丁永红,冯建民,马筛艳,等. 宁夏降雪日数的气候特征和环流结构[J]. 气象,2012,38(12):1523-1531.

宁夏降雪日数的气候特征和环流结构

丁永红^{1,2} 冯建民¹ 马筛艳⁴ 郑广芬^{1,3}

1 宁夏气象防灾减灾重点实验室,银川 750002
 2 宁夏气象台,银川 750002
 3 宁夏气候中心,银川 750002
 4 宁夏气象科技服务中心,银川 750002

提要:选取常规气象观测资料和大气环流特征量,运用统计分析、最大熵谱法和相关分析方法,分析了 1961—2010 年 50 a 期间宁夏降雪日数的气候特征和影响的大气环流。结果表明:宁夏各等级降雪日数,在季节上均呈现双峰型分布,峰值点出 现在春季和秋季,冬季时,降雪等级越高,出现的概率越低;地理分布型基本一致,自北向南明显增加,高发中心与地形特征关 系密切;以非持续性1 d 的出现频率较高,随降雪量级的增大,持续时间缩短;降雪总日数减少,小雪、大雪和暴雪的降雪贡献 减少,中雪的降雪贡献增加;具有短中长不同时间尺度的周期变化。影响宁夏降雪日数的大气环流系统主要是北半球极涡、 西藏高原指数、大西洋欧洲环流型和欧亚(亚洲)环流型。与宁夏降雪日数显著相关的大气环流特征量是随季节变化的,相应 的大气环流特征也不同,但影响机制相同,均为宁夏降雪天气提供了冷空气条件和水汽条件。

关键词:宁夏,降雪日数,气候特征,大气环流

Climate Characteristics of Snowfall Day Numbers in Ningxia and Structure of Atmospheric Circulation

DING Yonghong^{1,2} FENG Jianmin¹ MA Shaiyan⁴ ZHENG Guangfen^{1,3}

1 Ningxia Key Laboratory of Preventing and Reducing Meteorological Disaster, Yinchuan 750002

2 Ningxia Meteorological Observatory, Yinchuan 750002

3 Ningxia Climate Centre, Yinchuan 750002

4 Ningxia Meteorological Service Centre, Yinchuan 750002

Abstract: Conventional observed data and the characteristic quantities of the atmospheric circulation were used to analyze the climate characteristics of snowfall day numbers in Ningxia and the affecting atmospheric circulation during the period of 1961 to 2010 by the methods of the statistic analysis, correlation analysis, and maximum entropy spectrum. The results have shown that the snowfall day numbers of each grade occurring in Ningxia have two extreme values which appear in spring and autumn. In winter, the heavier the snowfall, the lower the frequency. The geographical distribution of snowfall day numbers in different seasons is relatively consistent and increases obviously from north to south in Ningxia. High frequency centers have a strong correlation with terrain features. The frequency of non-sustained 1 d snowfall is higher, and the lasted time decreases with the increasing of snowfall grades. The total day numbers of snowfall have decreased, the contributions of light snow, heavy snow and snowstorms have reduced, however, moderate snow has the opposite trend. Different grades of snowfall have different variations of short, medium and long period. Polar vortex in the Northern Hemisphere, index of the Tibetan Plateau, European-Atlantic pattern and Eurasian circulation (Asia circulation) are the main atmospheric circulation systems influencing snowfall day numbers in

* 宁夏自然科学基金(NZ10213);宁夏科技攻关项目(KGX-12-09-02)共同资助
 2011 年 11 月 12 日收稿; 2012 年 8 月 27 日收修定稿
 第一作者:丁永红,主要从事天气预报预测及灾害性天气预报方法研究.Email:dingyonghongnx@163.com

Ningxia. The characteristic quantities of atmospheric circulation significantly correlated with snow frequency in Ningxia are season-variational, so are the characteristics of atmospheric circulation. However, the affecting mechanism is the same, supplying the cold air and water vapor.

Key words: Ningxia, snowfall day number, climate characteristics, atmospheric circulation

引 言

宁夏地处黄土高原西北部边缘,属中温带半干 旱气候。在春季、秋季和冬季常有降雪天气出现,年 均有降雪日数在50 d左右。降雪天气,尤其是大到 暴雪天气,可对宁夏经济社会活动带来严重影响,但 同时也带来宝贵的水资源,有利于增墒保湿,对宁夏 农业生产是十分有益的。

