赵瑞金,郝雪明,杨向东,等. 2009年7月20日承德龙卷多普勒天气雷达特征[J]. 气象,2010,36(11):68-76.

2009年7月20日承德龙卷多普勒天气雷达特征**

赵瑞金^{1,2,3} 郝雪明² 杨向东⁴ 杨雷斌⁴ 1 中国气象科学研究院灾害天气国家重点实验室,北京 100081 2 河北省气象台,石家庄 050021 3 河北省气象与生态环境重点实验室,石家庄 050021 4 河北省承德市气象局,承德 067000

提 要:为了研究 2009 年 7 月 20 日发生在河北省承德市龙卷过程的多普勒天气雷达特征,利用承德 CINRAD/CB 多普勒 天气雷达结合天气图、风廓线雷达、自动气象站等实况观测资料,对该次龙卷过程进行了详细的分析。结果表明:龙卷出现前 低层大气相对暖湿,受高空冷涡影响,在对流层中层有较强的干冷空气下传,中高层有较强的垂直风切变。龙卷风出现过程 中,在多普勒天气雷达径向速度产品上自低层到 6.8 km 都存在强烈的气旋性涡旋,风暴单体顶高、最大反射率因子高度、风 暴质心高度等位置较高。垂直积分液态含水量产品显示在龙卷风出现前 VIL 数值产生了跃增,但 40 kg•m⁻²以上维持时间 短。定位分析表明,受风暴运动和结构影响,雷达龙卷涡旋特征位置位于实际龙卷风的东南侧。

关键词:龙卷风,多普勒天气雷达,中气旋

Analysis on the Doppler Weather Radar Characteristics of the 20 July 2009 Tornado in Chengde

ZHAO Ruijin^{1,2,3} HAO Xueming² YANG Xiangdong⁴ YANG Leibin⁴

1 State Key Laboratory of Severe Weather, CAMS, Beijing 100081

2 Hebei Meteorological Observatory, Shijiazhuang 050021

3 Hebei Provincial Meteorological and Eco-Environmental Key Laboratory, Shijiazhuang 050021

4 Chengde Meteorological Office of Hebei Province, Chengde 067000

Abstract: In order to study the Doppler weather radar characteristics of the 20 July 2009 tornado in Chengde, the CINRAD/CB, weather charts, wind profile radar, and automatic weather station observation data are analyzed synthetically. The results show as follows: Before the tornado, the low-level air is wet and warm. Affected by the upper cold vortex, the strong cold air at the middle troposphere descends, and there are strong vertical shears in the upper-middle troposphere. There are strong cyclonic vortices from low level to 6.8 km at Doppler weather radar radial velocity products when tornado appears. The top height of the cell, maximum reflectivity, and echo centroid are higher also. VIL value abruptly increases before the tornado appears, but the sustaining time above 40 kg \cdot m⁻² is short. Orientation analysis shows that affected by movement and storm structure, the tornadic vortex signature is at the southeast of real tornadic position.

Key words: tornado, Doppler weather radar, mesocyclone

^{*} 本文由中国气象科学研究院灾害天气国家重点实验室开放课题 2010LASW-A10 和公益性行业(气象)科研专项 GYHY200706042 资助 2009 年 10 月 16 日收稿; 2010 年 4 月 20 日收修定稿 第一作者:赵瑞金,主要从事天气雷达应用研究. Email:zhaoruijin@sina. com

引 言

龙卷是对流云产生的破坏力极大的小尺度灾害 性天气,是一个平均直径为100 m左右从积雨云内部 扩展到地面的猛烈旋转的空气柱,其视觉特征是一个 从云底悬挂下来的漏斗云和/或地面旋转的尘云。其 产生的最大地面风速可达125~140 m•s⁻¹,可造成 重大的人员伤亡和财产损失。

