蔡子颖,韩素芹,吴彬贵,等. 天津一次雾过程的边界层特征研究[J]. 气象,2012,38(9):1103-1109.

天津一次雾过程的边界层特征研究*'

蔡子颖 韩素芹 吴彬贵 黄 鹤 姚 青

天津市气象科学研究所,天津 300061

提 要:雾作为边界层内一种特殊的天气现象与边界层结构有着密切联系。本文利用天津边界层梯度观测平台分析 2010 年 11 月 28 日至 12 月 2 日一次雾过程的边界层结构特征。结果表明:此次过程雾 I 阶段水汽最先在离地面 80~100 m 的高 度凝结,雾 II (平流雾)阶段水汽由上往下传输;雾 I 前,大气有明显的逆温,雾 II 前大气处于不稳定状态,雾中大气趋于中性, 在雾变薄过程中,边界层气象塔可观测到雾顶的强逆温;雾中长波辐射达到平衡,净长波辐射为 0,可用此区分水雾和霾;雾对 光化学烟雾有抑制作用,NOx 和小粒子会出现累积,影响人体健康。

关键词:雾,边界层,热力结构,动力结构,大气污染物

Analysis on Characteristics of Atmospheric Boundary Layer During a Fog Process in Tianjin

CAI Ziying HAN Suqing WU Bingui HUANG He YAO Qing Tianjin Institute of Meteorology, Tianjin 300061

Abstract: The fog is a kind of special weather phenomenon and is closely related with structures of the atmospheric boundary layer. Based on the Tianjin boundary gradient observation system, we have analyzed a fog process from November 28 to December 2, 2010, which can be divided into two episodes, fog I and fog II. The results showed that: first the condensation of water was found from 80 to 100 m heights during fog I and then vapor was transported downward during fog II. There was obvious inversion temperature before fog I and unstable atmosphere before fog II. While fog II happened, the atmospheric status was tending to be neutral, and there was a strong inversion temperature at the top of fog. Analysis on characteristics of radiation and pollution during fog process shows that, there was a long-wave radiation equilibrium, an inhibition effect to the photochemical smog, and an accumulated effect of small particle and NO_x during fog.

Key words: fog, atmospheric boundary layer, dynamic structures, thermal structures, air pollution

引 言

雾是指悬浮在近地层大气中的大量微细水滴或 冰晶的可见集合体。近年来伴随着社会经济的发 展,雾对社会生产和生活造成的不良影响日益严 重^[1-3]。国外有关雾的研究很多,仅在美国的气象相 关文献中检索,"雾"的结果便达 4700 余次;国内对 于雾的研究也很多,自 1950 年以来,雾作为一种特 殊的天气现象一直被详细地观测和记录,并且从 20 世纪 80 年代至今,科研工作者利用地面观测^[4-6]、小 球探空^[7-8]、模式模拟^[9-10]等观测研究手段对雾发生 的规律、生消过程进行了细致的研究。但雾作为边 界层中一种重要的天气现象,除了大尺度的环流特

 ^{*} 国家自然科学基金项目(41075004)、公益性行业(气象)科研专项(GYHY201006011)、环保公益行业科研专项(201009001-4)和天津市 气象局科研课题(201104)共同资助
 2011年6月28日收稿; 2012年2月27日收修定稿
 第一作者:蔡子颖,主要从事大气物理与大气环境方面研究.Email:120078030@163.com

征,边界层结构对其生消也产生重要的影响^[11-20]在 其发生过程中,雾中独特的辐射和污染物扩散方式、 积聚特征^[21-27]也有别于其他天气过程。本文以 2010年11月28日至12月2日天津大雾为例,利 用天津边界层气象塔获取的高分辨率边界层相关数 据,揭示雾过程中温度场、湿度场、风场的垂直结构 演变过程,寻找雾生消规律、雾中能量平衡、污染物 积聚和扩散规律,从而研究天津大雾生成触发和维 持过程的机理。

1 资料和方法

本文观测点为天津边界层观测站(39°04′N、 117°10′E),主要仪器如下:15层慢响应风、温、湿传 感器,分别安装在气象观测塔5、10、20、30、40、60、 80、100、120、140、160、180、200、220和250m高度 处,Belfort公司MODEL 6000型前向散射能见度 仪;Kipzone公司CN4四分量辐射仪。观测期间仪 器运行正常,数据的收集和处理进行严格质量控制。

