底层相 对湿润。比较图 3c 和 3d,可以发现 Q_2 和 Q_{2c} 差别 还是比较大的,比如 BMJ 方案模拟的 Q_{2c} 在对流层 底层达到 12 K·d⁻¹,但是 Q_2 则才 3 K·d⁻¹左右, 这说明在对流层底层除了积云的减湿作用外,还有 其他过程比如湍流过程对湿度产生重大影响。

图 3 子时间段 2 的模拟和观测的时间平均垂直廓线(单位: $K \cdot d^{-1}$) (a) Q_1 ,(b) Q_{1c} ,(c) Q_2 和(d) Q_{2c} Fig. 3 Vertical profiles of time-averaged: (a) Q_1 , (b) Q_{1c} , (c) Q_2 ,

and (d) Q_{2c} over subcase 2 (unit: K • d⁻¹)

为了进一步考察不同积云参数化方案的性能, 图 4 给出了子时间段 2 不同方案向单柱模式反馈的 温度倾向(即 Q_{1s})和湿度倾向(即 Q_{2s})的高度-时间 图,为了方便比较和凸显积云作用,已经将温度倾向 和湿度倾向的单位转化成 K • d⁻¹,分别表示了积 云的加热效应和减湿效应,注意减湿效应正值表示 湿度倾向为负,体现的是减湿作用,负值则相反。从 该图中可以看出积云参数化方案的激发情况(激发 强度和云顶高度等随时间的变化)。从图 4a,4c 和 4e可以看出,尽管不同方案都能很好地模拟出降 水,但是不同方案的激发仍体现出很大的不同。从 图 4a 和 4b 中可以看出, SAS 方案在 6 月 27 日 00 时到28日11时(UTC,下同)之间激发出浅对流, 浅对流云顶高度在3 km 左右,表现为浅对流上部 冷却加湿,下部加热减湿,意味着在浅对流中,热量 向下输送,水汽则向上输送。BMJ 方案也在 28 日 00 时之前激发出浅对流,其效应与 SAS 方案类似,

都表现热量向下输送,水汽向上输送。考虑到27日 18 时观测已经开始出现降水,在27日00时到28 日 00 时之间模拟出浅对流有一定的合理性,而 BMJ 方案在 28 日 00 时就开始激发出深对流,则与 观测更为相符。KFeta 方案在 28 日 08 时之时才开 始激发出深对流,之前并无激发对流,因此与其他方 案相比,KFeta 方案的浅对流激发频率偏低。从激 发的深对流来看,与其他方案相比,KFeta 方案激发 频率仍偏低,但是模拟的深对流则更为强盛。加热 效应的高度体现着积云参数化方案模拟的云顶高 度。在子时间段 2 中, BMJ 模拟的深对流云顶高度 在13 km 左右以下, SAS 方案则相对高, 可以达到 14 km, KFeta 方案模拟的云顶高度最高,可以到 16 km 左右,同时在 KFeta 方案中模拟强对流顶 部,还存在着强烈的冷却作用。这是由于 KFeta 方 案允许对流穿透,所谓的对流穿透,是指当云体的温 度小于环境温度时,仍可以上升,直到云体垂直速度 等于 0,因此 KFeta 方案模拟的云顶较高。允许对 流穿透,存在物理合理性,但是从产生的云高以及位 温偏差来看,KFeta方案模拟的对流穿透无疑是过强的,这跟Liu等(2001)研究结果一致。

Fig. 4 The time-height SAS (a, b), KFeta (c, d) and BMJ (e, f) parameterized convective heating (a,c,e) and drying (b,d,f) effect (unit: K • d⁻¹) over subcase 2

Liu 等(2001)认为,KF 方案造成低层偏湿的原 因主要是 KF 方案缺少模拟浅对流和层积云的能力 (KF 方案不包含浅对流)。现 KFeta 方案虽引入浅 对流方案,但前面分析表明其浅对流激发频率偏低。 由于浅对流的作用是在低层向上输送水汽,因此浅 对流方案的缺失或激发频率过低也是造成低层偏湿的一个因素。相对于其他两个方案,BMJ方案则偏向于在对流层上部产生较强的减湿效应负值(图 4f),造成对流层上部偏湿,对流低层则偏干。