魏文秀等[1]对我国龙卷风发生的时空分布特征 进行了统计分析,指出龙卷风多出现在我国东南部 的平原地区。曹治强等[2-3]利用卫星云图等资料对 龙卷风天气系统的活动与演变进行了分析。多普勒 天气雷达是对龙卷进行探测和预警的最有力的工 具,与传统天气雷达相比,多普勒天气雷达除了可以 测量降水的回波强度外,还可以测量降水粒子沿着 雷达径向的速度,从而可以识别出中小尺度的涡旋、 辐合和辐散特征。俞小鼎等[4-7]利用新一代天气雷 达资料对 2003 年 7 月 8 日、2005 年 7 月 30 日发生 在安徽无为和灵璧的两次龙卷过程进行了分析,刘 娟等[8]对 2007 年 7 月 3 日发生在安徽天长和江苏 高邮的龙卷风天气的多普勒天气雷达特征进行了分 析。何彩芬等[9]对 2004 年 8 月 25 日发生在宁波的 一次台风前部龙卷的多普勒天气雷达特征进行了分 析。

对于北方山区龙卷风的研究目前还很少,赵亚

民等^[10]曾使用每小时卫星云图、地面天气图、高山 观测记录和重要天气通报等资料,对1987年8月 26日下午发生在河北南部和山东的龙卷风群作了 简要分析。本文利用承德 CINRAD/CB 新一代天 气雷达数据对2009年7月20日发生在承德平泉县 的龙卷风过程进行了分析,为龙卷风的预报提供科 学依据。

1 龙卷风实况

2009年7月20日14时至14时35分左右(文 中时间均采用北京时)在河北省承德市平泉县的黄 土梁子镇出现龙卷,现场目击者很多,并拍下了视频 和照片,如图1所示。承德地处燕山山脉,龙卷风比 较少见,中央电视台等多家新闻媒体对此进行了报 道。据目击者叙述,该次龙卷过程13时59分左右 开始在铁匠沟出现,龙卷风从北向南快速移动。14 时20分左右,该镇北洼子自然村遭受龙卷风袭击, 龙卷风袭扫之处树木被连根拔起,房屋倒塌,电话 线、电线及闭路电视线均被刮断。据初步统计,造成 该村一人受伤,损坏54间房屋,玉米地受灾面积至 少达到 36.7 hm²,其中至少 18.7 hm² 绝收。根据 Fujita^[11]提出的龙卷分级标准,按照房屋倒塌和损 坏情况及目击者关于漏斗云的描述,此次龙卷的强 度大致为 F1 级。区域观测站资料显示,龙卷风出 现时黄土梁子镇没有降雨。

图 1 2009 年 7 月 20 日 14 时现场目击者拍摄的 龙卷风(a)和龙卷风过后的灾情实况(b) Fig. 1 The tornado photo shot by witness (a) at 14:00 BT July 20, 2009 and the disastrous situation after the tornado (b)

2 天气形势及观测实况资料分析

2.1 天气形势分析

在 2009 年 7 月 20 日 08 时地面图上,河北省处

于低压带里,低压中心位于我国东北地区(45°N、122.5°E),中心气压为 996 hPa,到 14 时位置略有 东移。08 时在贝加尔湖东南部有冷空气南下,冷空 气中心 08 时在 49°N、112°E,14 时移动到 45°N、 115°E,移动速度较快,到 14 时,冷空气已经影响张

10140

家口和承德地区。平泉县处于锋前暖区的辐合线 上。

在 500 hPa 高空图上,20 日 08 时,从河套向北 到贝加尔湖地区为高压脊控制,我国东北地区有一 冷涡。承德、唐山、秦皇岛一带主要受冷涡底部的浅 槽影响。同时在河套南部存在短波槽,且该处温度 槽落后于高度槽,850 hPa 有一暖舌伸到承德、唐山 和秦皇岛附近。

通过对 08 时物理量分析,可以看出承德、唐山、 秦皇岛一带处于北部下沉与南部上升运动的交合 处,且低层 700 hPa 为辐合,高层 500 hPa 为辐散, 说明中高层有干冷空气侵入。在水汽通量散度上, 08 时 700 hPa 承德、唐山、秦皇岛一带有水汽辐合。

承德、唐山、秦皇岛一带的 K 指数由 08 时的 24 ℃上升到 20 时的 33 ℃以上, SI 指数由 4~6 ℃下 降到 20 时的 0~2 ℃之间。这种演变也说明了该地 区的大气稳定度由稳定逐渐变为不稳定。