近年来,国内许多气象工作者对我国降雪天气 多发地区的降雪(暴雪)气候特征开展了研究工作, 董啸等[1]分析了近 50 年来东北地区暴雪时空分布 特征;董文杰等[2]分析了青藏高原东部牧区冬季雪 灾的气候特征;宫德吉等[3]分析了内蒙古大(暴)雪 与白灾的气候学特征;李岩瑛等^[4]分析了祁连山及 周边地区降雪气候特征;李晓霞等5分析了兰州市 冬季天气气候变化及降雪形势;杨莲梅等[6]分析了 新疆大到暴雪气候特征及其水汽条件:仪清菊等[7] 分析了北京 1980—1994 年降雪的天气气候;邹进上 等^[8]进行了青藏高原降雪的气候学分析;赵春雨 等[9-10]分析了东北地区冬季降雪的气候特征及其区 划:赵勇等[11]分析了北疆冬季降水的气候特征:陈 光宇等[12]分析了东北及邻近地区累积积雪深度的 时空变化规律;段长春等[13]分析了近50年云南省 降雪的气候变化特征。还有气象工作者利用动力诊 断、数值模拟、奇异谱分析和相关分析等方法对降雪 (暴雪)天气开展了研究工作[14-23]。这些分析和研究 工作提高了各地对降雪天气的科学认知,有力地推 动了降雪预报技术的发展,进而有利于提高降雪天 气预报准确率。国外对于降雪的研究,主要针对强 暴风雪的研究^[24-25]。

宁夏气象工作者对两次暴雪过程开展了分析工 作^[26-27],得到一些对宁夏暴雪预报有价值的科学依 据。本文运用统计分析、最大熵谱法和相关分析方 法,分析宁夏降雪天气的气候特征,寻找可能对其产 生影响的大气环流,试图寻找有指示性的预报预测 指标,为宁夏降雪天气的预报预测业务提供科学依 据。

1 资料、研究区域和方法

1.1 资料

本文以降雪日数作为定量表征指标,一个降雪 日数是指某站某一天(以北京时间前日 20:00 至当 日 20:00 为一日)出现降雪(含雨夹雪)天气。根据 气象业务部门的标准,0.1 mm≪日降水量<2.5 mm的降雪为小雪,2.5 mm≪日降水量<5 mm的 降雪为中雪,5 mm≪日降水量<10 mm的降雪为大 雪,≥10 mm的降雪为暴雪。

考虑到建站时间和地域分布,选取宁夏具有代表 性的 20 个站,按照上述标准,利用宁夏气象档案馆提 供的各站逐日天气现象和降水量整编资料,统计各站 1961—2010 年 50 a 期间各等级降雪发生日数。

1961—2010 年 74 个大气环流特征量资料由国 家气候中心气候诊断预测室提供。

平均值取 1961-2010 年的平均。

1.2 研究区域

根据宁夏的气候条件、农牧业分布和生态环境状况以及传统的习惯,把宁夏划分为3个区域(图略)。

(1)北部灌区,包括惠农、平罗、陶乐、贺兰、银 川、永宁、灵武、青铜峡、吴忠、中卫和中宁,由贺兰山 区和宁夏平原构成。贺兰山呈东北偏北一西南偏南 走向位于北部灌区西侧,主峰海拔高度 3556 m;宁 夏平原地势平坦,海拔高度 1100~1200 m。

(2)中部干旱带,包括兴仁、盐池、麻黄山、同心 和海原,是鄂尔多斯台地和黄土高原的一部分,海拔 高度1300~1800 m。

(3)南部山区,包括固原、西吉、隆德和泾源,由 六盘山区和部分黄土高原构成。六盘山呈西北偏 北一东南偏南走向位于南部山区南部,主峰海拔高 度 2942 m;黄土高原为起伏不大的低丘浅谷,海拔 高度 1700~2000 m。

宁夏年平均气温 5.3~9.9℃,北部灌区较高, 中部干旱带次之,南部山区较低,呈北高南低分布。 春季平均气温为6.1~11.2℃,夏季平均气温为16.0 ~23.4℃;秋季平均气温为 5.5~9.4℃;冬季平均 气温为-7.2~-4.7℃。

1.3 研究方法

本文运用统计分析方法和最大熵谱法分析了宁 夏降雪天气的气候特征;运用相关分析方法分季节 探讨了与宁夏降雪日数显著相关的大气环流特征量 及其影响机制,并进行了显著性水平 $\alpha = 0.05$ 的显 著性检验^[28]。

2 气候特征

2.1 季节性特征

图1分别给出了宁夏小雪、中雪、大雪和暴雪年 均日数的季节分布。分析表明,宁夏各等级降雪在 季节上均呈现双峰型分布,从9月开始,宁夏就可 出现降雪天气,中雪以上降雪出现概率较大;进入

Fig. 1 Monthly distributions of annual mean snowfall day numbers in Ningxia Region (unit:d)