2 天津雾过程及其时空变化

2010 年 11 月 30 日至 12 月 2 日天津发生雾天 气,市区能见度低于 1 km,最高相对湿度达到 95% 以上(图 1),雾形成前,高空为平直的环流,大气斜 压性极小,地面气压系统较弱,低层有西南气流输送 水汽,此次雾过程影响范围极广,北至吉林、南至广 州,二十多个东部沿海省(市)受到影响,影响时间超 过 24 h,属于典型的平流雾。

11月29日04时天津城区低层大气由于持续 东风和偏东气流水汽输送,相对湿度呈上升趋势,至 第二日太阳升起前,气温降至最低,11月29日07 时能见度降至5 km 左右,相对湿度达到 87%,形成 雾Ⅰ(轻雾),而太阳升起后雾消亡,能见度恢复至 7 km 以上,相对湿度降至 65%。在 11 月 29 日 18 时,大气由高层向低层,相对湿度开始增加,直至11 月30日00时,整层相对湿度超过80%,能见度下 降至4 km,根据水汽变化情况,本文将 11 月 29 日 18-23 时这个时期称为雾Ⅱ(平流雾)的将要发生 阶段,在雾的将要发生阶段到雾的成熟阶段还有一 个过程,随着相对湿度的持续增加,24时后天津城 区能见度降至1 km,最高地面相对湿度达到 95% 以上,且持续保持到 2010 年 12 月 1 日下午 15 时, 该时期称为雾Ⅱ的成熟时期,在这以后的12时,仍 有一段低能见度高相对湿度雾的维持时期,直至12 月2日04—10时雾开始消散,能见度由1km左右 恢复至 10 km,相对湿度由 90%以上,快速下降至 60%左右。

图 1 2010 年 11 月 28 日至 12 月 3 日天津城区观测站能见度(a)和相对湿度(b)变化 (观测高度 2 m)

Fig. 1 The variations of visibility (a) and relative humidity (b) observed at 2 m height in the boundary layer from 28 November to 3 December 2010 at Tianjin Station

为方便研究,根据这次雾过程的发生和消减阶 段观测高度、垂直相对湿度的变化(图 2),将 11 月 28 日至 12 月 3 日天津的雾过程分为如下几个阶 段:(1)雾I(轻雾)前:11 月 28 日 20 时至 11 月 29 日 03 时;(2) 雾 I 发生:11 月 29 日 04—06 时;(3) 辐射雾持续:11 月 29 日 07—08 时;(4) 雾 I 消减: 11 月 29 日 09—12 时;(5) 雾 II (平流雾)前:11 月 29 日 13—17 时;(6) 雾 II (平流雾)将要发生:11 月

12月2日10—18时。

29 日 18—23 时;(7) 雾 Ⅱ(平流雾)维持:11 月 30 日 00 时至 12 月 2 日 04 时;(8) 雾 Ⅱ(平流雾)成熟 期(地面能见度小于 1 km,相对湿度大于 85%):11

图 2 雾发生(a)和消减(b)阶段垂直相对湿度的变化

(天津气象观测塔塔高为 255 m,因而相对湿度观测高度最高为 250 m,高于 250 m 无法观测,

图中显示相对湿度大于 80%最高高度为 250 m 时,指雾顶不小于 250 m,可能更高)

Fig. 2 The vertical profiles of relative humidity during the fog genesis (a) and dissipation (b)

(Note: Tianjin Meteorological Observation Tower is 255 m high, the highest observation platform is at 250 m.

The case that the height of relative humidity greater than $80\,\%$ is 250 m,

means that the top of fog is not less than 250 m, may be higher)

3 天津雾过程的热力和动力结构特征

3.1 湿度和温度垂直结构特征

雾的生成与大气边界层结构特征密切相关。由 图 3 显示雾 I 前塔层高度相对湿度维持在 50%,随 后在 80~100 m 高度明显增加,并向两边扩散,形 成雾 I 。当雾形成后,80~160 m 形成相对湿度高 值区,其值达到 90%,而随着太阳升起雾消减,地面 相对湿度降至 60%附近,但由于低层大气持续的偏 东气流水汽输送,水汽随高度上升呈现上升趋势,当 地面相对湿度下降的时候,高空仍存在一个高湿区, 为雾 II (平流雾)的产生提供水汽基础。雾 II (平流 雾)发生后,相对湿度由高层向低层开始逐渐增加, 体现水汽由上往下的输送,在雾成熟期,整层相对湿 度达到 93%,地面相对湿度为 91.6%,城市冠层高 度(40~60 m)以上形成高于 95%相对湿度高湿区。 雾消散过程中相对湿度由高空先开始下降,最后整 层相对湿度降至 30%左右。

