近地层风能参数随高度分布的推算方法研究

申华羽1 吴 息1 谢今范2 刘 聪3 江志红1

(1. 南京信息工程大学 大气科学院,210044; 2. 吉林省气候中心; 3. 江苏省气象局)

提 要:应用江苏和吉林的 12 个测风塔资料,对两个地区的风能参数进行了统计和分析,探讨了一种用 10m 高度风速资料推算近地层内任意高度上平均风功率密度的新方法。结果表明:应用该方法交互拟合不同高度的平均风功率密度,平均误差 4%,最大误差 13.3%,优于指数律的平均误差 7.8%,最大误差 22.0%,效果较为理想。

关键词: 风功率密度 风廓线 指数律 形状参数

Research on Algorithm of Wind Energy Parameters in Surface Layer with Height

Shen Huayu¹ Wu Xi¹ Xie Jinfan² Liu Cong³ Jiang Zhihong¹

(1. College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044;
2. Jilin Climate Center; 3. Jiangsu Meteorological Bureau)

Abstract: Based on the meteorological tower data obtained from Jiangsu and Jilin in 2005-2006, the characteristics of average wind profile are analyzed, and a new method for estimating mean wind energy density in different height is investigated. The results show that the average relative error of this method is 4.4%, while the largest relative error is 13.3%, so this method for estimating the variation of wind energy with height is usable.

Key Words: wind energy density wind profile power law shape parameter

引言

近年来,能源危机成为人类共同面对的 世界性难题,风能作为一种清洁、可再生、储 量很大的能源受到广泛关注。为了满足开发 需求,了解风能分布,中国先后进行了多次风 能资源普查,但都是基于 10m 高度的气象站资料^[1-2]。目前,风机轮毂高度多数在 60~70m,随着风电技术的发展,还有可能提高,因此需要用现有资料评估风机高度上的风能资源。

近地层风速随高度变化规律的研究已经 比较成熟。一般认为,风速随高度服从指数 收稿日期: 2008年4月16日; 修定稿日期: 2009年4月22日

或对数分布,对数律主要适用于中性条件下的近地层,指数律则可推广至非中性大气,全边界层可广泛适用^[3];丁国安等^[4]对低层瞬时风速的廓线类型进行了统计,发现符合指数律的只占样本的一半,但长时段平均风速符合指数律;大量研究认为,指数律更符合平均风速随高度的变化^[5-9]。

许多学者在风功率密度廓线方面都有研究。朱超群^[10]用指数律描述风功率密度的高度变化,并给出指数与参考高度上风功率密度及其他风速统计量的经验式;屠其璞等^[11]则通过计算不同高度上的 Weibull 参数,推算平均风功率密度。

由于风功率密度受下垫面性质和大气稳 定度影响显著,同时风功率密度为风速的三 阶矩,统计抽样误差较大,目前,风功率密度 廓线的观测资料和理论分析尚不很完善。本 文利用江苏和吉林的测风塔资料,分析风速 和风功率密度廓线特征,并尝试将平均风速 和 Weibull 分布率相结合,用于推算不同高 度的风功率密度。

1 资料说明

江苏的测风塔位于其东北部沿海,吉林的位于其西北部平原,资料为每 10 分钟风速、风向资料,按照规范取整点前 10 分钟平均风速作为小时平均代表值,所用资料时间长度均在一年左右。

序号	测风塔	经纬度	塔高/m	观测时段	下垫面类型
1	江苏滨海	34. 5°16′N,120. 5°15′E	70	2005.4-2006.3	平原旱地
2	江苏竹港 70m 塔	33°07′18″N,120°49′15″E	70	2006.1-2006.11	高覆盖度草地
3	江苏竹港 40m 塔	33°07′18″N,120°49′48″E	40	2006.3-2006.11	海涂
4	江苏川东	33°05′29″N,120°50′24″E	40	2006.3-2006.11	海涂
5	江苏青口	35°01′01′N,119°07′01″E	70	2005.4-2006.4	工交建设用地
6	江苏石桥	34°46′01′N,119°01′01″E	70	2005.4-2006.4	乡村居民用地
7	吉林 4726 号	45°51′32″N,122°56′28″E	70	2005.1-2005.12	乡村居民用地
8	吉林 4727 号	45°49′4″N,123°00′28″E	70	2005.1-2005.12	乡村居民用地
9	吉林三十号	44°35′34″N,123°21′15″E	70	2006.1-2006.12	乡村居民用地
10	吉林腰井子	44°32′22″N,123°28′24″E	70	2005.1-2005.12	乡村居民用地
11	吉林通榆	44°37′26″N,122°31′41″E	65	2006.7-2007.6	草地
12	吉林双辽	43°53′44″N,123°38′49″E	70	2005. 12-2006. 11	乡村居民用地