图 5 (a)可以产生强对流的温度(单位:℃)、露点温度(单位:℃)和风标(单位:m・s⁻¹)的垂直廓线, (b)KFeta 方案模拟的垂直速度(单位:m・s⁻¹),(c)上升气流的质量通量(单位:g・m⁻²・s)和 (d)对流加热廓线(单位:K・d⁻¹)

Fig. 5 (a) The profiles of temperature (unit: C), dewpoint temperature (unit: C) and wind barbs (unit: m • s⁻¹) that can produce severe convection, (b) parameterized vertical velocity (unit: m • s⁻¹), (c) parameterized updraft mass flux (unit: g • m⁻² • s),
(d) parameterized convective heating profile (unit: K • d⁻¹)

4 KFeta 方案的修改试验

4.1 KFeta 方案的修改

4.1.1 KFeta 修改方案1

前面的研究表明,KFeta 方案存在着因模拟的 对流穿透过强导致对流层上部偏冷的问题。由于在 KFeta 方案中垂直速度方程控制对流穿透,因此可 以考虑修改其垂直速度方程来解决这一问题。估算 积云的垂直速度向来是个棘手的问题,一则缺少观 测资料,对积云对流的垂直速度大小缺少认识,二则 影响积云垂直速度的因素除了浮力外还有气压扰动、 湍流动能增长和夹卷作用等(Gregory et al,2001),这 些因素估算也是让人头疼的问题。Simpson等(1969) 提出积云对流的垂直速度方程可以写成

$$rac{1}{2} rac{\mathrm{d} w_u^2}{\mathrm{d} z} = rac{g}{(1+\gamma)} \Big(rac{T_u - \overline{T}}{\overline{T}} - \gamma_h \Big) -$$

 $w_u^2 \lambda - \beta C_d w_u^2 \lambda \tag{1}$

式中, w_u 为云的垂直速度, T_u 为云的上升气流的虚 温, \overline{T} 为环境虚温度, γ_h 为云中所包含水凝物的混 合比,g 为重力加速度, $\gamma=0.5$, λ 为环境空气卷入 率,单位为 m⁻¹, $\beta=1.875$, $C_d=0.5$ 。其中方程右边 第一项为浮力项,为了模拟湍流效应,将浮力项减为 原来的(1+ γ)⁻¹,第二项为夹卷项,第三项是为体现 气压扰动因素对垂直速度影响而引入的项。

KFeta 方案中的垂直速度方程与式(1)类似,但 是缺少方程右边第三项。因此本研究对 KFeta 方 案垂直速度的算法做了以下修改:(1)引入表示气压 扰动效应项,即加入式(1)中右边第三项;(2)在试验 中发现,做了修改(1)后,虽垂直速度有所减小,但是 仍然穿透过强,因此参考欧洲中心的积云参数化方 案(ECMWF: IFS document-Cy36r1)中求对流上升 气流垂直速度的算法,将浮力项削减为原来的(2+ 2γ)⁻¹,即加强了湍流作用对垂直速度的影响;(3)在 KFeta 方案中,λ 与模式层之间的气压差成正比,因 此,λ随高度倾向于减小,可以从云底的 2×10⁻⁴ m^{-1} 到云顶附近减到 0.5×10⁻⁴ m^{-1} ,使得在高层垂 直速度的变化越来越依赖浮力项,进而加剧了积云 对流穿透,为了克服这个缺点,在计算垂直速度时, 将λ最小值设置为 1.5×10⁻⁴ m⁻¹;(4)在 KFeta 方 案中上升气流中水凝物在某一模式层内换成降水的 多少与 cdz/w 成正比,其中 dz 模式层厚度,w 为上 升气流垂直速度,c为系数,其值一般为 0.01~ 0.03 s⁻¹,原方案设置为 0.03 s⁻¹,修改垂直速度方 程后,KFeta 方案模拟垂直速度减小,为了不致使模 拟的降水偏高,将 c 系数设置成 0.02 s⁻¹。这种修 改云的垂直速度后的方案简记为 KFeta_w。

