林伟立,徐晓斌. 卫星遥感 NO2 资料地面验证对中国大气本底观测的潜在需求[J]. 气象,2011,37(5):571-575.

卫星遥感 NO₂ 资料地面验证对 中国大气本底观测的潜在需求^{*}

林伟立1,2 徐晓斌1

1 中国气象科学研究院大气成分观测与服务中心,中国气象局大气化学重点开放实验室,北京 100081
2 西藏高原大气环境科学研究所,拉萨 850000

提 要:受各种因素的影响,卫星反演大气成分的数据质量存在一定的误差和不确定性,系统和全面的验证工作是获得准确 可靠的卫星数据的一个重要组成部分。卫星观测资料的验证主要涉及反演算法中所用的输入参数和卫星反演产品的直接验 证这两个部分的内容。本工作以对流层 NO2 卫星资料验证的需求出发,对当前中国大气本底站的观测现状进行评述,讨论了 大气本底观测站在卫星资料地基验证中可能起到的作用和不足之处。区域本底站近地面准确的观测结果和良好的区域代表 性有利于对卫星资料的验证,加强地基上对大气物理和化学特性的垂直探测有助于对卫星资料进行准确和定量验证。因此, 有必要加强对有利于验证工作的新技术和仪器设备预先进行技术贮备。

关键词:卫星资料,地面验证,大气本底站,NO2,遥感

The Demands on Atmosphere Background Observations in China to Meet the Validations of NO₂ Satellite Remote Sensing Data

LIN Weili^{1,2} XU Xiaobin¹

1 Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services of CMA,

Chinese Academy of Meteorological Sciences, Beijing 100081

2 Tibet Institute of Plateau Atmospheric and Environmental Science, Lhasa 850000

Abstract: Affected by various factors, there exist certain errors and uncertainties during the retrieval of atmospheric compositions from satellite data. Systematic and comprehensive validation work is very important to obtain accurate and reliable satellite data. The validation of satellite data is mainly related to two parts of contents; one is the validation of the input parameters used in the retrieval algorithm, and the other is the direct validation of satellite retrieval products. In the work, we firstly reviewed the validation demands when obtaining the tropospheric NO₂ satellite data and the current status of the atmosphere background observation stations in China, and then discussed the role of the latter might play in satellite data validation. Accurate surface observations at regional background stations and their good regional representations are beneficial for the validation of satellite data. The capability of vertical measurements of atmospheric physical and chemical properties can strengthen the ability for the accurate and quantified validation of satellite data. Therefore, we strongly recommend that some new technologies and technical equipments which can help the validation work should reserve in advance.

Key words: satellite data, validation, atmosphere background station, NO_2 , remote sensing

^{*} 由风云三号气象卫星遥感开发与应用项目"大气成分遥感开发应用"和国家重点基础研究发展计划项目(2005CB422202)共同资助 2010 年 5 月 4 日收稿; 2010 年 12 月 8 日收修定稿 第一作者:林伟立,从事大气化学相关方向研究. Email:linwl@cams. cma. gov. cn

大气中的一些痕量气体成分,如 O₃、NO₂、 CH₄、CO、CO₂、HCHO、SO₂等,与大气光化学、二 次气溶胶形成、温室效应、酸雨和大气氧化能力等重 要的大气环境与气候变化问题紧密关联^[1]。20 世 纪 90 年代以来,卫星环境遥感应用领域越来越广, 越来越多的大气成分能够从卫星上进行观测^[2-5]。 与有限的地面或地基遥感观测相比,卫星观测具有 空间覆盖范围广,能够测量柱总量和反演垂直廓线, 可以获得常规观测手段无法获得的重要参数等优 势。卫星遥感资料在研究大气中微量气体的长期变 化趋势^[6-7],观测重大污染事件的发展过程^[8],辅助 源排放清单验证^[9]等方面具有独特的作用。由于卫 星遥感产品的数据质量受到多方面的影响,需要从 多方面进行验证,包括定性和定量的验证,这样才能 获得准确可靠的数据^[10]。