表 1 测风塔资料概况

由于测风塔没有气压、水汽压、温度观测资料,因此用临近台站历史资料计算 10m 高度空气密度,再进行高度推算。事实上,空气密度是一个较稳定的量,同一地区同一高度量级差别仅为 $10^{-2} \sim 10^{-3}$,不同高度差别也很小。

2 平均风速、风功率密度廓线特征分析

平均风功率密度是单位时间内气流通过 与气流垂直的单位面积的风能,实测逐时资

料适合用直接统计法计算[12]:

$$\overline{W} = \frac{1}{2N} \sum_{k=1}^{12} \sum_{i=1}^{n_k} \rho_k V_{k,i}^3$$
 (1)

式中, \overline{W} 为年平均风功率密度,N 表示该时段内风速观测时数, ρ_k 为第 k 个月月平均空气密度, n_k 第 k 个月的观测小时数; $V_{k,i}$ 第 k 个月的风速序列。

平均风功率密度随高度呈指数增加 (图1),这与平均风速廓线特征相似。一般认为平均风速和平均风功率密度满足下面两式:

$$\overline{V}_n = \overline{V}_1 \left(\frac{Z_n}{Z_1}\right)^{\alpha} \tag{2}$$

$$\overline{W}_n = \overline{W}_1 \left(\frac{Z_n}{Z_1} \right)^N \tag{3}$$

其中, \overline{V}_n , \overline{W}_n 和 \overline{V}_1 , \overline{W}_1 分别为高度 Z_n 和 Z_1 处的平均风速、平均风功率密度, α ,N 为平均风速、风功率密度随高度变化的指数(下文简称风速、风能廓线指数),与大气稳定层结和下垫面性质有关。

本文统计了各塔年平均风速、风功率密度廓线指数。风速指数分布在 0.14~0.24 之间,总体而言,吉林略大于江苏,这反映了我国北方地区比南方大气稳定的基本特征;风功率密度指数变化幅度较大,但均小于 3倍的平均风速指数,与不少文献指出的 3倍关系相差较大,这是由于平均风功率密度是风速的三次方函数,不仅取决于平均风速,还与风速概率分布的偏态特征相关。

图 1 各月平均风功率密度及指数拟合曲线 (a) 江苏竹港 70m 塔;(b) 吉林双辽 70m 塔

表 2 年平均风速、风能廓线指数

测风塔	风能指数 N	风速指数 α	测风塔	风能指数 N	风速指数 α
滨海	0.35	0.14	4726 号	0.5	0.2
竹港 70m 塔	0.59	0.21	4727 号	0.48	0.21
竹港 40m 塔	0.55	0.21	三十号	0.46	0.2
川东	0.57	0.21	腰井子	0.49	0.22
青口	0.39	0.15	通榆	0.54	0.24
石桥	0.51	0.22	双辽	0.55	0.23

下垫面粗糙度和近地层大气稳定度是影响风能廓线指数的主要因素,统计特征表现为平均风速和风速频率分布的差异。风速直接影响上下层大气间的垂直交换,风速愈大,交换愈强,水平风速的垂直切变愈小,使得风速廓线指数和风功率密度廓线指数都减小。由于下垫面对风速的影响随高度逐渐减小,风速概率的偏态发生改变,偏态系数 C_s [13] 计算结果表明,所有测层上 C_s 都大于零,即正离差占优势,随高度增加 C_s 减小,因此平均风功率密度与平均风速的相对比值低层偏大,高层偏小,从而风能廓线指数小于 3 倍的风速廓线指数。

3 不同高度风能参数的推算方法

3.1 平均风功率密度的推算

指数律可以较好地描述风功率密度随高度的变化,但由于风功率密度在统计上为三阶矩,抽样误差较大,不利于在无塔层观测地区进行高度推算。考虑到风速廓线的指数律已被广泛论证和认可,并且平均风速(一阶矩)的统计抽样误差较小,本文借鉴风功率密度与平均风速的关系,探讨一种新的风功率密度高度推算方案。

