闵文彬,李跃清.利用 MODIS 反演四川盆地地表温度与地面同步气温、地温观测值的相关性试验[J].气象,2010,36(6):101-104.

利用 MODIS 反演四川盆地地表温度与地面 同步气温、地温观测值的相关性试验^{*}

闵文彬 李跃清

中国气象局成都高原气象研究所,成都 610071

提 要:通过对 MODIS 反演的地表温度与四川盆地自动气象站观测的准同步地面空气温度 T_a和 0 cm 地温 T_s的相关分析,结果表明:对于非均匀下垫面,卫星反演地表温度 T_{LS}分别与 T_a和 T_s的相关系数稳定性都不好,不同卫星过境时间的相关系数差异很大。但(T_s - T_{LS})与(T_s - T_a)却有着既显著又稳定的线性相关,不同卫星过境时间的相关系数都达到 0.8 以上,具有良好的相关性。基于卫星反演地表温度和空气温度的地温统计模型,其标准误差为 4.85 °C。 关键词:卫星反演地表温度,空气温度,地温,相关分析

Experiment of Correlations Between Synchronized Air Temperature, Soil Temperature and Land Surface Temperature Retrieved from MODIS

MIN Wenbin LI Yueqing

Institute of Plateau Meteorology, CMA, Chengdu 610071

Abstract: The correlations between synchronized air temperature (T_a) and soil temperature (T_s) at automatic weather stations and the land surface temperature (T_{LS}) retrieved from MODIS are analyzed. The results show that for inhomogeneous land surface the correlation coefficients between T_{LS} and T_a and T_s are unstable, and the correlation coefficients at different satellite passing through time have a great difference. But there is a stable linear correlation between $(T_s - T_{LS})$ and $(T_s - T_a)$, and the correlation coefficients at different satellite passing through time are greater than 0.8. A regression equation of soil temperature depending on T_{LS} and T_a is obtained and its standard error is 4.85 °C.

Key words: land surface temperature retrieved from MODIS, air temperature, soil temperature, correlation analysis

引 言

陆地表面温度(*T_{LS}*)是区域和全球尺度陆面过 程中的一个关键因子,广泛应用于气候学、水文学、 生态学等的研究。目前,科技工作者使用最多、最普 遍的地表温度数据仍来自气象台站的地面温度 (*T_s*)观测资料^[1],它是对裸露土壤表面的观测温度。 然而,土壤温度因土壤种类、土壤含水量等的差异, 具有很强的局地性,而开展地温观测的台站又非常 有限,若用常规的方法进行地温的空间插值,不可能 获得满意的地面温度空间分布^[2]。

为了实现空间的拓展,不少学者开展了大量卫 星反演产品与地面实际观测值的对比分析,试图利 用遥感数据,来弥补观测台站的不足,获得满意的空 间分布。如,廖顺宝等^[3]进行了 NOAA-AVHRR

^{*} 四川省气象局重大项目"城市气象服务体系建设"、四川省应用基础项目"丘陵区蒸散量遥感模型研究"共同资助 2008年11月5日收稿; 2009年11月28日收修定稿 第一作者:闵文彬,主要从事气象卫星遥感应用研究.Email:wenbinmin@sina.com

资料反演地温与地面实测值的对比分析,结果发现 遥感反演的月最高地温与地面实测月最高地温的线 性相关系数为 0.86; 刘 晶 淼 等^[4] 利 用 任 意 时 刻 AVHRR 资料近似估计区域地表温度日较差的试 验。侯英雨等^[6]利用卫星遥感资料估算空气温度。 齐述华等^[5]研究了利用 MODIS 遥感影像获取近地 层气温的方法,其精度约为+4℃。吴可军等^[6]在 利用 NOAA 卫星资料分析城市热岛效应的过程中, 采用9点平滑方法将TLs转换为气温。有研究工 作[7-8]认为在一定的范围内,选择高植被覆盖度像元 的 T_{IS} 作为气温的估计值是可行的。Prihodko 和 Goward 等^[9]在假设气温与浓密植被冠层温度近似 的基础上,结合可见光反射率和热辐射信息,得到植 被完全覆盖下的 T_{LS}可作为气温估计值的结论。过 去的研究工作受卫星同步地面观测资料的限制,采 用的绝大部分研究数据是地面观测日极值和假设温 度日变化为正弦函数关系而估算的同步数据,极少 有星、地同步观测数据。而这一点对于获得的是瞬 时观测值的卫星数据而言,非常重要。本文利用近 几年建立起来的自动气象观测台站信息,开展 MO-DIS反演地表温度与准同步的空气温度和土壤表面 温度的相关分析,建立基于卫星反演地表温度的同 步土壤表面温度估算模型。