7月20日08时高低空综合分析显示,平泉县 位于200hPa急流轴入口区右侧,500hPa的20 m・s⁻¹偏西气流的急流轴出口区左侧,同时700 hPa的西南风和850hPa的西北风均有 \geq 10 m・s⁻¹大风区。19日20时至20日20时500hPa 天气图上584 dagpm特征线是一个明显南撤的过 程,该过程伴随着明显的动量下传,且高层干冷、低 层暖湿的大尺度背景为龙卷的产生提供了必要的动 力条件。

2.2 风廓线雷达和探空资料分析

图 2 为 20 日 12—15 时距离承德最近的唐山风 廓线雷达观测到的垂直风场变化情况,可以看出,从 地面至 4 km 左右偏北风随高度转变为偏西风,风 向随高度逆转,为冷平流,风速随高度增加。4 km 以上风向随高度顺转,为暖平流,其中 4~7 km 左 右风速较低,在 7 km 左右有偏西风与偏东风或偏 南风的切变,在 7~8 km 转成以偏南风为主,其中 13:12、13:53、14:19、14:50、14:55 为偏北风,风速 随高度增大。因此,在龙卷风出现前后,在 4 km 以 上的中高层存在暖平流和较强的垂直风切变。

根据距离承德最近的北京探空站资料,20日08 时低层地面至700 hPa之间的 $T - T_d$ 都在0~4 °C 之间,较为湿润。K指数为35 °C,SI为0.16 °C, CAPE为157 J·kg⁻¹。因此,从探空和风廓线资料

来看,主要是低层相对暖湿的大气和中高层较强的垂 直风切变为龙卷风的发生提供了热力和动力条件。

2.3 地面自动站资料分析

图 3a 是 2009 年 7 月 20 日 14:00 承德及周边 地区的地面加密观测图,小圆圈所在位置为龙卷发 生地,可以看出,龙卷风发生地处在西北风和西南风 之间的一条气旋性切变线附近。图 3b 至图 3f 是在 龙卷发生地 10 km 范围以内布设的 5 个 2 要素自动 站观测的温度变化情况,从图中可以看出在13:00-15:00 温度总体呈上升趋势,但 14:00 左右有明显 下降,最大降温出现在柳溪,幅度为2.1℃。另外, 除柳溪自动站在 14:12 有 0.1 mm 降水,其他 4 个 自动站均未出现降水。图 3g 至图 3i 是距离龙卷风 发生地西南方向约 25 km 左右的平泉县 7 要素自 动气象站 13:00-15:00 的观测实况,该站没有遭受 龙卷袭击。从图 3g 和图 3h 分别可以看出在14:10 左右有西南风向偏西北风的转变,气压下降。从图 3i 可以看出,除干球温度在14:00 以后随时间呈上 升趋势外,水汽压、相对湿度、露点温度在14:00达 到最大,而后略有下降。

3 多普勒天气雷达资料分析

3.1 回波的移动和演变特征

新一代天气雷达承德 CINRAD/CB 详细探测

了这次过程。图 4 是风暴单体生消和移动路径图。 本次观测采用了 VCP21 模式,体扫间隔时间为 6 分 钟,图中点出了每两个体扫间隔单体的位置,产品是 组合反射率(CR)。可以看出,从12:48 在内蒙古喀 喇沁旗与平泉交界处有一非常小的孤立的回波单体 1 生成,13:06 中心强度单体 1 迅速达到 60 dBz,回

Fig. 3 The surface automatic weather station data at 14:00 BT or so, July 20, 2009 near the place where tornado happened

图 4 2009 年 7 月 20 日回波的移动路径及演变 (右下角为根据多普勒雷达风暴追踪信息产品(STI)绘制的回波的移动路径,每个黑点间隔为 6 分钟) Fig. 4 The movement track and evolvement of the echo on July 20,2009 The map at the right bottom is the storm tracking information (STI), and the interval between every two dots is 6 min.