研究表明,风速概率分布与二参数 Weibull

分布较为吻合^[14],风速概率密度函数可表示为:

$$f(V) = \frac{K}{C} \left(\frac{V}{C}\right)^{K-1} \exp\left[-\left(\frac{V}{C}\right)^{K}\right]$$
 (4)

其中,C 为尺度参数,K 为形状参数,与式(4) 对应的风速分布函数为:

$$F(V) = \int_{0}^{V} f(V) dV = 1 - \exp\left[-\left(\frac{V}{C}\right)^{K}\right] (5)$$

风速V的数学期望为:

$$E(V) = C\Gamma(1 + \frac{1}{K}) \tag{6}$$

Γ为伽马函数。因此,平均风功率密度和平均风速对应的风功率密度可表示为:

$$E(W) = \frac{1}{2}\rho E(V^{3}) = \frac{1}{2}\rho C^{3}\Gamma(1 + \frac{3}{K})(7)$$

$$E(W') = \frac{1}{2}\rho [E(V)]^{3} = \frac{1}{2}\rho C^{3}\Gamma^{8}(1 + \frac{1}{K})$$
(8)

�

$$f = \frac{E(W)}{E(W')} = \frac{\frac{1}{2}\rho C^{3}\Gamma(\frac{3}{K} + 1)}{\frac{1}{2}\rho C^{3}\Gamma^{3}(\frac{1}{K} + 1)} = \frac{\Gamma(\frac{3}{K} + 1)}{\Gamma^{3}(\frac{1}{K} + 1)}$$
(9)

可见,f 仅与形状参数 K 有关,K 体现了风速的频次分布特征,理论上取决于不同天气系统的活动频次和地表粗糙度。

由式(9)可得:

$$E(W) = \frac{1}{2} f_{\rho} [E(V)]^{3}$$
 (10)

根据式(10),如果某一高度形状参数 K 及平均风速已知,便可推算该高度的风功率密度。不同高度的风速可以采用已经成熟的垂直廓线方法推算,形状参数随高度变化规律研究也较多,因此利用 10m 高度风资料可推算任意高度的平均风功率密度。

3.2 平均风速的高度推算

目前,利用指数率进行平均风速高度推

算的研究较多,但指数值受下垫面性质和大 气稳定度影响难以确定。考虑到下垫面性质 和大气稳定度与风速大小密切联系,本文提 出一种以风速的概率分布为权重,风速分级 加权平均的方法拟合不同高度的平均风速。

以 10m 高度逐时风速为标准,拟合了各级风速的廓线指数。随着风速从零开始增加,风速廓线指数迅速减小,达到 6m·s⁻¹后,变化趋于平稳。吉林 6 塔变化一致,江苏由于资料纬度和时间差异,分为两组,川东和竹港三塔风速指数变化近似,其余 3 塔比较接近。不难理解,在同一地区,同一时间段稳定度相似,若粗糙度相差不大,风速廓线指数主要取决于风速大小。

表 3 各级别风速的廓线指数 αί

10… 団本		江苏			
10m 风速 级别/m•s ⁻¹	吉林平均	竹港,川东 三塔平均	滨海,青口, 石桥平均		
0~2	0.47	0.36	0.36		
$2\sim 4$	0.28	0.27	0.23		
$4 \sim 6$	0.2	0.19	0.15		
6~8	0.14	0.17	0.12		
8~10	0.11	0.16	0.11		
大于 10	0.1	0.17	0.11		

利用这个规律,本文以风速的概率分布 为权重,用风速分级加权平均的方法拟合不 同高度的平均风速。

$$\overline{V}_n = \sum_{i=1}^n p_i \overline{V}_{10,i} (\frac{Z_n}{Z_1})^{\alpha_i}$$
 (11)

 $\overline{V}_{10,i}$ 为 10m 高度各级别的平均风速, p_i 为对应级别风速出现的频率, α_i 为该级别风速的廓线指数(表 3)。

利用该方法拟合各高度的平均风速,平均 误差 1.4%,最大误差 6.2%,效果较好。需要 指出,该方法建立的前提是:稳定度相似、粗糙 度相差不大,在不同地区,甚至不同年份,风速 廓线指数可能存在较大的差异,在不同地区应 用时须做适当调整,本文给出指数仅供东北平 原及江苏沿海地区参考使用。