10月以后,各等级降雪出现日数均明显增加,出现 第一个峰值点;随着冬季的来临,降雪日数开始减 少,降雪量级越大减少的越明显,暴雪天气很少发生 在冬季;在冬季向春季转变的过程中,降雪日数再次 明显增加,出现另一个峰值点,到5月,降雪日数明 显减少,直至结束。

宁夏降雪天气主要以小雪为主,占总降雪日数的 80.7%,2月出现日数最多,年均日数为46.1 d•a⁻¹; 其次为中雪,占12.1%,3月出现日数最多,年均日数 为8.1 d·a⁻¹;再次为大雪,占5.6%,也是3月出现 日数最多,年均日数为3.9 d·a⁻¹;暴雪所占比例最 少,占1.6%,10月出现日数最多,年均频次为 1.2 d·a⁻¹。

2.2 地理分布

图 2分别给出了宁夏小雪、中雪、大雪和暴雪年

Fig. 2 Geographical distributions of annual mean snowfall day numbers in Ningxia Region (unit: $d \cdot a^{-1}$)

均日数的地理分布。分析表明,宁夏各等级降雪日 数的地理分布基本一致,自北部灌区、中部干旱带、 南部山区依次向南明显增加,高发中心与地形特征 关系密切,多分布于山脉东南麓的迎风坡地区。北 部灌区各站出现日数较少,且差别不大,年均小雪日 数 3.7~5.4 d • a⁻¹、中雪日数 0.4~0.9 d • a⁻¹、大 雪日数 0.1~0.4 d·a⁻¹、暴雪日数 0~0.2 d·a⁻¹, 相对中心位于银川市和吴忠市北部地区;中部干旱 带各站出现日数介于中间,年均小雪日数 8.4~ 15.8 d • a⁻¹、中雪日数 1.2~2.6 d • a⁻¹、大雪日数 0.5~1.4 d·a⁻¹、暴雪日数 0~0.4 d·a⁻¹,相对中 心位于麻黄山和海原地区;南部山区各站出现日数 较多,但各站差异较大,年均小雪日数17.1~ 25.9 d • a⁻¹、中雪日数 2.1~4.5 d • a⁻¹、大雪日数 0.9~2.6 d·a⁻¹、暴雪日数 0.2~1.0 d·a⁻¹,中心 位于泾源地区。

2.3 持续性特征

降雪的持续性是指单站降雪的持续时间长短及 持续时间较长的降雪发生的频率。把单次或者不间 断的几次降雪事件称为一个连续降雪过程,按照持续 天数对降雪过程进行分类,包括1、2、3和4d及以上的4类降雪过程,各类之间相互独立,不重复计算。

图 3 给出了宁夏各类小雪过程次数占小雪总过 程次数的频率分布。分析表明,宁夏小雪过程以非 持续性 1 d 的出现频率较高,北部灌区大部在 80% 左右,中部干旱带大部在 75%左右,南部山区大部 在 70%左右;其次为持续 2 d 的小雪过程,出现频率 在 13%~21%之间,其中北部灌区中部、中部干旱 带南部和南部山区大部出现频率较大;持续 3 和 4 d 及以上的小雪过程出现频率均低于 8%,基本从南 部山区到中部干旱带再到北部灌区依次减小,表明 持续性小雪以 2 d 的小雪过程为主。

宁夏中雪过程非持续性1d的出现频率大部分 地区大于90%,除北部灌区中部、中部干旱带东南 部和南部山区南部有持续3~4d的中雪过程外,大 部分地区中雪过程只持续2d;除中部干旱带东南部 和南部山区大部有持续2~3d的大雪过程外,其他 地区大雪过程均是非连续的;暴雪过程只有北部灌 区局部和南部山区南部有持续2d的,其他地区暴

Fig. 3 Frequency distribution of the ratios of the number of light snow

process to the total number of light snow process (unit:%)

雪过程也是非连续的(图略)。

2.4 各等级降雪贡献的变化趋势

宁夏总降雪日数呈现不显著的减少趋势,减少 幅度为4.2 d • (10 a)⁻¹(图略)。为了分析总降雪 日数的减少主要是由什么类型的降雪减少所造成 的,我们计算了宁夏不同等级降雪日数对总降雪日 数的降雪贡献。降雪贡献指不同等级降雪日数与总 降雪日数的比值,反映了这种降雪在总降雪中的比 重。 图 4 分别给出了宁夏不同等级降雪贡献的变 化。分析表明,小雪的降雪贡献平均为 80.8%,有 不显著的下降趋势,下降幅度为 0.08% • (10 a)⁻¹, 在 20 世纪 70—80 年代和 90 年代中期到 21 世纪初 中期比重较大;中雪的降雪贡献平均为 12%,有不 显著的增加趋势,增加幅度为 0.22% • (10 a)⁻¹,在 20 世纪 70—80 年代比重较小,21 世纪初后期明显 减小;大雪的降雪贡献平均为 5.6%,有不显著的下 降趋势,下降幅度为 0.05% • (10 a)⁻¹,在 20 世纪 60年代中后期,70年代中后期和90年代前期比重较