图 4 显示在雾 I 前边界层存在明显逆温,当雾 I 发生后,逆温层起始高度有所升高,由原先 30 m 抬高至 100 m,当太阳升起后,逆温瓦解,雾消散。 在雾 II (平流雾)发生前,并没有明显的逆温存在,大 气每 100 m 温度递减率为 1.31℃,属于不稳定层 结,随着雾的发生,雾内部形成中性大气(每 100 m 温度递减率维持在 0.93~0.98℃),直至雾消散,中 性层结瓦解,雾层变薄。在雾的消散过程中,通过边 界层气象塔观测呈现雾顶(120 m)向上存在明显逆 温,当雾消散以后,大气重新处于不稳定状态。

月 30 日 23 时至 12 月 1 日 15 时;(9) 雾 [[(平流雾)

消减:12月2日04-10时;(10)雾Ⅱ(平流雾)后:

3.2 风场垂直结构特征

华北地区秋冬季雾的生成,一般在高层大气多 有平直环流,在低层大气有西南气流提供水汽输送, 地面气压系统较弱,大气斜压性极小,从而形成小风 或者静风的天气。图 5 和表 1 显示雾 I 前和发生过 程中,地面风速维持在 1.5 m • s⁻¹以下,风速较小, 但边界层内风切变保持在一个正常水平,每百米维 持 2 m • s⁻¹的风速变化,当雾 I 发生消散时,风速 并没有明显的增加。

在雾II(平流雾)发生前,边界层风场发生明显改 变,每百米风速增率明显减弱,地面风速降至1 m・s⁻¹以下,为雾的生成提供基础,当雾发生后,上层 风速开始明显减小,雾的成熟期地面风速仅为 0.57 m・s⁻¹,上下风速保持一致,即使在250 m高 空,风速也小于1 m・s⁻¹,在雾消散过程中,可以发 现风速明显的增加,且上层风速增加幅度大于地面, 随着风速的增加,雾由高空向低空逐渐消散。 气 象

(a) 28 November to 30 November, (b) 30 November to 2 December 2010, and (c) fog matuer

图 4 边界层温度的变化

(a) 28 November to 30 November, (b) 30 November to 2 December 2010, and (c) fog matuer

(a) 雾 [(11 月 28—30 日),(b)雾 [] (11 月 30 日至 12 月 2 日),(c)雾 [] 的成熟时期
 Fig. 5 The variations of wind speed in the boundary layer during
 (a) 28 November to 30 November, (b) 30 November to 2 December 2010, and (c) fog matuer

到雾的成熟阶段,在地面和 250 m 高度,呈现明显 的西风,在雾的成熟阶段,由于风速减小,风向并不 明显,直至雾的消散阶段,当风向转向西北风后,风 速开始增加,直至雾 II(平流雾)消散。

表1 边界层风向风速的变化

Table 1	The average diurnal	variations of v	wind speed and	direction	during f	og process
---------	---------------------	-----------------	----------------	-----------	----------	------------

特征	低层风速 $/m \cdot s^{-1}$	地面风速/m・s ⁻¹	地面风向	250 m 风向	风速变率/m・(s・100 m) ⁻¹
雾Ⅰ前	3.09	0.47	东北风转偏东风	东北风转偏东风	2.29
雾Ⅰ发生	4.15	1.20	东风和偏东风	东南风	1.89
雾 [持续	4.47	1.55	偏东风	东南风	_
雾Ⅰ消减	2.07	1.03	偏东风转西北风	东南风转北风	0.60
雾Ⅱ(平流雾)前	2.62	0.94	偏东风	偏东风	0.95
雾Ⅱ(平流雾)发生	3.53	1.04	偏东风	偏东风	1.85
雾Ⅱ(平流雾)维持	1.77	0.81	偏东风转西风	偏东风转西北风	0.45
雾Ⅱ(平流雾)成熟期	1.08	0.57	无固定风向	无固定风向	0.12
雾Ⅱ(平流雾)消减	4.71	1.33	偏西风	西北风	3.26
雾Ⅱ(平流雾)后	8.67	3.17	西北风	西北风	3.93