我国目前利用卫星对大气成分的遥感观测尚处 于起步阶段,大量的相关工作需要开展预研^[2,11]。 本文以卫星遥感对流层 NO₂ 的验证为例,总结验证 的需求并回顾当今世界上地基验证卫星观测 NO₂ 资料的方法和手段,结合我国大气本底观测的现状, 探讨大气本底观测站在今后卫星资料地基验证中的 潜在价值以及相关技术和观测手段储备的必要性, 为今后我国发展大气成分卫星遥感观测的地基验证 工作提供参考。

1 卫星反演 NO2 的误差和不确定性

基于紫外 DOAS 技术测量大气 NO₂ 含量的卫 星传感器有欧洲空间总局(ESA)1995 年发射的 Global Ozone Monitoring Experiment (GOME), 2002 年发射的 Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAM-ACHY),以及 GOME-2 和美国国家航空航天局 (NASA)在 2004 年发射的 Ozone Monitoring Instrument(OMI)传感器。卫星反演 NO₂ 的产品受 时空分辨率的影响,如 GOME 的空间分辨率是 320 km×40 km,约 3 天覆盖全球,而 GOME-2 的 空间分辨率是 40 km×40 km;SCIAMACHY 的空 间分辨率是 60 km×30 km,约要 6 天覆盖全球; OMI 的空间分辨率是 13 km×24 km,扫描全球需 要约 1 天的时间。

NO₂卫星产品资料已经得到了众多的应用。

尽管如此,卫星遥感 NO₂ 产品的数据质量仍然受到 多方面的影响^[10,12-13]。其影响因素首先来自光谱 测量上,由于地面反射光谱与太阳照射光谱不是同 时测量,光谱拟合存在近似,且受热和电磁信号的不 同影响,反射光谱与照射光谱测量上存在明显的噪 音。其次,大气质量因子的计算是基于假设(如 NO₂ 垂直廓线的基本形状等),但至今未能与真实 数据进行比对。此外,云、地表反照率、痕量气体的 垂直廓线、平流层 NO₂ 柱浓度,以及气溶胶廓线等 的不确定性,使得从卫星数据准确、定量反演地面确 定网格的对流层 NO₂ 柱浓度面临着极大的挑战,反 演结果存在着很大的不确定性。

(1)最大的不确定性在于云的确定。云会挡住 卫星的视角,从而无法探测近地面的 NO₂ 含量。反 演 NO₂ 时对云的存在十分敏感,甚至小的云量(5% ~20%)就有较大的影响。因此,对云特性(至少是 云高和云量)进行高质量的观测,是定量反演所必须 的。

(2) 地表反照率直接影响了边界层 NO₂ 反演 的敏感性。因此,相关光谱范围内高质量的地表反 照率分布图是十分必要的。

(3) NO₂ 的垂直廓线的时空分布具有极大的可 变性。NO₂ 的垂直廓线受排放源的分布,边界层高 度及其稳定性、干湿沉降,以及对流混合程度和长距 离输送的影响。在源排放区,NO₂ 的浓度在近地面 出现极值,而在源区的下游地区,NO₂ 的极值会出 现在距地面更高的高度。

(4) 平流层 NO₂ 和对流层的 NO₂ 对总的 NO₂ 柱浓度的贡献是可比的。因此,平流层的背景浓度 必须准确定量才能获得对流层的 NO₂ 柱浓度。大 气的动力学过程通常会显著地影响平流层示踪剂的 含量,从而影响平流层与对流层的分离。

(5)另外,气溶胶的影响也是产生不确定性的 来源。气溶胶层厚薄会影响辐射场和近地面 NO₂ 反演的灵敏度。

2 NO₂ 卫星观测的地基验证

由于卫星资料在反演过程中存在着众多的不确 定性,因此,需要系统的、综合的验证才能提高卫星 产品的数据质量。

2.1 NO₂ 卫星观测验证的基本思路

NO₂ 卫星观测资料的验证主要涉及 2 个部分的内容,一个是反演算法中所用的输入参数的验证,

一个是卫星反演产品的验证。反演过程中所用的输 入参数有:

(1)预先假定的输入数据和参数。包括 NO₂、 温度和压力的垂直廓线,地表反照率,气溶胶和云对 光的散射和吸收。

(2) 气溶胶的处理。气溶胶的类型、光学厚度 和垂直分布。

(3) 云的影响。云的影响是复杂的,至今未能 很好解决。

NO₂反演产品的验证包括:

(1) 卫星数据与"真实"观测数据的比较,包括 定性和定量的比较。

(2) 确定在不同情况下卫星数据的不确定性。

(3) 确定时空变化特征。

理想的"真实"值是利用气球探空或飞机观测来 实际获得对流层 NO₂ 浓度的垂直廓线。但目前这 些观测是非常稀少的。对于小型飞机或小的气球来 说,很难有合适的、轻便的、准确的仪器可以搭载来 进行可靠观测。而大型气球或飞机航测不但成本 高,也很难与卫星的扫描观测很好地匹配起来。

2.2 当前验证的手段和方法

地基或空基遥感观测的仪器如 Multi-axis DOAS、球载 DOAS、直接太阳光谱观测(PANDO-RA)、激光雷达和 Brewer 光谱仪可获得相对准确的 NO₂浓度^[14-20],它们的观测结果常用于卫星观测资 料的验证。通过对地基 Brewer 观测和 OMI 卫星观 测的 NO₂ 月均值柱浓度结果进行比较,二者在季节 变化上存在着良好的一致性,且反演的结果在量级 上也非常接近^[12]。此外,基于排放源和地面观测的 模式计算也可对对流层的 NO₂进行估算,也可用于 卫星数据的比对和验证^[21-24],但其验证结果也受到 排放源、气象场及化学过程等方面不确定性的影响。 在 2005 年 6 月 22—23 日 Aura 验证实验中得到了 一个较好的例子,其模式模拟结果与卫星观测的结 果相匹配的^[25]。

尽管有很多成功的例子可以对卫星观测的 NO₂的结果进行比较成功的验证,但是卫星反演 NO₂的验证工作受到多种因素的影响,因而十分复 杂。最大的影响因素在于卫星观测的结果是在其扫 描视角范围内的有效平均,其空间分辨率通常在 10² km²的尺度(如 OMI 的最小视角为 340 km²), 而地基的观测是在一个单点的观测^[12]。对流层 NO₂的分布是极其不均匀的,在几十米至几千米范 围内都可有显著的变化,偏远或农村地区的浓度通 常小于 10¹⁵ cm²,而在城市或工业化地区则常常大 于10¹⁶ cm²。在同一个地方同一个时段,地基 MAX-DOAS 在不同方向的扫描得到的结果也往往不同, 这表明了对流层 NO₂ 分布的不均一性^[20]。因此, 相对于卫星观测的平均效果而言,在不同的地方观 测,其对卫星观测结果的验证很可能是高估或低估 的。地基上不同仪器对对流层 NO₂ 的观测结果,在 绝对值上也通常不完全一致,尽管临近仪器之间观 测结果的相关性都很好^[12]。总体而言,当前验证的 数据仍然偏少且时间跨度太短,影响统计的结论。

因此,当前大多数地基观测与卫星反演结果的 比对是相当定性的。为了表征卫星反演的对流层 NO₂ 浓度在不同区域条件下的不确定度,需要在不 同的区域进行系统的观测,包括在清洁的和污染的 地区,距离污染源远近不同的区域,在不同类型云存 在的情况下,在不同的地形条件,以及不同的季节里 进行必要的观测。模式可用来评价卫星所反演的 NO₂ 资料在反映大气 NO₂ 浓度的时空变化特征、 趋势及季节平均值上的好坏。相关的测量应该有助 于优化 NO₂ 的反演技术,而不仅仅是直接的比较, 因此测量也要针对反演中所用假设的正确性进行检 验,包括平流层的贡献、地表反照率、对流层廓线的 形状、气溶胶和云等。