大,21世纪初中后期比重明显加大;暴雪的降雪贡 献平均为1.6%,有不显著的下降趋势,下降幅度为 0.09% • (10 a)⁻¹,在20世纪60—70年代前期比 重较大,21世纪初中后期比重也明显加大。

以上分析可见,宁夏降雪总日数减少,小雪、大 雪和暴雪的降雪贡献是减少的,而中雪的降雪贡献 是增加的。

2.5 显著周期

利用最大熵谱法可以提取气候序列的显著周期, 将计算出的最大熵谱谱密度绘制成图,如果谱密度有 尖锐的峰点,其对应的周期就是序列存在的显著周 期。

图5分别表示出了宁夏不同等级降雪的最大熵

以上分析可见,除大雪外,宁夏小雪、中雪和暴 雪具有不同时间尺度的显著周期。小雪具有 2~3 a 的短周期,还有 6 和 16 a 左右的中长周期,以 2~3 a 的短周期变化最为显著;中雪具有 2~3 a 的短周 期,还有 6 a 左右的中周期,以 6 a 左右的中周期变 化最为显著;暴雪具有 4 a 左右的显著周期。

3 降雪的大气环流背景

某一地区降雪日数的多少取决于大气环流背景 及其相互的配置,且这种配置存在季节差异。为了 寻找控制宁夏降雪日数的影响环流,我们分别将春 季、秋季和冬季的降雪日数与同期的表征不同大气 环流系统的 74 个大气环流特征量进行了相关分析 (由于 5 和 9 月是雨雪混存时间,且降雪日数较少, 所以在分析时春季指 3 和 4 月,秋季指 10 和 11 月)。

3.1 春季

表1列出了经过显著性水平检验,与宁夏春季 降雪日数显著相关的同期大气环流特征量及其相关 系数。可以看出,相关程度最高的是亚洲极涡面积 指数($60^{\circ} \sim 150^{\circ}$ E),相关系数通过 $\alpha = 0.01$ 显著性 水平检验;其次为太平洋极涡强度指数(150° E \sim 120° W)、大西洋欧洲环流型 E和西藏高原指数 II ($30^{\circ} \sim 40^{\circ}$ N、 $75^{\circ} \sim 105^{\circ}$ E),相关系数均通过 $\alpha = 0.05$ 显著性水平检验。亚洲极涡面积指数、太平洋极涡 强度指数和大西洋欧洲环流型 E 呈现正相关,西藏 高原指数 II 呈现负相关。其他大气环流特征量与宁 夏春季降雪日数的相关系数较小,均未通过 α = 0.05显著性水平检验。

表 1 与宁夏春季降雪日数显著相关的 大气环流特征量及其相关系数

入气坏加付位重义共怕大乐致

 Table 1
 The characteristic quantities of atmospheric circulation significantly correlated with snowfall day

numbers in Ningxia Region in spring and their

correlation coefficients

大气环流	亚洲极涡	太平洋极涡	大西洋欧洲	西藏高原
特征量	面积指数	强度指数	环流型 E	指数Ⅱ
相关系数	0.4311	0.3053	0.2814	-0.2907

3.2 秋季

表 2 列出了经过显著性水平检验,与宁夏秋季 降雪日数显著相关的同期大气环流特征量及其相关 系数。可以看出,相关程度最高的是西藏高原指数 II (30°~40°N、75°~105°E),相关系数通过α= 0.001显著性水平检验;其次为亚洲经向环流指数 (1M,60°~150°E)、欧亚经向环流指数(1M,0°~ 150°E)和亚洲极涡强度指数(60°~150°E),相关系 数均通过 $\alpha = 0.01$ 显著性水平检验; 欧亚纬向环流 指数(1Z,0°~150°E)、大西洋欧洲环流型 E 和北半 球极涡中心位置的相关系数通过 α=0.02 显著性水 平检验;亚洲纬向环流指数(1Z,60°~150°E)的相关 系数通过 α=0.05 显著性水平检验。亚洲经向环流 指数、欧亚经向环流指数、大西洋欧洲环流型E和 北半球极涡中心位置呈现正相关,西藏高原指数Ⅱ、 亚洲极涡强度指数、欧亚纬向环流指数和亚洲纬向 环流指数呈现负相关。其他大气环流特征量与宁夏 秋季降雪日数的相关系数较小,均未通过 $\alpha = 0.05$ 显著性水平检验。