资料说明

四川盆地位于四川省的东部,外部轮廓可由广 元一雅安一叙永一开江四市(县)的连线所构成,盆 周为黄土壤的山区,以林地为主;盆中为紫色土壤的 成都平原和丘陵区,水田、旱地及林地等零散分布其 间。

1.1 资料选取

MODIS 是 EOS 系列卫星的主要探测仪器,具 有 36 个光谱通道(0.4~14.4 μm),地面分辨率对 不同波段分别为 250 m,500 m 和 1 km。本文选用 四川盆地绝大部分地方晴空的 2005 年 3 月 5 日、3 月 8 日,2006 年 3 月 8 日,2008 年 5 月 11 日、5 月 19 日共 5 轨 Terra/MODIS 数据。

自动气象观测站的空气温度和 0 cm 地温数据 为每小时观测一次。地面观测数据是以气象站所在 的卫星像元是晴空作为选取前提,挑选出不但有气 温观测还要有地温观测的四川盆地气象站:2005 年 3月5日有41个,2005年3月8日有43个,2006年 3月8日有72个,2008年5月11日有78个,2008 年5月19日有67个。

1.2 资料处理

1.2.1 卫星资料

文中所用的 Terra/MODIS 的 1B 数据资料来 自中国遥感卫星数据服务网(http://satellite.cma. gov.cn),卫星白天经过四川盆地的时间集中在 11:15—12:15,地表温度的反演采用分裂窗方法,由 中国科学院遥感应用研究所的 RSIS 软件实现,地 表温度空间分辨率为 0.01°×0.01°。四川盆地气象 观测台站所在的卫星像元均为混合像元,在 1 km× 1 km 的范围内,有房屋、水田、旱地和林地等的多种 组合,像元组分存在明显差异,像元下垫面不均匀。 1.2.2 地面观测资料

自动气象站观测数据只有整点观测,要获得与 卫星过境时间准同步的数据,需要进行时间插值。 温度随时间的日变化的关系可以用正弦关系表示^[10-11],利用每个气象站的经纬度、观测日期,以及 实测的最大、最小温度值,建立各自的谐波函数。然 而,此方法的拟合值与实际每小时观测值比较结果 表明拟合值并不理想,这是由于气温变化并非完全 遵循正弦函数,还会受到当时云状、风等情况影响。 考虑到分析数据是在 11:00—12:00 或 12:00— 13:00(Terra 经过四川盆地时间)的 1 个小时内插 值,而且是在日出以后、温度极大值出现以前的单调 升温时段内,本文假设插值的 1 小时内温度变化是 单调线性的,与卫星过境时间 HH:MM 准同步的地 面气温与地温的获取便可采用下式进行插值,即

 $T_{\text{HHMM}} = T_{\text{HH-1}} + (T_{\text{HH+1}} - T_{\text{HH-1}}) \times MM/60$ 式中 HH、MM 分别代表卫星过境时的时、分; $T_{\text{HH-1}}$ 和 $T_{\text{HH+1}}$ 分别是卫星过境时间前、后整点的观测温度。