波呈椭圆形,在强中心下方具有羽毛状伸展的回波。 该单体自西北向东南方向迅速移动,在13:36 有新 的单体2产生,13:54 单体1的强中心达到 60 dBz 以上,呈肾形,回波羽向东伸展到 70 km 以上,并有 新的单体3产生。14:06 单体2 和单体3 合并。 14:36 单体1 与单体2 和单体3 彻底分离。14:48 以后开始减弱,15:06 之后移出平泉,至15:30 基本 消散。回波在整个演变过程中,移动速度平均约为 60 km • h⁻¹,呈现演变迅速、移动快的特点。通过 对 20 日 12—15 时唐山风廓线雷达观测资料分析, 如果用 500 hPa 层上的平均风来代表风暴承载层平 均风,此时风暴承载层平均风向约为 300°左右,风 暴成熟阶段移动方向为 330°,偏向风暴承载平均风 右侧约 30°,因此,该单体风暴为右移风暴。

3.2 风暴参数及属性分析

CINRAD/SA 雷达产品能提供丰富的风暴信息,如风暴位置(经纬度)、底部和顶部高度、强中心强度和高度、垂直积分液态含水量(VIL)等。 3.2.1 单体高度及强度变化

图 5 是单体 1 的顶和底高(TOP-BASE)、最大

of the storm on July 20, 2009

反射率因子高度(DBZM HGT)、单体质心高度 (CENT HT)、垂直积分液态含水量(VIL)、最大反 射率因子的演变情况,其中顶高和底高是指 30 dBz 的高度。图中横线为目击者观测到龙卷风的时段。 从图 5a 可以看出,风暴生成于 4~6 km 的高度,13: 54 发展到最高,13:54—14:06 顶高维持在 10 km 以上高度,14:06 以后回波顶高下降。最大反射率 因子高度也在 14:06 达到最大。单体的质心高度始 终维持在 3~6 km。强中心高度维持在较高的高 度。减弱消散期顶高降低,强度逐渐减弱。

从图 5b 可以看出,最大反射率因子在风暴的演 变过程中始终维持在 50 dBz 以上,在 13:54—14:48 强度始终在 60 dBz 以上。

3.2.2 垂直积分液态含水量变化

图 5c 给出了基于格点的承德龙卷风过程中 VIL 随风暴演变而变化的情况。由图可以看出,在 整个龙卷风演变过程中,VIL 值始终在 $30 \sim 40 \text{ kg}$ •m⁻²之间,从 13:36 开始从 20 kg •m⁻²开始跃 增,到 14:06,达到最大值,即 40 kg •m⁻²。演变过 程中 VIL 的数值相对较低,在 40 kg •m⁻²以上也 仅维持了 1 个体扫,时间很短,说明云体内部含水量 较低。地面观测实况也没有出现冰雹或降水。

3.3 反射率因子和径向速度产品特征分析

图 6 为 14:06:01 不同仰角的反射率因子产品、 速度产品和强回波中心的放大图。图中所示高度为 龙卷涡旋特征在不同仰角产品上对应位置高度。在 图 6a 反射率因子产品上入流缺口不十分明显。在 图 6b 0.5°和 1.5°速度产品上可以看出在右前侧气 流是气旋式向后延伸,形成了一个涡旋结构。在回 波中心的放大(图 6c)上可以看出,自低层到6.8 km 都存在强烈的气旋性涡旋,9 km 以上为辐散。

图 6 2009 年 7 月 20 日 14:06:01 不同仰角的反射率因子产品(a)、 速度产品(b)、和回波中心的放大图(c) Fig. 6 The reflectivity (a), radial velocity (b), and amplified maps echo center (c) at 14:06:01 BT 20 July 2009

图 7a 和图 7b 分别是沿径向和垂直于径向方向 的反射率因子垂直剖面,可以看出,强中心高度为 4.5 km,强度达到了 65 dBz 以上,并且 50 dBz 反射 率因子区主要在 3 km 以上。从剖面还可以看出, 中高层回波悬垂以及有界弱回波区并不明显。在龙卷出现时,由于回波强度很强,在剖面上还出现了旁瓣回波,如图 7b 所示。