表 2 与宁夏秋季降雪日数显著相关的大气环流特征量及其相关系数

Table 2 The characteristic quantities of atmospheric circulation significantly correlated

	with snowfall day numbers	in Ningxia Region in autumn and	their correlation coefficients
--	---------------------------	---------------------------------	--------------------------------

大气环流	西藏高原	亚洲经向	欧亚经向	亚洲极涡	欧亚纬向	大西洋欧洲	北半球极涡	亚洲纬向
特征量	指数Ⅱ	环流指数	环流指数	强度指数	环流指数	环流型 E	中心位置	环流指数
相关系数	-0.4828	0.3899	0.3760	-0.3554	-0.3495	0.3420	0.3334	-0.3043

3.3 冬季

表 3 列出了经过显著性水平检验,与宁夏冬季 降雪日数显著相关的同期大气环流特征量及其相关 系数。可以看出,相关程度最高的是西藏高原指数 II(30°~40°N、75°~105°E),相关系数通过 α = 0.001显著性水平检验;其次为西藏高原指数I(25° ~35°N、80°~100°E)、北美极涡强度指数(120°~ 30°W)和太平洋极涡面积指数(150°E~120°W),相 关系数均通过 α =0.01显著性水平检验;亚洲极涡 面积指数(60°~150°E)的相关系数通过 α =0.02显 著性水平检验;大西洋欧洲环流型E的相关系数通 过 α =0.05显著性水平检验。北美极涡强度指数、 亚洲极涡面积指数和大西洋欧洲环流型 E 呈现正 相关;西藏高原指数 I、西藏高原指数 II 和太平洋极 涡面积指数呈现负相关。其他大气环流特征量与宁 夏冬季降雪日数的相关系数较小,均未通过 $\alpha =$ 0.05显著性水平检验。

表 3 与宁夏冬季降雪日数显著相关的大气环流特征量及其相关系数

```
Table 3 The characteristic quantities of atmospheric circulation significantly
```

correlated with snowfall day numbers in Ningxia Region in winter

and the	eir correl	lation coef	fficients

大气环流	西藏高原	西藏高原	北美极涡	太平洋极涡	亚洲极涡	大西洋欧洲
特征量	指数Ⅱ	指数Ⅰ	强度指数	面积指数	面积指数	环流型 E
相关系数	-0.4949	-0.4222	0.3840	-0.3667	0.3467	0.2890

3.4 影响机制

某地降雪天气的产生要求有冷空气影响该地并 配合相应的水汽条件,而这两种条件的满足必须具 有合适的大气环流背景。从 3.1~3.3 节的分析可 知,总体上,影响宁夏降雪天气的大气环流主要是北 半球极涡、西藏高原指数、大西洋欧洲环流型和欧亚 (亚洲)环流型。

分析可知,各季节各显著相关的大气环流特征 量与宁夏降雪日数具有较好的对应关系,当呈现正 相关的大气环流特征量的值大于平均值或呈现负相 关的大气环流特征量的值小于平均值时,宁夏降雪 日数出现增多的概率较大,而且,当呈现正相关的大 气环流特征量的值比上一年度同期值增大时或呈现 负相关的大气环流特征量的值比上一年度同期值减 小时,宁夏降雪日数出现增多的概率也较大(图略)。

为了弄清各季节显著相关的不同大气环流特征 量之间的相互关系,探寻可能影响宁夏相应季节降 雪日数的大气环流特征,并解释其影响机制,分季节 对与宁夏降雪日数显著相关的大气环流特征量相互 之间进行了相关分析。

表4列出了与宁夏春季降雪日数显著相关的大 气环流特征量相互之间的相关系数。分析可知,有 利于宁夏春季出现降雪天气的大气环流可能有两种 特征:一种是亚洲极涡面积指数较大、太平洋极涡强 度指数较大(两者之间的相关系数通过α=0.01显 著性水平检验),在这种环流形势下,亚洲极涡面积 较大,亚洲地区冷空气影响范围偏南,太平洋极涡较 为浅薄,影响宁夏降雪的冷空气条件容易满足;另一 种是亚洲极涡面积指数较大、大西洋欧洲环流型 E 的值较高、西藏高原指数 II 较低(亚洲极涡面积指数 与大西洋欧洲环流型 E 之间、大西洋欧洲环流型 E 与西藏高原指数 II 之间的相关系数通过 α=0.01 显 著性水平检验),在这种环流形势下,亚洲极涡面积 较大,亚洲地区冷空气影响范围偏南,同时乌拉尔山 地区为高压脊,引导极地冷空气南下,西藏高原(30° ~40°N,75°~105°E) 位势高度较低,高原槽活动频 繁,槽前偏南气流发展,影响宁夏降雪的冷空气条件 和水汽条件都容易满足。