2 卫星反演地表温度与气温、地温的 相关统计分析

2.1 相关分析

从表 1 可见,将地面准同步观测的空气温度 T_a 、土壤表面温度 T_s 和卫星反演地表温度 T_{LS} 两两 进行相关分析^[12],发现总样本相关性很好, T_{LS} 与 T_s 、 T_{LS} 与 T_a 、 T_s 与 T_a 的相关系数分别为 0.834、 0.854、0.864,都通过了 0.001 显著性检验。然而, 非常遗憾的是它们都没有通过相关系数的稳定性检 验[13],针对不同的卫星过境时间,相关系数相差甚 大,特别是 T_{LS}与 T_a 的相关系数 2005 年 3 月 5 日 为一0.051, 而 2008 年 5 月 11 日却为 0.609, 表现 出极大的不稳定性。而相关系数是否稳定是统计模 型效果好坏的关键问题,所以, T_{LS} 、 T_s 和 T_a 两两不 稳定的相关系数表明:简单利用卫星反演地表温度 来估算气温、地温的精度不能得到保证,仅根据空气 温度来进行地温的空间插值,会造成较大误差。究 其原因,作者认为除了卫星像元地表温度的反演误 差、以及卫星和地面观测非完全同步的原因外,地表 状况的差异和尺度的不匹配是相关系数不稳定性的 主要原因。众所周知,卫星反演地表温度是卫星像 元尺度温度,对于非均匀下垫面,不同像元内组分的 组成是不同的,地面气象观测只是针对其所在卫星 像元内的观测点而言的,地温更是只代表像元内土 壤组分的温度。依据 Prihodko 等^[9] 的气温与浓密 植被冠层温度近似的假设,那($T_s - T_a$)与($T_s T_{LS}$)在一定程度上可反映像元内组分的差异,二者 应该有较好的相关性。通过分析,果然发现(T,-

 T_{LS})与 $(T_s - T_a)$ 存在显著线性相关(图 1),且相关 系数稳定,不论是总体样本还是不同卫星观测时间 的子样本相关系数都达 0.82 以上,也都通过了 0.001的显著性检验,判定系数 $R^2 = 0.7913$ 。 $(T_s - T_a)$ 与 $(T_s - T_{LS})$ 的相关关系可表示为:

$(T_s - T_{LS}) = 0.9891(T_s - T_a) - 1.1707$ (1))
---	---

表1 相关系数

Table 1 The correlation coefficient	Table 1	The	correlation	coefficient
-------------------------------------	---------	-----	-------------	-------------

	T _{LS} 与 T	T _{LS} 与 T	Ts 与 T	$(T_s - T_{LS})$ 与 (T - T)
2005年3月5日	$\frac{1_a}{-0.0510}$	0 1973	0 0054	0.8639
2005年3月8日	0.4583	0.2720	0.3353	0.9700
2006年3月8日	0.4337	0.4057	0.0594	0.9171
2008年5月11日	0.6134	0.5647	0.4937	0.8207
2008年5月19日	0.0519	0.3371	0.3598	0.8732
总样本	0.8538	0.8333	0.8647	0.8896

2.2 地温的回归方程

依据 T_{LS} 、 T_s 和 T_a 三者的相关分析结果,假设 T_s 与 T_{LS} 、 T_a 有线性关系,从表 2 给出的子样本和 总样本的回归模型及检验参数可见,在一定程度上、 一定精度范围内,假设是成立的,各回归方程在显著 性水平 $\alpha = 0.01$ 上具有显著性。从而,得到地温回 归方程:

$$T_{s}' = 0.648893 T_{LS} + 1.000165 T_{a}$$
 (2)

表 2 回归方程及检验参数

Table 2 The regression equations and statistical parameters

	T _s 统计模型			
	表达式	R^2	标准差/℃	
2005年3月5日	0.791927 T_{LS} + 0.934302 T_a	0.9761	4.4625	
2005年3月8日	0. 586719 T_{LS} + 1. 103862 T_a	0.9718	5.3795	
2006年3月8日	1. $531162 T_{LS} = 0.12675 T_a$	0.9892	2.9615	
2008年5月11日	0. 677184 T_{LS} + 0. 968466 T_a	0.9938	3.6601	
2008年5月19日	0.590618 T_{LS} + 1.088 T_a	0.9834	6.2680	
总样本	0. 648893 T_{LS} + 1. 000165 T_a	0.9843	4.8488	

根据上述回归方程,利用气象站观测的空气温 度和对应卫星像元的地表温度反演值,可以得到推 算对应像元内的土壤表面温度。

2.3 误差分析

根据地温估算公式(2),将估算地温与实际观测 值进行比较,二者判定系数 R² = 0.9843, T_s′标准差 为 s = 4.85 ℃。尽管误差看起来比较大,但是对于 具有明显局地性、观测站点非常有限的土壤温度而 言,文中采用遥感数据获取地温的方法还是具有一 定应用价值的。