4.1.2 KFeta 修改方案 2

Anderson 等(2007)认为可以通过修改 KFeta 方案的流出层来减缓 KFeta 方案对流穿透过强的问题。在 KFeta 方案中,上升气流质量通量在流出层线 性递减为零。Anderson 等提出的修改如下:将流出 层的底层设定在网格相当位温最小的层和融化层 (ML)中比较低的层,并且在流出层中,上升气流质量 通量随气压的自然对数线性递减而不是原来的随气 压线性递减。Anderson 的修改方案记为 KFeta_flux。

4.2 修改的 KFeta 方案单廓线的检验

把前面单柱模式积分过程中(子时间段 2)可以 产生强对流的某一垂直廓线输出(图 5),用来简单 诊断和讨论修改对 KFeta 方案的影响。

从图 5a 可以看出该廓线情形下,大气环境比较 湿润,存在着非常大的对流不稳定能量。原 KFeta 方案模拟的云顶高度达到 15 km,最大垂直速度达 到 40 m \cdot s⁻¹,位于 11 km 左右(图 5b),对应的加热 廓线在 9 km 高度左右达到 260 K · d⁻¹,紧接着在 14~15 km 高度上出现强烈的冷却作用,达到 $-250 \text{ K} \cdot d^{-1}$ 左右(图 5d)。修改垂直速度方程后, 其最大垂直速度减小到18.7 m·s⁻¹,出现在10 km 高度,相应其云顶高度大约在 13.3 km 高度,加热 廓线在云顶附近的强烈冷却作用已经大为减小,最 强的为-100 K · d⁻¹。Anderson 等修改显然对垂直 速度和云顶高度没有影响,因其修改的是流出层,因 此对上升气流的质量通量影响尤为明显(见图 5c),其 模拟的上升质量通量在 4 km 左右就开始随高度线性 递减,由于模拟的云上部质量通量变小,对应的卷出 也变小,故使得积云对环境的影响减小,如图 5d 所 示,KFeta_flux 试验模拟的加热廓线最大幅度小于 100 K · d⁻¹,冷却作用也在-60 K · d⁻¹左右。

以上分析表明,本文提出的修改云的垂直速度 的方案和 Anderson 提出的修改方案都对 KFeta 方 案对流穿透过强的现象有了明显改进。

4.3 修改的 KFeta 方案在单柱模式中的检验

为了进一步检验以上两种修改对KFeta方案的影响,下面将两种修改放到单柱模式中,重复前面 模拟的试验,检验效果。

图 6 给出了位温和水汽混合比平均误差的垂直 廓线。可以看出,修改垂直速度方程后,能有效减少 12~14 km 处的位温误差,对湿度则影响不大。 Anderson 等的修改虽然可以减少 12~14 km 处的 位温误差,但也同时加大了在 7~12 km 处的位温 误差,这主要是由于该修改减小上升气流的质量通 量,增加了卷出,从而减小了中上层加热效应,同理 该修改也使得其模拟水汽混合比在 7~12 km 之间 相对于原方案偏湿。从图 7 及表 1 可以看出,修改 垂直速度后,对降水影响不大;Anderson 修改模拟 的降水在子时间段 3 和 4 较明显的减少。

4.4 GRAPES_meso 模式的个例试验

为了进一步考察上述两种修改对 KFeta 方案 性能的影响,本文选取 2007 年 7 月 7 日 00 时 (UTC,下同)至8日00时发生在安徽和江苏一带

的梅雨暴雨过程作为实际个例使用 GRAPES_meso 模式进行模拟。采用 NCEP 1°×1°的 6 h 一次的再 分析资料为初始场和边界场,陆面方案采用 Noah 方案,边界层方案采用 YSU 方案,微物理方案采用 WSM6 方案,分辨率为 0.15°,积分区域为 10°~ 47.35°N、85°~137.35°E,起报时间为 7 日 00 时,积 分 24 h。相应的试验采用相应的积云参数化方案, 其他模式配置完全一致。

图 8 给出了 2007 年 7 月 8 日 00 时的 24 h 累积 降水分布。观测的降水资料为站点加密资料。可以 看出,原方案很好地模拟了位于安徽和江苏地区梅 雨暴雨过程,但是降水量偏大。KFeta_w 试验对降 水的分布影响不大,KFeta_flux 试验则由于减小了 方案中的上升气流质量通量,因此使模拟的暴雨中 心降水有所减小,低于观测。