表 4 与宁夏春季降雪日数显著相关的大

气环流特征量相互之间的相关系数

Table 4The correlation coefficients among thecharacteristic quantities of atmospheric circulationsignificantly correlated with snowfall day numbers

in Ningxia Region in spring

大气环流	亚洲极涡	太平洋极涡	大西洋欧洲	西藏高原
特征量	面积指数	强度指数	环流型 E	指数Ⅱ
亚洲极涡面积指数	1	0.4132	0.3772	-0.2168
太平洋极涡强度指数	0.4132	1	0.1505	0.0930
大西洋欧洲环流型 E	0.3772	0.1505	1	-0.4278
西藏高原指数 Ⅱ	-0.2168	0.0930	-0.4278	1

表 5 列出了与宁夏秋季降雪日数显著相关的大 气环流特征量相互之间的相关系数,分析可知,有利 于(不利于)宁夏秋季出现降雪天气的大气环流可能 有两种特征:一种是大西洋欧洲环流型 E 的值较高 (低)、西藏高原指数 II 较低(高)、欧亚经向(纬向)环 流指数较大、亚洲经向(纬向)环流指数较大(各种指 数相互之间的相关系数,最小的通过 α =0.05 显著 性水平检验,最大的通过 α =0.001 显著性水平检 验),在这种环流形势下,乌拉尔山地区高压脊较强 (弱),引导(不利)极地冷空气南下,西藏高原(30°~ 40°N、75°~105°E) 位势高度较低(高),多(少)高原 槽活动,槽脊的振幅较大(小),偏南(西)气流强盛, 影响宁夏降雪的冷空气条件和水汽条件都容易(难 以)满足。另一种是北半球极涡中心位置的值较大 (小)、亚洲极涡强度指数较小(大),亚洲经向环流指 数较大(小)、亚洲纬向环流指数较小(大,各种指数 相互之间的相关系数,最小的通过 $\alpha = 0.10$ 显著性 水平检验,最大的通过 $\alpha = 0.001$ 显著性水平检验),

.

1.4.1.241

在这种环流形势下,北半球极涡中心位置偏东(西), 亚洲极涡深厚(浅薄),冷空气强(弱)且活动位置偏 东(西),亚洲地区槽脊的振幅较大(小),偏南(西)气 流强盛,影响宁夏降雪的冷空气条件和水汽条件也 都容易(难以)满足。

Table 5 The correlation coefficients among the characteristic quantities of atmospheric circulation 0 11 1

.

	significantiy	correlated v	vith snowlan	day numbers	in Ningxia i	kegion in auti	IMN	
大气环流	西藏高原	亚洲经向	欧亚经向	亚洲极涡	欧亚纬向	大西洋欧洲	北半球极涡	亚洲纬向
特征量	指数Ⅱ	环流指数	环流指数	强度指数	环流指数	环流型 E	中心位置	环流指数
西藏高原指数Ⅱ	1	-0.5248	-0.5582	0.1145	0.4700	-0.4242	-0.1840	0.4265
亚洲经向环流指数	-0.5248	1	0.8193	-0.3699	-0.3804	0.3039	0.2383	-0.4034
欧亚经向环流指数	-0.5582	0.8193	1	-0.1654	-0.4406	0.2991	0.1780	-0.3891
亚洲极涡强度指数	0.1145	-0.3699	-0.1654	1	0.3700	-0.0306	-0.3670	0.4968
欧亚纬向环流指数	0.4700	-0.3804	-0.4406	0.3700	1	-0.6561	-0.3070	0.8234
大西洋欧洲环流型 E	-0.4242	0.3039	0.2991	-0.0306	-0.6561	1	0.2172	-0.3844
北半球极涡中心位置	-0.1840	0.2383	0.1780	-0.3670	-0.3070	0.2172	1	-0.3630
亚洲纬向环流指数	0.4265	-0.4034	-0.3891	0.4968	0.8234	-0.3844	-0.3630	1