为了进一步提高区域地温的估算精度,可利用 区域上的有限观测地温观测数据 T_s和相应的估算 值 T_s',建立地温订正经验线性回归方程

$$T_s'' = a + bT_s' \tag{3}$$

之中 T_s"为地温订正值。方程(3)作为各网格点地 温估计值的方程,它可将偏差太大的估算值按其回 归值加以订正。

3 地温估算方程应用

选取 2006 年 4 月 29 日的自动气象站数据和 Terra/MODIS 遥感信息,进行成都市地表土壤温度 的估算。成都市(30.09°~31.43°N、103.02°~ 104.89°E)以平原为主,空气温度的自动观测站点密 度大,有44个自动气象站,空气温度可以通过插值 方法获得较满意的结果,本文采用梯度距离平方反 比法^[14],将空气温度插值到与 MODIS 反演地表温 度空间分辨率一致,在已知地表温度和空气温度的 前提下,据方程(2)、(3)就可推算出无实测地温观测 资料的网点估算值,从而获得区域 0.01 度分辨率的 土壤表面温度分布图 2。结果表明该数据在一定精 度范围内,可为城市气象业务服务提供更加详尽的 地面温度信息。

4 结 论

通过对四川盆地准同步的 T_{LS}、T_a、T_s两两相 关关系分析,建立基于卫星反演地表温度和准同步 空气温度的地温回归方程,得出以下结论。

(1) 对于非均匀下垫面,卫星反演地表温度与 地表气温和0 cm 地温的相关系数不稳定,各自的相 关系数因卫星轨道时间的不同存在较大差异,缺乏 稳定性。

(2)地温与卫星反演地表温度的差值同地温与 地表气温的差值之间存在既显著又稳定的线性正相 关关系。

(3) 基于 MODIS 卫星反演地表温度和有限观测站点的气温、地温,可获得区域地温分布。统计模型在一定程度上、一定精度范围内,具有可行性,易于推广应用。

本文分析结果适用于四川盆地春季,其他季节、 其他区域的适应性尚有待更多数据的验证。

参考文献

- [2] 周青,赵凤生,高文华.NCEP/NCAR 逐时分析与中国实测地表 温度和地面气温对比分析[J]. 气象,2008,34(2):83-91.
- [3] 廖顺宝,马琳,岳燕珍,等. NOAA-AVHRR 资料反演地温与地 面实测值的对比分析[J]. 国土资源遥感,2004,(1):19-22.
- [4] 刘晶森,丁裕国,王纪军.利用任意时刻 AVHRR 资料近似估计 区域地表温度日较差的试验[J].南京气象学院学报,2001,24 (3):323-329.
- [5] 齐述华,王军邦,张庆员,等.利用 MODIS 遥感影像获取近地层 气温的方法研究[J].遥感学报,2005,9(5):570-575.
- [6] 吴可军,王兴荣,王善型,等.利用 NOAA 卫星资料分析气温的 城市热岛效应[J]. 气象学报,1993,51(2):203-208.
- [7] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data [J]. Journal of Applied Meteorology, 1989, 28(4):276-284.
- [8] Carlson T N, Gillies R R, Perry E M. A method to make Use of Thermal Infrared temperature and NDVI measuremenT_s to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994,9: 161-173.
- [9] Prihodko L, Goward S N. Estimation of air temperature from remotely sensed surface observations[J]. Remote Sensing of Environment, 1997,60(3):335-346.
- [10] 赣驾鸣, 脉万蜃, 高隶表, 等. 小气候与农田小气候[M]. 北京; 农 业出版社, 1981; 50-54.
- [11] Parton W J, Logan J A. A model for diurnal variation in soil and air temperature[J]. Agricultural Meteorology, 1981,23(3):205-216.
- [12] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版 社,1999:27-41.
- [13] 关惠平.相关系数稳定性检验及其在水文地质学中的应用[J]. 西安地质学院学报,1992,14(2):58-64.
- [14] 林忠辉,莫兴国,李密轩,等,中国陆地区域气象要素的空间插 值[J],地理学报,2002,57(2):47-56.
- [15] 侯英雨,张佳华,延昊,等.利用卫星遥感资料估算区域尺度空 气温度[J]. 气象,2010,36(4):78-82.