3.3 形状参数的高度推算

估算形状参数 K 最常用的方法有两种: 最小二乘法和风速变差法[15],本文计算认为后种精度更高,即:

$$K = \left(\frac{\sigma}{\mu}\right)^{-1.086} \tag{12}$$

以平均风速 \overline{V} 估计 μ ,以标准差 S_v 估计 σ 。

K 在 70m 以下随高度升高而增加 (图 2),Justus^[16-17]的研究认为,K 在 60 ~ 70m 左右达到最大值,然后随高度增加而减小, K/K_{max} 随高度变化曲线随季节和地理位置的变化甚小,Justus 同时给出了 K 随高度变化的经验公式:

$$K = K_0 \frac{1 - 0.088 \ln(Z_0/10)}{1 - 0.088 \ln(Z/10)}$$
 (13)

 K_0 为 Z_0 高度的形状参数,式(12)的计算结果,也符合该式。

综上可知,根据 Z_1 高度的逐时风速,可由式(11)、(13)、(9)得任一高度上的 \overline{V}_n , K_n

青口

60

70

219.2

240.1

和 f_n ,再由式(10)可求得平均风功率密度。

图 2 各塔 K/K_{max} 随高度的变化

4 拟合效果检验

泉

本文分别用上述方法和指数法推算不同 高度的风功率密度,为了讨论两种方法在无 塔层资料地区的应用性,所有指数采用交互 验证法获得,即去掉某塔资料,由同组其他观 测铁塔平均指数模拟推断该塔风功率密度, 并进行误差分析,结果见表 4。

台站	Z/m	\overline{W}	\overline{W}'_{e}	$R_e/\%$	\overline{W}'_f	$R_f/\%$
	10	159.3	159. 3	/	158.6	0.4
	50	275	328.6	19.5	281. 2	2.2
滨海	60	297.9	356.7	19.7	300.5	0.9
	70	316.2	382. 3	20.9	317.9	0.5
	10	94.5	94. 5	/	93.1	1.5
	30	179.8	174.9	2.7	170.7	5.0
竹港 70m	50	245.7	232.8	5.3	227.2	7.5
	70	293. 2	281. 1	4.1	274.5	6.4
	10	109.7	109.7	/	106.5	2.9
竹港 40m	30	203. 1	207. 4	2.1	193.7	4.7
	40	234.7	245. 1	4.4	226.9	3.3
	10	107.5	107.5	/	103.9	3.4
川东 40m	30	207.2	201. 1	2.9	189.4	8.6
	40	234.7	237	1	222. 1	5.4
	10	110.6	110.6	/	108.1	2.3
	40	196. 4	200.8	2.2	187.8	4.4

239

255.4

9.1

6.4

221.8

236.4

1.2

1.6

表 4 风功率密度高度推算及其误差分析

			埃 农 •			
台站	Z/m	\overline{W}	$\overline{\overline{W}}'_{e}$	$R_e/\%$	\overline{W}'_f	$R_f/\%$
	10	64.4	64. 4	/	62.3	3. 3
	40	134.5	107.6	20	116.7	13.3
石桥	60	159.8	125. 1	21.7	141.1	11.7
	70	171.8	132. 4	22.9	151.8	11.7
	10	122. 2	122. 2	/	118. 4	3.1
4726	50	263.6	273. 3	3.7	269.0	2.1
	70	327.9	323.3	1.4	322.3	1.7
	10	124.7	124.7	/	121.8	2.3
4727	50	271.6	283. 3	4.3	272. 1	0.2
	70	315.6	336.4	6.6	324.8	2.9
	10	114.4	114. 4	/	109.9	4
三十号	60	254.4	285. 4	12.2	281.6	10.7
	70	283	308.7	9.1	306.7	8.4
	10	105.6	105.6	/	103.5	2.1
腰井子	60	255.4	258. 7	1.3	266.6	4.4
,	70	276.9	279.4	0.9	290.6	4.9
	10	95.8	95.8	/	91.0	5.0
	25	159.7	151.5	5.1	149.8	6.2
जा भेर	40	204.7	191.7	6.4	195. 2	4.6
双辽	50	237.6	214. 3	9.8	221.9	6.6
	60	257. 9	234.8	9	246.6	4.4
	70	272.9	253.6	7.1	269.8	1.1