图 7 2009 年 7 月 20 日 14:06:01 沿雷达径向(a)和 垂直于雷达径向(b)的反射率因子剖面产品 Fig. 7 The reflectivity cross sections along radial (a) and perpendicular (b) directions at 14:06:01 BT 20 July, 2009

4 龙卷风移动路径、多普勒天气雷达 风暴追踪信息、径向速度、中气旋和 龙卷涡旋特征产品叠加分析

图 8 为根据实地调查,利用 GPS 定位绘制的龙 卷风实际移动路径、13:48 至 14:54 多普勒天气雷 达风暴追踪信息、龙卷涡旋特征产品、中气旋产品和 14:06 径向速度产品的组合图。从图中可见,这次 龙卷风首先在铁匠沟(41°13′21″N、118°42′45″E)出 现,然后向三家北沟(41°13′4″N、118°43′59″E)方向 移动,再转向北洼村(41°12′41″N、118°44′6″E),然后 继续向南移动,并逐渐减弱,其中北洼受灾最为严 重。通过与 14:06 径向速度图叠加,可以看出实际 龙卷出现的位置处于回波的后部。

图 8 2009 年 7 月 20 日龙卷风移动路径、 多普勒雷达风暴追踪信息、径向速度、 中气旋和龙卷涡旋特征产品的组合图 Fig. 8 The combination map of tornado track, storm tracking information, radial velocity, mesocyclone and tornadic vortex signature concerning the 20 July 2009 tornado

图 9 2009 年 7 月 20 日龙卷风出现地回波演变情况 Fig. 9 The echo evolvement at the place where the tornado appears

从风暴追踪信息产品看 14:00 风暴向西南方向 移动,14:06 转向东南。此时该风暴单体的反射率 因子垂直剖面如图 7 所示,根据 14:06 雷达观测的 龙卷涡旋特征位置和此时龙卷所在的北洼自然村的 实际地理位置,可以计算出龙卷涡旋特征分别位于 实际龙卷位置东南方向约 9.6 km 左右。

在 14:06 至 14:36 回波向东南移动过程中,龙 卷虽然也随回波向偏南方向移动,但始终处在对流 云的后部。中气旋产品、龙卷涡旋特征位置都处在 实际龙卷位置的东南方向。

图 9 为在龙卷风出现地回波的演变情况。图中 小圆圈为龙卷风出现的区域。14:00 以后圆圈内细 线为龙卷风自西北向东南的移动轨迹。可以看出, 龙卷风出现地在 13:36 处于回波中心的西南侧,随 着回波向东南移动,14:00 龙卷风出现地位于强回 波中心的西侧,此时开始出现龙卷。14:06 以后,龙 卷风出现地位于回波强中心的西北方向,并且龙卷 风所在地与回波强中心的距离逐步增大。此外,龙 卷风出现地始终处于回波外围边缘,回波很弱或无 回波。此次龙卷出现时没有出现降水,从现场拍摄 的照片和视频图像上,还可以看到蓝天,雷达回波情 况与现场目击观测事实是一致的。

图 10 是根据 Lemon 等^[12]总结的经典超级单体的概念模型,粗实线勾画出低层反射率因子的轮廓线,超级单体由西南向东北移动,低层入流方向位于超级单体的右后侧(相对于风暴移动方向而言)。 对应于低层入流,低层反射率因子出现一个入流缺口和钩状回波。FFD和RFD分别代表前侧和后侧

图 10 超级单体风暴概念模型图 Fig. 10 Plane schematic diagram of a tornadic supercell storm at the surface

下沉气流。在下沉气流出流与入流之间的边界称为 外流边界或阵风锋,通常后侧阵风锋更加明显。龙 卷的可能发生位置(T)有两个,一个位于中气旋中 心附近,一个位于超级单体后侧阵风锋上。承德平 泉龙卷出现地与强回波主体相距近 10 km,可能属 于后者,应该是发生在超级单体的后侧阵风锋上,而 不是发生在超级单体的中气旋内部。