由于此处主要关注的是修正原方案在高层产生的负位温误差,因此图 9 给出 7 月 8 日 00 时不同方案预报的 100 hPa 位温与 FNL 再分析资料的位温差异分布。从图 9 可以看出,KFeta 试验在安徽北

部上空存在着-8 K的位温偏差,在江苏及东海上 空存在着-6 K的位温偏差,两种修改都能有效 地降低该处的位温偏差,冷误差的范围也有效的减 小。

5 结论和讨论

本文利用 GRAPES 单柱模式,采用 GCSS WG4 第三次个例模拟的观测数据,考察了积云参数 化方案 SAS、KFeta 和 BMJ 方案对模拟的影响,并 取得了一些有意义的结论。KFeta 方案和 BMJ 方 案都能较好地模拟出与实际相符的降水,但在模拟 的温度和湿度上都体现出很大的不同。BMJ 方案 虽然在对流层中高层位温误差较小,但低层偏冷严 重,同时,BMJ 方案具有较强的水汽向上输送能力, 易造成低层偏干,中高层偏湿,因此 BMJ 方案模拟 的大气层结过于稳定。KFeta 方案模拟的位温误差 总的来说在低层相对于其他方案较小,在对流层高 层则由于对流穿透过强导致偏冷严重,同时KFeta

Fig. 9 Potential temperature bias (unit:K) between simulated and NCEP FNL data at of 100 hPa at 00 UTC 8 June 2007(a) KFeta, (b)KFeta_w and (c) KFeta_flux

方案在低层有偏湿的倾向,这可能跟 KFeta 方案浅 对流激发频率过低有关。SAS 方案在子时间段 1 和 2 模拟出合理的降水,但在子时间段 3 和 4 则深 对流激发不当,特别是子时间段 4 模拟的降水严重 偏少,除大尺度强迫场的原因外,该试验模拟的低层 偏干以及 SAS 方案激发机制较为严格是造成 SAS 深对流激发不足的重要原因。相应,SAS 试验在子时间段 3 和 4 在 6 ~ 11 km 之间则偏冷严重, 1.5 km 高度以下则偏干。以上这些结果和结论为 改进和研制积云参数化方案提供了参考。

本文针对 KFeta 方案穿透过强问题,提出了一种新的修改方案,即修改该方案中的垂直速度方程, 添加表征气压扰动影响项,加强湍流作用,并对方程 中的环境卷夹率设定下限,修改后的方案减小了模 拟的垂直速度,减弱了穿透强度,从而减小了因穿透 过强造成云顶偏冷的程度,通过单廓线试验、单柱模 式试验和 GRAPES_meso 的一个实际个例试验表 明修改后的方案能有效地改进对流层高层处的位温 模拟。本文同时考察了 Anderson 等提出的修改, 由于其修改是减小该方案中的上升气流质量通量, 虽然能有效减少高层位温误差,但是易造成中高层 偏冷,在实际模拟中也可能会造成降水量偏少的问 题。综合来看,本文提出的修改方案的预报效果更 令人满意。

本文只是对单柱模式试验简单的分析,并且将 重点放在了 KFeta 方案中,对于 BMJ 和 SAS 方案 体现出来的性质和问题则需要更深入分析,需要更 多的个例模拟验证。研发适合东亚季风区的积云参 数化方案是国内许多气象学者努力的方向(薛建军 等,1999;许习华等,1999;左瑞亭等,2008)等,如能 获取适合表征东亚地区对流系统的观测资料用于单 柱模式检验积云参数化方案,这将为积云对流参数 化方案的研究提供非常大的便利。

致谢:特别感谢杨军丽博士提供 GRAPES 单柱模式, 并指导该模式的运行。特别感谢审稿专家提出的宝贵意见。

参考文献

陈超君,王东海,李国平,等.2012.冬季高海拔复杂地形下 GRAPES _Meso 要素预报的检验评估. 气象,38(6):657-668.