2.3 地面 NO₂ 在线观测数据在比对验证中的作用 及其不足之处

在一定程度上,地面 NO2 的观测结果能够反映 对流层 NO₂ 的变化情况。这些情况通常是边界层 内 NO₂ 充分混合,以及边界层内的 NO₂ 对对流层 中 NO₂ 的贡献起决定作用,例如 Brinksma 等^[20]模 式计算的结果表明,就全年平均而言,大于80%的 NO₂ 积聚在最底层 1000 m内。另外,在假定对流 层内 NO₂ 的廓线没有大的变动下,地面观测的结果 也会与对流层 NO2 浓度有很好的相关性。例如, Max-DOAS 测量的 NO2 柱浓度与近地面观测的 NO₂ 浓度值之间存在着良好的相关性(R =0.63)^[20],这结果正反映了地面 NO₂ 的观测结果与 对流层 NO2 柱浓度之间的正相关关系。Boersma^[26]等把OMI和SCIAMACHY 过境扫描时间对 应的地面 NO₂ 观测浓度乘以所观测到的边界层高 度,得到 NO₂ 的积分浓度,然后与卫星 NO₂ 柱浓度 进行比对验证,可获得良好的相关性。因此,近地面 的观测结果对卫星资料的验证是有意义的。

地面观测是评价和验证基于排放源资料的模式 结果准确性的一个重要指标。Brinksma 等^[20]用 MOZART-2 模式输出的 NO₂ 垂直廓线把地面观测的结果按比例积分成为对流层 NO₂ 垂直柱浓度,并与卫星反演的结果进行比对,发现在无云的条件下,二者相当一致。在缺少实际测量廓线的情况下,不同高度的实际观测结果是评价利用激光雷达等方法获取的垂直廓线是否准确的一个重要手段^[20]。

但是,地面 NO₂ 在线观测也存在不足之处,主要在于:

商业化仪器利用钼转化炉测量大气中的 NO₂ 有一个很大的缺点就是其他氧化性物质如硝酸 (HNO₃),过氧乙酰硝酸酯 (PAN)和有机硝酸盐也 能够部分被转化为直接测量的 NO₂ 进而形成干扰。 因此,NO₂ 常常被高估,特别是对那些光化学老化 的空气团^[18]。单点的观测往往很难与代表较大的 空间平均的卫星数据直接比对,除非这个点的空间 代表性非常好。在一个区域内,多个点的观测的平 均值的比对效果往往更加有效。例如,Cappellani 等^[27]就发现地面不同站点的近地面 NO₂ 浓度平均 结果与 Brewer 观测反演的 NO₂ 柱浓度有很好的一 致性。

反过来而言,在一些区域背景站点,它不受局地 人为排放直接影响,但能够接收到特定区域内污染 气团输送的影响,其观测结果在一定程度上能够代 表该区域大气的平均混合状态,其地面观测的结果 若与卫星观测的结果有很好的相关性,则可表明该 站点具有良好的区域代表性,是一个验证卫星产品 的理想站点。由于仪器检测限等原因,受区域污染 更为显著的背景站点的观测往往更容易和更准确, 卫星在这些区域的观测误差也相对小。

3 大气本底观测在卫星遥感 NO₂ 资 料中的作用和前景

大气本底观测是在具有全球和区域代表性的站 点对与气候变化和空气质量相关的大气化学成分和 大气物理特性进行可靠、全面和准确的观测,为科学 界提供预测将来大气状态和评估环境政策所需的数 据。这种趋势性观测目标对观测项目的质量保证和 质量控制具有严格的要求^[28]。近地面大气成分如 NO₂、SO₂、O₃、CO等实际观测数据,以及地基 Brewer 光谱仪反演的 O₃、NO₂和 SO₂等柱浓度资 料可以直接用来与卫星资料进行比对。观测的数据 也可用于模式结果的验证工作,改进模式模拟效果, 后者得到的柱浓度可用于卫星资料的比对和验证。 一些大气物理特性的观测,如气溶胶光学厚度等观 测结果也可应用在卫星资料反演参数的输入上。然 而,目前本底站的观测主要集中在近地面的观测, Brewer 光谱仪(龙凤山、临安和瓦里关大气本底站 用的是 MK II 型 Brewer 光谱仪)主要是为了测量 臭氧的柱浓度,限于仪器的光谱分辨率(0.6 nm)和 光谱观测范围(290 nm 到 325 nm),以及大气中 NO₂和SO₂浓度相对于O₃总量而言要低两个数量 级,浓度越低测量的相对误差越大,因此对 NO2 和 SO₂ 的反演尚存在较大的误差,Brewer 光谱仪反演 的 NO₂ 和 SO₂ 产品也需要进一步验证。可用于标 准传递的 Brewer MK III 光谱仪是双光栅光谱仪, 能够有效地抑制了杂散光对测量的影响,提高测量 光谱的精度,提高反演产品的准确性;Brewer MK III 和 MK IV 型光谱仪都扩展了观测的光谱宽度 (286.5~363 nm),进而能够在更合适的波段反演 NO2 的柱浓度,但光谱分辨率仍为 0.6 nm。