4 天津雾过程的辐射特征

雾和霾一样都是低能见度天气,雾中低能见度 由悬浮的雾水滴造成,霾的低能见度由空气中各种 悬浮的颗粒物造成,相对湿度较低。有雾发生时,雾 滴还会影响长波辐射传输,使长波辐射达到新的平衡。图6给出雾过程前后短波辐射和长波辐射的变化:雾Ⅱ(平流雾)发生后,到达地面的太阳辐射减少 大约2/3,在雾的成熟期到达地面的短波太阳辐射 仅为雾前的1/6;雾的维持阶段,尤其是雾成熟期的 夜间,大气长波辐射明显上升,与地面长波辐射接

atmospheric long wave radiation (solid) and surface long wave radiation (dotted)

近,受雾滴的影响,雾中近地面长波辐射达到平衡, 净长波辐射为0;同样的观测结果也曾出现于徐祥 德等^[22]的研究。低能见度、相对湿度达到饱和、净 长波辐射为0是判断雾的3个条件,而净长波辐射 为0是雾天气现象特有的辐射特征,可用来区分雾 和霾天气。

5 天津雾过程中污染物的积聚和扩散 特征

5.1 颗粒物的积聚和扩散特征

通常在雾形成前近地层有强逆温,不利污染扩 散,而雾形成后雾层内的近中性层结相对有利于雾 区内污染物的散布。但雾顶更强的逆温使得污染物 难以向上扩散,造成整个雾区内污染物浓度加重。 因此,雾发生时雾区内污染物浓度相对较高。雾形 成前各种污染物的变化基本是一致的,但雾发生以 后,水溶性的大气污染物浓度会随着雾的成熟而降 低,在雾消散后会明显增加。

统计雾Ⅱ(平流雾)发生到消减过程中污染物的

变化情况,此次过程天津城区 PM_{10} 的浓度为224.52 $\mu g \cdot m^{-3}$,是国家二级标准的 1.5 倍,12 月均值的 1.08 倍; $PM_{2.5}$ 浓度为 182.46 $\mu g \cdot m^{-3}$,是美国 EPA 标准的 2.8 倍,12 月均值的 2.16 倍; PM_1 浓 度为 155.28 $\mu g \cdot m^{-3}$,均达到重污染等级。在此次 过程中,颗粒物富集明显,尤其是小粒子, $PM_{2.5}$ / PM_{10} 从日常的 0.51,发展到雾前的 0.7~0.8,在平 流雾 维持和成熟阶段 $PM_{2.5}/PM_{10}$ 高达 0.84 ~ 0.86, PM_1/PM_{10} 达到 0.73(表 2)。

同时在整个雾的发生前后,大气气溶胶含量与 大气层结的变化和湍流的发展密切相关,雾 I 前有 明显的逆温,大气气溶胶含量较高,雾 I 发生后,低 层逆温瓦解,气溶胶含量有所减少,随着太阳升起, 大气湍流增强,气溶胶呈谷值,在平流雾发生前, PM₁ 一直维持在 100 μ g·m⁻³,而随着雾区的形成, 气溶胶浓度不断累积,雾的成熟期 PM₁ 达到 180 μ g·m⁻³,当雾消散后,由于风速的增加且转向西北 风,PM₁₀呈增加趋势,PM_{2.5}和 PM₁ 含量明显降低, 此时虽然大气中 PM₁₀含量仍较高,但由于小粒子的 减少,大气水平能见度明显好转,大气重新处于不稳 定状态,而后 PM₁₀含量降低。