续表 4

表 4 中,Z 为测层高度, \overline{W} 为实际风功率密度, \overline{W}'_e 为指数法拟合值,即由式(3)推算, \overline{W}'_f 为形状参数及平均风速法拟合值, R_e , R_f 为两种方法的拟合误差。

利用指数律拟合其他高度的平均风功率密度,平均拟合误差7.8%,最大误差22.9%;而根据形状参数和平均风速随高度变化规律拟合,平均误差4.4%,最大误差13.3%,远小于指数律,拟合效果较为理想。

5 结论

利用测风塔资料,对江苏和吉林两个地区的风能参数进行了统计和分析,并探讨了一种利用 10m 高度风速资料推算近地层内任意高度上平均风功率密度的新方法。分析结果表明:

- (1) 该地区平均风速和平均风功率密度 的近地层高度廓线均与指数律相吻合。
- (2) 无风速梯度观测站点的平均风速廓线指数,可由地面风速的频率分布推断。用该方法拟合不同高度平均风速的平均相对误差为 1.4%,最大相对误差 6.2%。
- (3) 设风速服从 Weibull 分布,资料分析表明,其形状参数随高度变化满足式(13),因此可由 10m 风速资料推算各高度的形状参数。
- (4) 平均风功率密度可表示为平均风速和形状参数的函数,因此,利用平均风速和形状参数随高度的变化规律,可由 10m 风速资料推算不同高度的平均风功率密度。应用该方法对现有铁塔资料进行交互拟合分析,其平均相对误差 4.4%,最大相对误差 13.3%,优于使用指数律推断的平均相对误差7.8%,

最大相对误差 22.0%的效果。

(5) 尽管平均风速的分级推算方法存在一定的地区局限性,但随着测风塔资料的增多、风廓线雷达的普及,可以采用更成熟的风速垂直廓线推算方法代替,缺陷将得到很大的弥补,因此,本文探讨的风功率密度高度推算方案具有一定的应用价值。

参考文献

- [1] 朱瑞兆. 我国太阳能风能资源评价[J]. 气象,1984, 10(10);19-23.
- [2] 谭冠日.关于风能资源分析的几个问题[J]. 气象, 1981, 7(11):15-26.
- [3] 徐大海. 大气边界层内风的若干特性及其应用[J]. 空气动力学学报,1984,2(3):75-86.
- [4] 丁国安,朱瑞兆. 关于低层大气风速廓线的讨论[J]. 气象,1982,8(08);18-20.
- [5] 王志春,宋丽莉,何秋生.风速随高度变化的曲线 拟合[J].广东气象,2007,29(1):1-15.
- [6] 傅抱璞,于静明. 南京 164 米铁塔观测风速廓线的研究[J]. 南京大学学报(自然科学版), 1981, 17 (4):552-561.
- [7] 植石群,钱光明.广东省沿海风能的分析及计算

- [J]. 气象, 2001, 27(5):43-46.
- [8] 朱瑞兆, 薛桁. 风能的计算和我国风能的分布[J]. 气象, 1981, 7(08); 26-28.
- [9] 刘学军,吴丹朱. 城市建筑群对低层大气风速廓线 影响的统计分析[J]. 气象,1991,17(07):14-18.
- [10] 朱超群. 风能计算及其随高度的变化. 太阳能学报 [J]. 1993, 14(1):7-15.
- [11] 屠其璞, 史慧敏. 我国风能资源的初步研究[J]. 南京气象学院学报, 1982, (2):207-216.
- [12] 国家发展与改革委员会. 风能评估技术规范[M]. 北京, 2004:1-18.
- [13] 屠其璞,王俊德,丁裕国,等.气象应用概率统计学 [M]. 北京:气象出版社,1984,85-89.
- [14] 么枕生,丁裕国.气候统计[M]. 北京:气象出版社, 1990;266-298.
- [15] 张秀芝. Weibull 分布参数估计方法及其应用[J]. 气象学报, 1996, 56(1):108-116.
- [16] Justus C.G. Nationwide assessment of potential output from Wind powered generators [J]. Meteor., 1976, 15(7):673-678.
- [17] Justus C G. Methods for estimating wind speed frequency distribution [J]. Meteor., 1978, 17 (3): 350-353.