在前文提到,理想的"真实"值是实际观测的垂 直廓线浓度,而对垂直廓线的探测正是本底站观测 所缺乏的。因此,有必要装备必要的探空或可垂直 观测设备,对大气成分和大气物理特性进行廓线观 测,以获得中国地区上空的真实参数,为卫星资料反 演和验证提供数据基础。此外,应注重一些地基柱 浓度和垂直廓线观测仪器,如 MAX-DOAS 的装备, 从而进行技术贮备。

具有良好的空间(区域)代表性也是大气本底站 的一个优势。通过对临安、上甸子、龙凤山和固城四 个站点地面 NO₂ 数据与 OMI 100 km 范围内的对 流层 NO₂ 柱浓度格点平均值(月均值)进行比对分 析,二者存在着较好的相关性。特别是在临安和固 城地区,OMI 数据与地面数据的相关系数 R² 分别 可达到 0.73 和 0.64。这些结果表明,大气本底站 的观测结果具有较好的空间代表性,在较大的卫星 扫描视角范围(空间分辨率通常在 10² km² 的尺度) 内的有效平均值的比对上具有一定的优势。

4 结 论

受各方面因素的影响,通过卫星遥感获得的大 气 NO₂ 等产品的数据质量存在较大的不确定性。 只有通过实际的观测资料来验证才能评估卫星数据 的可靠性和不确定性。卫星观测资料的验证主要涉 及两个部分的内容,一个是反演算法中所用的输入 参数的验证,一个是卫星反演产品的验证。验证工 作是系统的、具有挑战性的工作,需要多方面的准备 工作。同时需要在清洁地区、轻度污染地区、污染地 区及不同下垫面区域进行全面验证。

卫星观测有些只能取得整个柱总量,有些能区 分平流层和对流层柱含量,有少数能得到垂直廓线。 但是,不管是哪一种情况,仅通过近地面浓度观测来 验证是远远不够的。需要结合地基柱总量和廓线观 测、地面浓度观测、航测、模式等多种手段来实现。 具有较好区域代表性的大气本底站的近地面观测资 料和地基遥感资料可以在一度程度上用于对卫星资 料的验证,在这些站点上进一步开展大气成分和大 气物理特性的垂直廓线的观测将有助于获得中国地 区上空真实的参数和大气成分浓度值。一些能够有 利于卫星资料验证工作的新技术和仪器设备有必要 预先进行技术贮备。

参考文献

- [1] 唐孝炎,张远航,邵敏. 大气环境化学[M]. 北京:高等教育出版 社, 2006.
- [2] 张兴赢,张鹏,方宗义,等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007, 33(7):3-14.
- [3] Fishman J, Balok A E, Vukovich F M. Observing tropospheric trace gases from space: Recent advances and future capabilities
 [J]. Adv Space Res, 2002, 29(11):1625-1630.
- [4] Borrell P, Burrows J P, Richter A, et al. New directions: New developments in satellite capabilities for probing the chemistry of the troposphere[J]. Atmospheric Environment, 2003, 37: 2567-2570.
- [5] Clerbaux C, Hadji-Lazaro J, Turquety S, et al. Trace gas measurements from infrared satellite for chemistry and climate applications [J]. Atmos Chem Phys, 2003,3:1495-1508.
- [6] 张兴赢,张鹏,张艳,等. 近十年中国对流层 NO₂ 变化趋势、时 空分布特征及其来源解析[J]. 中国科学 D,2007,37(10):1-8.
- [7] Richter A, Burrows J P, Hendrik N, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437:129-132.
- [8] Martin R V. Satellite remote sensing of surface air quality[J]. Atmospheric Environment, 2008, 42:7823-7843.
- [9] Konovalov I B, Beekmann M, Burrows J P, et al. Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions[J]. Atmos Chem Phys, 2008,8:2623-2641.
- [10] Boersma K F, Eskes H J, Brinksma E J. Error analysis for tropospheric NO₂ retrieval from space[J]. J Geophys Res, 2004, 109, D04311, doi:10.1029/2003JD003962.
- [11] 张兴赢,张鹏,廖宏,等. 地基傅立叶红外高光谱遥感观测大气 成分平台建设及其反演技术研究[J]. 气象,2009,35(1):9-17.
- [12] Celarier E A, Brinksma E J, Gleason J F, et al. Validation of ozone monitoring instrument nitrogen dioxide columns[J]. J Geophys Res, 2008,113, D15S15,doi:10.1029/2007JD008908.
- [13] Richter A, Burrows J P. Tropospheric NO₂ from GOME measurements[J]. Advances in Space Research, 2002, 29(11): 1673-1683.
- [14] Petritoli A, Bonasoni P, Giovanelli G, et al. First comparison be-