柱尔	$PM_{2.5}$	PM_{1}/PM_{10}	$PM_{2.5}/PM_{10}$	SO_2	NO_X	NO_2	O_3	CO	$\rm NO/NO_2$
村山	$/\mu g \cdot m^{-3}$			$/\mathrm{ppb}^*$	/ppb	/ppb	$/\mathrm{ppb}$	$/\mathrm{ppm}^*$	
雾Ⅰ前	221.62	0.56	0.66	50.95	176.24	49.80	3.62	2.18	2.54
雾Ⅰ发生	140.37	0.76	0.84	43.52	151.78	38.85	3.46	2.06	2.91
雾 [持续	94.04	0.73	0.82	28.95	121.51	27.53	3.43	1.62	3.41
雾Ⅰ消减	114.79	0.66	0.75	49.45	117.84	32.66	3.78	1.57	2.61
雾Ⅱ(平流雾)前	118.17	0.65	0.74	39.63	91.84	35.98	4.07	1.75	1.55
雾Ⅱ(平流雾)发生	134.89	0.74	0.82	51.25	114.55	35.88	3.48	2.22	2.19
雾Ⅱ(平流雾)维持	193.73	0.73	0.86	50.79	98.63	40.62	3.56	2.53	1.43
雾Ⅱ(平流雾)成熟期	210.73	0.72	0.84	42.67	78.30	37.08	3.59	2.42	1.11
雾Ⅱ(平流雾)消减	237.73	0.67	0.82	41.14	134.19	52.13	3.73	3.77	1.57
雾Ⅱ(平流雾)后	63.25	0.12	0.21	20.14	60.44	31.96	9.33	1.35	0.89
均值	173.07	0.66	0.77	46.31	107.81	40.18	4.09	2.34	1.68

表 2 2010 年 11 月 28 日至 12 月 2 日天津城区大气污染物的变化趋势 Table 2 The variations of air pollutants during fog process from 28 November to 2 December 2010

* 1 ppb=10⁻⁹, 1 ppm=10⁻⁶.

5.2 气态污染物的积聚和扩散特征

此次雾过程天津城区 4 种气态污染物(SO₂、 NO—NO₂—NO_x、O₃和 CO)呈现出如下特征:(1) 类似 SO₂、NO—NO₂—NO_x等的水溶性气态污染 物,在雾成熟期会进入雾滴,雾滴在雾发展过程中会 通过水汽凝结或碰并过程增大尺度,加快重力沉降, 使得雾中 SO₂、NO—NO₂—NO_x相对雾的前后为 谷值;(2)雾本身对光有明显的减弱作用,所以在雾中O₃含量较低,此次过雾中O₃维持在3~4 ppb,是12月均值的2/5,NO₂/NO的比例甚至不到1,雾的形成抑制光化学烟雾的产生,但同时雾中NO-NO₂—NO_x含量也较高,而NO_x的峰值则主要出现在雾前和雾成熟期结束后到雾彻底消减前;(3)雾形成的天气形势和大气层结也有利于气态污染物的积聚,此次过程SO₂均值为48.89 ppb,略高于12

月均值,NO_x 均值为 112 ppb,是 12 月均值的 2.4 倍,CO 均值为 2.43 ppm 略高于 12 月均值,O₃ 均 值为 3.6 ppb,是 12 月均值的 2/5,雾成熟期间 SO₂ 均值为 42.67 ppb、NO_x 均值为 78.30 ppb,O₃ 均值 1.11 ppb,CO 均值 2.42 ppm,在雾的成熟期大气中 气态污染物含量略小于雾的整个发生过程。

6 结 论

(1)2010 年 11 月 28 日至 12 月 2 日天津城区 出现雾天气,此次雾过程分为两个阶段,雾 I 发生后 离地面 80~100 m 高度首先出现水汽凝结,随后向 高空和地面蔓延。雾 Ⅱ(平流雾)发生后水汽由高空 向低空输送。

(2)雾Ⅱ(平流雾)发生前,大气属于不稳定层结,随着雾的发生,雾内部呈中性大气层结,直至雾 消散,中性层结瓦解,雾层变薄,观测到雾顶上部出现逆温层,当雾消散以后,大气重新处于不稳定状态。

(3)在雾的维持阶段,尤其雾成熟期夜间,大气 长波辐射明显上升,与地面长波辐射接近。受雾滴 的影响,雾中近地面长波辐射达到平衡,净长波辐射 为0,可用此区分雾和霾天气。

(4)通过此次观测显示在雾形成前,近地层往往 存在强逆温,不利于大气污染物的扩散,而雾形成后 雾层内近中性层结相对有利于雾区内大气污染物的 散布。但雾顶更强的逆温层使得污染物难以向上扩 散,造成整个雾区内大气污染物浓度加重。因此,雾 发生时雾区内污染物浓度相对较高。雾形成前各种 大气污染物的变化基本是一致的,但雾发生以后,水 溶性的大气污染物和光化学烟雾会随着雾的成熟而 降低,在雾消散后会明显增加。

参考文献

- [1] 赵慧霞,王维国,李泽椿,等.雾对我国交通运输的不利影响
 及对策[J]. 气象与环境学报,2010,26(2):58-61.
- [2] 樊文雁,胡波,王跃思,等.北京雾、霾天细粒子质量浓度垂直 梯度变化的观测[J]. 气候与环境研究,2009,14(6):631-638.
- [3] 江玉华,王强,王正兴,等.一次平流辐射雾的边界层特征及 雾水离子组分研究[J]. 气象,2009,35(2):19-27.
- [4] 李子华. 中国近 40 年来雾的研究[J]. 气象学报,2001,59 (5):616-623.
- [5] 伍红雨,杜尧东,何健,等. 华南霾日和雾日的气候特征及变 化[J]. 气象,2011,37(5):607-614.