此外,由于雷达最低仰角为 0.5°,而此时龙卷 涡旋特征所在位置雷达能够测得的最低高度约 1.5 km,因此,低层的龙卷特征无法观测到。从实际龙 卷风的观测来看,与一般龙卷风不同,此次龙卷风的 漏斗云在向南移动过程中逐渐向东倾斜,形成了一 条自东向西延伸近乎水平分布的漏斗,如图 1a 所 示,而雷达观测到的是偏东的漏斗云的顶部,这种龙 卷风的结构也是造成龙卷风出现地与雷达回波位置 出现差异的原因,这种实际位置与雷达观测位置的 不一致性也进一步说明了龙卷结构的复杂性。

同时,承德雷达为敏视达 CB 型,测速范围只有 -14 m • s⁻¹到+14 m • s⁻¹,没有使用双 PRF 功 能,因此速度模糊出现较多,如图 6 中圆圈所示,导 致有关中气旋和 TVS 的自动识别出现错误,造成雷 达识别的中气旋和龙卷涡旋特征与龙卷实际位置存 在一定偏差。

5 结 论

北方山区龙卷风比较少见,此次发生在承德的 龙卷风有较准确的时间、地点,具有大量目击者和视 频、照片等资料。通过对该次龙卷过程分析,得到以 下主要结果:

(1)龙卷出现前低层大气相对暖湿,受高空冷涡影响,在对流层中层有较强的干冷空气下传,在中高层有较强的垂直风切变。自动站观测表明,龙卷风出现时温度降低、气压下降。

(2) 在速度产品上自低层到 6.8 km 都存在强 烈的气旋性涡旋,9 km 以上为辐散。龙卷出现时, 中高层强烈的旋转伴随强烈的辐合上升运动,使得 风暴发展旺盛,对流深厚,有利于龙卷风的产生。回 波的顶高、最大反射率因子高度、风暴质心高度等产 品的位置较高。

(3) 垂直积分液态含水量产品显示在龙卷风出

现前 VIL 数值产生了跃增,但整个龙卷演变过程中 VIL 在 $30 \sim 40 \text{ kg} \cdot \text{m}^{-2}$,40 kg $\cdot \text{m}^{-2}$ 以上维持时间 短,含水量较低。

(4) 龙卷风移动路径、风暴追踪信息、中气旋和 龙卷涡旋特征产品的叠加分析表明雷达观测的龙卷 涡旋特征的位置位于龙卷风实际位置的东南侧。

参考文献

- [1] 魏文秀,赵亚民.中国龙卷风的若干特征[J].气象,1995,21 (5):37-40.
- [2] 曹治强,方宗义,方翔.2007年7月皖苏北部龙卷风初步分析 [J]. 气象,2008,34(7):15-19.
- [3] 徐继业,姚祖庆. 登陆热带气旋引发的龙卷过程之个例分析 [J]. 气象,2000,27(7):27-29.
- [4] 俞小鼎,郑媛媛,张爱民,等.安徽一次强烈龙卷的多普勒天气 雷达分析[J].高原气象,2006,25(5):914-924.
- [5] 俞小鼎,郑媛媛,廖玉芳,等.一次伴随强烈龙卷的强降水超级

单体风暴研究[J]. 大气科学,2008,32(3):508-522.

- [6] 姚叶青,俞小鼎,郝莹,等.两次强龙卷风过程的环境背景场和 多普勒雷达资料的对比分析[J].热带气象学报,2007,23(5): 483-490.
- [7] 郑媛媛,俞小鼎,方翀,等.2003年7月8日安徽系列龙卷的 新一代天气雷达分析[J]. 气象,2004,30(1):38-40.
- [8] 刘娟,朱君鉴,魏德斌,等.070703 天长超级单体龙卷的多普 勒雷达典型特征[J]. 气象,2009,35(10):32-39.
- [9] 何彩芬,姚秀苹,胡春蕾,等.一次台风前部龙卷的多普勒天气 雷达分析[J].应用气象学报,2006,17(3);370-375.
- [10] 赵亚民.华北龙卷风群发生环境条件的分析[J].气象,1990, 16(5):36-38.
- [11] Fujita T T. Tornadoes and downbursts in the context of generalized planetary scales [J]. J Atmos Sci, 1981, 38: 1511-1534.
- Lemon L R, C A Doswell III. Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis[J]. Mon Wea Rev, 1979, 107:1184-1197.