表 6 列出了与宁夏冬季降雪日数显著相关的大 气环流特征量相互之间的相关系数,分析可知,有利 于宁夏冬季出现降雪天气的大气环流可能有以下几 种特征:一种是亚洲极涡面积指数较大、西藏高原指 数 | 较低、西藏高原指数 || 较低(各种指数相互之间 的相关系数均通过 $\alpha = 0.001$ 显著性水平检验),在 这种环流形势下,亚洲极涡面积较大,亚洲地区冷空 气影 响 范 围 偏 南, 西 藏 高 原 (25° ~ 35° N、80° ~ 100°E) 和(30°~40°N、75°~105°E) 位势高度较低, 高原槽活动频繁,槽前偏南气流发展,影响宁夏降雪 的冷空气条件和水汽条件都容易满足。另一种是亚 洲极涡面积指数较大、大西洋欧洲环流型E的值较 高(两者之间的相关系数均通过 α=0.001 显著性水 平检验),在这种环流形势下,亚洲极涡面积较大,亚 洲地区冷空气影响范围偏南,同时乌拉尔山地区为 高压脊,引导极地冷空气南下,影响宁夏降雪的冷空 气条件容易满足。第三种是北美极涡强度指数较 大、西藏高原指数 [较低、西藏高原指数]] 较低(各 种指数相互之间的相关系数,最小的通过 $\alpha = 0.05$ 显著性水平检验,最大的通过 $\alpha = 0.001$ 显著性水平 检验),在这种环流形势下,北美极涡比较浅薄,西藏 高原(25°~35°N、80°~100°E)和(30°~40°N、75°~ 105°E) 位势高度较低,高原槽活动频繁,槽前偏南 气流发展,影响宁夏降雪的水汽条件容易满足;另 外,宁夏冬季降雪日数还与北美极涡强度和太平洋 极涡面积具有遥相关的对应关系,当北美极涡强度 指数较大、太平洋极涡面积指数较小时,也就是北美 极涡比较浅薄、太平洋极涡面积较小时,有利于宁夏 冬季出现降雪天气。

表 6 与宁夏冬季降雪日数显著相关的大气环流特征量相互之间的相关系数

Table 6 The correlation coefficients among the characteristic quantities of atmospheric ...

circulation sign	ilicantly correl	ated with snov	wfall day num	bers in Ningxia	Region in w	Inter
大气环流	西藏高原	西藏高原	北美极涡	太平洋极涡	亚洲极涡	大西洋欧洲
特征量	指数Ⅱ	指数Ⅰ	强度指数	面积指数	面积指数	环流型 E
西藏高原指数 Ⅱ	1	0.9583	-0.2815	0.1248	-0.8258	-0.1391
西藏高原指数Ⅰ	0.9583	1	-0.3076	0.0585	-0.7137	-0.0001
北美极涡强度指数	-0.2815	-0.3076	1	-0.4689	0.0672	-0.2243
太平洋极涡面积指数	0.1248	0.0585	-0.4689	1	-0.0889	-0.0858
亚洲极涡面积指数	-0.8258	-0.7137	0.0672	-0.0889	1	0.2578
大西洋欧洲环流型 E	-0.1391	-0.0001	-0.2243	-0.0858	0.2578	1

4 结 论

本文运用统计分析方法和最大熵谱法分析了宁 夏降雪天气的气候特征;运用相关分析方法分季节 探讨了与宁夏降雪日数显著相关的大气环流特征量 及其影响机制。结果表明:

(1)宁夏各等级降雪日数,在时间上均呈现双峰 型分布,峰值点出现在春季和秋季,冬季时,降雪等 级越高,出现的概率越低;空间分布型基本一致,自 北向南明显增加,高发中心与地形特征关系密切;以 非持续性1d的出现频率较高,随降雪量级的增大, 持续时间缩短;降雪总日数减少,暴雪降雪贡献减少 较多,其次为小雪和大雪,中雪降雪贡献是增加的, 降雪总日数减少趋势不显著;具有短中长不同时间 尺度的周期变化;

(2)影响宁夏降雪日数的大气环流主要是北半 球极涡、西藏高原指数、大西洋欧洲环流型和欧亚 (亚洲)环流型。宁夏降雪日数,春季时,与亚洲极涡 面积指数、太平洋极涡强度指数和大西洋欧洲环流 型 E 呈现正相关,与西藏高原指数 II 呈现负相关。 秋季时,与欧亚(亚洲)经向环流指数、大西洋欧洲环 流型 E 和北半球极涡中心位置呈现正相关,与西藏 高原指数 II、亚洲极涡强度指数、欧亚(亚洲)纬向环 流指数呈现负相关。冬季时,与亚洲极涡面积指数、 大西洋欧洲环流型 E 和北美极涡强度指数呈现正 相关,与西藏高原指数 I、西藏高原指数 II 和太平洋 极涡面积指数呈现负相关。