- [6] 吴彬贵,解以扬,吴丹朱,等. 京津塘高速公路秋冬雾气象要 素与环流特征[J]. 气象,2010,36(6):21-28.
- [7] 刘焕彬,王栋成,郑全岭. 沂蒙南部山区冬季大气边界层风、 温场结构特征研究[J]. 气象科学,2005,25(3):288-292.
- [8] 陆春松,牛生杰,杨军,等.南京冬季平流雾的生消机制及边 界层结构观测分析[J].南京气象学院学报,2008,31(4): 520-529.
- [9] 高山红,齐伊玲,张守宝,等.利用循环 3DVAR 改进黄海海雾 数值模拟初始场 I:WRF 数值试验[J].中国海洋大学学报 (自然科学版),2010,40(1):1-9.
- [10] 万小雁,包云轩,严明良,等.不同陆面方案对沪宁高速公路 团雾的模拟[J]. 气象科学,2010,30(4):487-494.
- [11] 宋润田. 平流雾和辐射雾时边界层温度场及风场结构特征的 对比分析[J]. 海洋预报,2000,17(3):11-20.
- [12] 严文莲, 濮梅娟, 王巍巍, 等. 一次罕见的辐射-平流雾研究
 (I) ——生消物理过程分析[J]. 气象科学, 2009, 29(1): 9-16.
- [13] 封洋,张国正,朱彬,等. 一次罕见的辐射-平流雾研究(Ⅱ)── 雾水化学性质分析[J]. 气象科学,2009,29(1):17-24.
- [14] 张光智,卞林根,王继志,等. 北京及周边地区雾形成的边界 层特征[J]. 中国科学(D辑)地球科学,2005,35(增刊]): 73-83.
- [15] 刘熙明,胡非,邹海波,等.北京地区一次典型大雾天气过程的边界层特征分析[J].高原气象,2010,29(5):1174-1182.
- [16] 黄健,王斌,周发琇,等. 华南沿海暖海雾过程中的湍流热量 交换特征[J]. 大气科学,2010,34(4):715-725.
- [17] 陆春松,牛生杰,杨军,等. 南京冬季一次雾过程宏微观结构 的突变特征及成因分析[J]. 大气科学,2010,34(4):681-690.
- [18] 吴彬贵,张宏升,张长春,等.华北地区平流雾过程湍流输送 及演变特征[J].大气科学,2010,34(2):440-448.
- [19] 王介民,刘晓虎,祁永强.应用涡旋相关方法对戈壁地区湍流 输送特征的初步研究[J].高原气象,1990,9(2):120-129.
- [20] 陈铭夏,李宗恺,王庆安. 南京市近地层湍流结构及其输送特征的研究[J]. 气象科学,2000,20(2):111-119.
- [21] 徐祥德,卞林根,丁国安.城市大气环境观测工程技术与原理 [M].北京:气象出版社,2003.
- [22] 徐祥德,周秀骥,卞林根,等. 城市环境综合观测与大气环境 动力学研究[M]. 北京:气象出版社,2009.
- [23] 秦世广.中国地面太阳辐射长期变化特征、原因及其气候效 应[D].北京:中国科学院大气物理研究所,2009.
- [24] 赵东. 中国太阳能长期变化及计算方法研究[D]. 北京:南京 信息工程大学,2009.
- [25] 王英,李令军,李金香.北京冬季雾日大气污染结构特征[J]. 环境科学研究,2009,22(9):1032-1038.
- [26] 樊曙先,黄红丽,樊韬,等.南京北郊雾天 PM₁₀中多环芳烃粒 径分布特征[J].环境科学,2009,30(9):2707-2714.
- [27] 汤莉莉,牛生杰,陆春松,等. 南京市郊雾水中重金属和大气 污染物的观测分析[J]. 南京气象学院学报,2008,31(4): 592-598.