tween ground-based and sattelite-borne measurements of tropospheric nitrogen dioxide in the Po Basin[J]. J Geophys Res, 2004, 109, D15307, doi:10.1029/2004JD004547.

- [15] Wang P, Richter A, Bruns M, et al. Measurements of tropospheric NO₂ with an airborne multi-axis DOAS instrument [J]. Atmos Chem Phys, 2005, 5: 337-343.
- [16] Heue K P, Richter A, Wagner T, et al. Validation of SCIAMA-CHY tropospheric NO₂-columns with MAXDOAS measurements
 [J]. Atmos Chem Phys, 2005, 5: 1039-1051.
- [17] Bruns M, Buehler S A, Burrows J P, et al. NO₂ profile retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe[J]. Atmos Chem Phys, 2006, 6: 3049-3058.
- [18] Ordóñez C, Richter A, Steinbacher M, et al. Comparison of 7 years of satellite-borne and ground-based tropospheric NO₂ measurements around Milan, Italy[J]. J Geophys Res, 2006, 111, D05310, doi:10.1029/2005JD006305.
- [19] Fix A, Ehret G, Flentje H, et al. SCIAMACHY validation by aircraft remote sensing: Design, execution, and first measurement results of the SCIA-VALUE mission[J]. Atmos Chem Phys, 2008, 5: 1273-1289.
- [20] Brinksma E J, Pinardi G, Volten H, et al. The 2005 and 2006 DANDELIONS NO₂ and aerosol intercomparison campaigns[J]. J Geophys Res, 2008, 113, D16S46, doi: 10.1029/2007JD0088-08.
- [21] Ma J, Richter A, Burrows J P, et al. Comparison of model-simulated tropospheric NO₂ over China with GOME-satellite data[J]. Atmospheric Environment, 2006, 40: 593-604.
- [22] Konovalov I B, Beekmann M, Vautard R, et al. Comparison and evaluation of modelled and GOME measurement derived tropospheric NO₂ columns over Western and Eastern Europe[J]. Atmos Chem Phys, 2005, 5: 169-190.
- [23] Lauer A, Dameris M, Richter A, et al. Tropospheric NO₂ columns: A comparison between model and retrieved data from GOME measurements[J]. Atmos Chem Phys, 2002, 2: 67-78.
- [24] Velders G J M, Granier C, Portmann R W, et al. Global tropospheric NO₂ column distributions: Comparing 3-D model calculations with GOME measurements [J]. J Geophys Res, 2001, D106: 12643-12660.
- [25] Fishman J. Bowman K W, Burrows J P, et al. Remote sensing of tropospheric pollution from space[J]. Bulletin of the American Meteorological Society, 2008, 89: 805-821.
- [26] Boersma K F, Jacob D J, Trainic M, et al. Validation of urban NO₂ concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities[J]. Atmos Chem Phys, 2009, 9: 3867-3879.
- [27] Cappellani E, Bielli A. Correlation between SO₂ and NO₂ measured in an atmospheric column by a brewer spectrophotometer and at ground-level by photochemical techniques[J]. Environmental Monitoring and Assessment, 1995, 35: 77-84.
- [28] 林伟立,徐晓斌,于大江,等. 龙凤山区域大气本底台站反应性 气体观测质量控制[J]. 气象,2009,35(11):93-100.