- 陈德辉,薛纪善,杨学胜,等.2008. GRAPES 新一代全球/区域多尺 度统一数值预报模式总体设计研究.科学通报,53(20):2396-2407.
- 纪永明,陈静,矫梅燕,等.2011. 基于多中心 TIGGE 资料的区域 GRAPES 集合预报初步试验. 气象,37(4):392-402.
- 王建捷,胡欣,郭肖容.2001. MM5 模式中不同对流参数化方案的对 比试验.应用气象学报,12(1):41-53.
- 熊秋芬. 2011. GRAPES_Meso 模式的降水格点检验和站点检验分 析. 气象, 37(2):185-193.
- 徐国强,陈德辉,薛纪善,等.2008. GRAPES 物理过程的优化试验及 程序结构设计. 科学通报,53(20):2328-2434.

徐国强,黄丽萍,薛纪善,等.2005.中国冬夏季模式降水方案的应用

分析研究. 气象学报,63(1):49-56.

- 许习华,丁一汇.1999.一种考虑云相互作用的积云对流参数化方案 及其在降水预报中的应用.中国科学(B辑),9:998-1008.
- 薛建军, 闫之辉. 1999. 一种改进的质量通量积云参数化方案及其预 报试验. 气象, 25(5):8-11.
- 杨军丽,沈学顺.2012. GRAPES 单柱模式的试验研究. 气象学报,70 (2):275-290.
- 左瑞亭,王丽琼,钱贞成,等.2008.当前对流参数化研究存在问题的 讨论.热带气象学报,24(6):732-736.
- Anderson C J, Arritt R W, Kain J S. 2007. An alternative mass flux profile in the Kain-Fritsch convective parameterization and its effects in seasonal precipitation. J Hydrometeor, 8:1128-1140.
- Arakawa A, Schubert W H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci, 31:674-701.
- Betts A K. 1986. A new convective adjustment scheme. Part I: Observation and theoretical basis. Quart J Roy Meteor Soc, 112: 677-691.
- Betts A K, Miller M J. 1986. A new convective adjustment scheme. Part II: single column test using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart J R Met Soc, 112:693-709.
- Cederwall R T, Rodriques D J, Krueger S K, et al. 1999. The ARM-GCSS intercomparison study of single-column models and cloud system models. 9th Atmospheric Radiation Measurement Science Team Meeting, San Antonio, TX(US).
- Davis C, Bosart L F. 2002. Numerical simulations of the Genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon Wea Rev, 130:1100-1124.
- Deshpande M, Pattnaik S, Salvekar P S. 2010. Impact of physical parameterization schemes on numerical simulation of supper cyclone Gonu. Nat Hazards, 55:211-231.
- ECWMF. IFS documentation-Cy36r1. Part IV: Physical processes. http://193.63.95.1/research/ifsdocs/CY36r1/PHYSICS/IFS-Part4.pdf.

- Gregory D. 2001. Estimation of entrainment rate in simple models of convective clouds. Quart J R Met Soc, 127:53-72.
- Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 121:764-787.
- Janjic Z I. 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon Wea Rev, 122(5):927-945.
- Kain J S. 2004. The Kain-Fritsch convective parameterization: An update. J Appl Meteor, 43:140-181.
- Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci,47(23):2784-2802.
- Krueger S K, Cederwall R T, Xie S C, et al. 1999. GCSS WORKing Group 4 model intercomparison, procedures for Case 3:summer 1997 ARM SCM IOP. Technical report.
- Li Xuanli, Pu Zhaoxia. 2009. Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J Meteor Soc Japan, 87(3):403-421.
- Liu C H, Moncrieff M W, Grabowski W W. 2001. Explicit and parameterized realizations of convective cloud systems in TOGA COARE. Mon Wea Rev, 129:1689-1703.
- Ramanathan Y. 1980. Cumulus parameterization in a case study of a monsoon depression. Mon Wea Rev, 108(3):313-321.
- Lord S J. 1982. Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: semi-prognostic test of the Arakawa-Schubert cumulus parameterization. J Atmos Sci, 39: 88-103.
- Simpson J, Wiggert V. 1969. Models of precipitating cumulus towers. Mon Wea Rev, 97:471-489.
- Xie Shaocheng, Xu Kuan-Man, Cederwall R T, et al. 2002. Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quart J R Met Soc, 128:1095-1135.