(3)与宁夏降雪日数显著相关的大气环流特征 量是随季节变化的,相应的大气环流特征也不同,但 影响机制相同,均为宁夏降雪天气提供了冷空气条 件和水汽条件。

参考文献

- [1] 董啸,周顺武,胡中明,等.近50年来东北地区暴雪时空分布 特征[J]. 气象,2010,36(12):74-79.
- [2] 董文杰,韦志刚,范丽军.青藏高原东部牧区冬季雪灾的气候 特征分析[J].高原气象,2001,20(4):402-406.
- [3] 宫德吉,李彰俊.内蒙古大(暴)雪与白灾的气候学特征[J].气 象,2000,26(12):25-28.
- [4] 李岩瑛,张强,孙爱芝,等.祁连山及周边地区降雪气候特征研究[J].冰川冻土,2008,30(3):383-391.

- [5] 李晓霞,王小勇,祖永安,等.兰州市冬季天气气候变化及降雪 形势分析[J].干旱气象,2004,22(1):30-33.
- [6] 杨莲梅,杨涛,贾丽红,等.新疆大~暴雪气候特征及其水汽分 析[J].冰川冻土,2005,27(3):389-396.
- [7] 仪清菊,刘延英,许晨海.北京1980—1994年降雪的天气气候 分析[J].应用气象学报,1999,10(2):249-254.
- [8] 邹进上,曹彩珠.青藏高原降雪的气候学分析[J].大气科学, 1989,13(4):400-409.
- [9] 赵春雨,王颖,李栋梁,等.辽宁省冬半年降雪初终日的气候变 化特征[J].高原气象,2010,29(3):755-762.
- [10] 赵春雨,王冀,严晓瑜,等.东北地区冬季降雪的气候特征及其 区划[J].自然灾害学报,2009,18(5):29-35.
- [11] 赵勇,崔彩霞,李霞.北疆冬季降水的气候特征分析[J].冰川 冻土,2011,33(2):292-299.
- [12] 陈光宇,李栋梁.东北及邻近地区累积积雪深度的时空变化规 律[J].气象,2011,37(5):513-521.
- [13] 段长春,段旭,段苏芩,等.近 50年云南省降雪的气候变化特征[J]. 气象,2011,37(5):599-606.
- [14] 覃志年,钟利华,刘莉红,等.2008年初广西异常低温雨雪冰 冻天气影响因子分析[J].气象,2010,36(10):14-20.
- [15] 段丽,张琳娜,王国荣,等.2009年深秋北京大雪过程的成因 分析[J]. 气象,2011,37(11):1343-1351.
- [16] 侯瑞钦,张迎新,范俊红,等.2009 年深秋河北省特大暴雪天 气成因分析[J]. 气象,2011,37(11):1352-1359.
- [17] 白人海,张志秀,高煜中.东北区域暴雪天气分析及数值模拟 [J]. 气象,2008,34(4):23-29.
- [18] 陈乾金,王丽华,高波,等. 青藏高原 1985 年冬季异常少雪和 1986 年异常多雪的环流及气候特征对比研究[J]. 气象学报, 2000,58(2):202-213.
- [19] 董安祥,瞿章,尹宪志,等.青藏高原东部雪灾的奇异谱分析 [J].高原气象,2001,20(2):214-219.
- [20] 秦华锋,金荣花."0703"东北暴雪成因的数值模拟研究[J].气 象,2008,34(4):31-38.
- [21] 韦志刚,罗四维,董文杰,等.青藏高原积雪资料分析及其与我 国夏季降水的关系[J].应用气象学报,1998,9(增刊):39-46.
- [22] 杨向东.北半球雪盖的气候特征及与印度季风降水的关系 [J].气象,2001,27(12):8-12.
- [23] 张迎新,侯瑞钦,张守保.回流暴雪过程的诊断分析和数值试 验[J]. 气象,2007,33(9):25-32.
- [24] Braham R R Jr. The midwest snow storm of 8-11 December 1977[J]. Mon Wea Rev, 1983, 111(2): 253-272.
- [25] Pearce R, Lioyd D McConnell D. The post-ChristmasFrench' storms of 1999[J]. Weather, 2001, 56(3):81-90.
- [26] 施新民,姚宗国,黄峰,等.2006年1月19日宁夏北部暴雪成因分析[J].干旱气象,2006,24(2):25-32.
- [27] 贾宏元,赵光平,沈跃琴,等.宁夏初冬一次大暴雪天气过程成 因分析[J].沙漠与绿洲气象,2007,1(4):17-21.
- [28] 魏凤英.现代气候统计诊断与预测技术[M],北京:气象出版 社,2007:18-45.