超级单体引发的龙卷天气过程分析

金巍^{1,2} 曲岩² 安来友²

(1. 南京大学大气科学系,南京 210093; 2. 辽宁省营口市气象局)

提 要:利用营口市多普勒天气雷达资料,对 2005 年 8 月 10 日 16 时 10-20 分左右 营口市东南部六个乡出现的龙卷天气过程进行了简要分析,该龙卷发生前的主要天 气形势是:一个东移的东北低涡引导高空槽,沿高空等高线冷干气流与低空的暖湿气 流产生对流不稳定层结,超低空南支急流与低空西南风急流以及高空西北风产生的 较大垂直风切变,有利于龙卷天气的产生。产生该龙卷的对流系统是由渤海湾生成 的片状层状云和积状云混合降水回波,自东向偏北方向移动,15:50以后低层反射率 因子的强降水回波移入大连北部与营口南部临近区域,在层状云降水中含有一些零 散的和有组织的对流降水回波,主体为一个近似团状的对流系统,而龙卷产生自该系 统南端的一个超级单体。最初的中气旋形成于8月10日15:56,相应对流单体的反 射率因子还没有呈现出超级单体的特征,随后中气旋迅速发展加强,在16:02-16:08反射率因子形态呈现出经典超级单体的特征:明显的低层入流缺口,入流缺口 位于超级单体移动方向(偏东南方向)的右侧,低层的弱回波区和中高层的回波悬垂 结构,最大反射率因子超过56dBz。在龙卷产生前几分钟和龙卷进行过程中,中气旋 保持较强,而后迅速减弱,低层入流缺口渐渐消失。在龙卷进行过程中,相应 45 dBz 超级单体的反射率因子区局限在6km以下,此系统为低质心的对流系统,产生的天 气是龙卷,伴随有大风短时强降水,与冰雹的高质心对流系统有明显区别。同时也初 步探讨了引发此次龙卷的生成机制。

关键词:龙卷 中气旋 超级单体 多普勒天气雷达

Analysis on the Tornado Weather Process Induced by a Super-cell

Jin Wei^{1,2} Qu Yan² An Laiyou²

Department of Atmospheric Sciences, Nanjing University, 210093;
Yingkou Meteorological Office, Liaoning Province)

Abstract: Using the Yingkou Doppler weather radar data, a preliminary analysis is made on the tornado process which occurred in the six townships of Yingkou Southeast at about 16:00

课题资助:国家自然科学基金 40575014 "基于多普勒天气雷达观测的中国超级单体风暴研究"。

收稿日期: 2008年10月25日; 修定稿日期: 2008年12月17日

on 10 August 2005. the main weather situation is a trough at hight altitude led by a northeast vortex. The dry and cold air along the contour line and the wet and warm air produced stratification with covective instability. The south branch of jet and the southwest jet at low altitude as well as the northwest wind at high altitude generated a strong vertical wind shear, which is favorable for the generation of tornado weather. This super cell is a low centroid convective system, of which the reflectivity of radar echo is above 45 dBz. The severe tornado is accompanied with heavy rain, but without hail. The analysis indicates that this tornado is mainly a meso-cyclone displayed on the velocity map. This case illustrates that the China new generation Doppler weather radar has the capability to detect tornadoes.

Key Words: tornado mesocyclone supercell Doppler Weather Radar

引 言

强对流的产生离不开特定的环境因素, 雷达专家研究^[1-17]发现决定对流产生和组织 结构的环境因素包括:大气层结的稳定性、风 的垂直切变、水汽条件和抬升触发机制等,龙 卷是最猛烈的对流天气现象,其产生的最大 地面风速可达125~140m・s⁻¹,可造成重大 的人员伤亡和财产损失,强烈的龙卷大多是 由一类"超级单体"的对流风暴产生的,超级 单体风暴是对流风暴最强烈的一种形态。

多普勒天气雷达^[5]是对龙卷进行探测和 预警的最有力的工具,与传统天气雷达相比 具有更高的灵敏度,多普勒天气雷达除了可 以测量降水的反射率因子回波强度外,还可 以测量降水粒子沿着雷达径向的速度,从而 可以识别出中小尺度的涡旋、辐合和辐散特 征,大大地提高了天气雷达对强对流天气探 测和预警能力。强对流天气的发生与环流背 景和当地地形有很大关系,因此有必要针对 发生的典型强对流个例,分析其产生的环流 背景和雷达回波特征。东北地区(包括辽宁、 吉林、黑龙江和内蒙东北部)是我国龙卷相对 多发地区,近些年导致人员伤亡的东北地区 龙卷有10例以上,但是真正被多普勒天气雷 达观测到的只有2例,本文描述的是其中1 例。营口多普勒天气雷达是东北地区唯一 一部 SA 型 雷达, 龙卷发生地距离 雷达 100km 以内,因此该雷达捕捉到了该龙卷整 个生命史过程的反射率因子和径向速度回波 特征,对于揭示东北地区龙卷的环境背景和 风暴结构非常有价值。

2005年8月10日下午16时10-20分 左右,营口市东南部的九垄地镇、归州镇、陈 屯镇、九寨镇和鲅鱼圈区的熊岳镇以及卢屯 镇突遭龙卷风袭击,共涉及6个乡镇、11村、 受灾人口 18300 人。龙卷风所到之处,果树 倒地,水果落地,特别是葡萄全部绝收。部分 农户房屋倒塌,养鸡场、高效农业大棚被毁, 变压器、电视机、电话、高低压线路都有损坏, 造成人员受伤,此次龙卷天气过程给所在地 造成经济损失巨大。国产 CINRAD/SA 型 新一代多普勒天气雷达于 2005 年 7 月在营 口市开始启用,这是东北地区第一个 SA 型 多普勒雷达,使用该雷达对 2005 年 8 月 10 日天气过程进行连续跟踪监测,为的是找出 东北地区产生龙卷天气的多普勒雷达回波特 征,为灾害性天气的预测提供事例依据。

1 天气背景分析

分析 2005 年 8 月 10 日 08 时(北京时 间,下同)高空天气图(图略),在 500hPa 天 气图上,亚洲中纬度环流比较平直,副高呈东 西向分布,脊线在 30°N 附近,在河北、辽宁

和内蒙古三省交界处有一低涡,贝加尔湖地 区不断有干冷空气南下。营口市处在低涡引 导的东北西南向高空槽前部,副高边缘顶部 暖湿的西南气流区。在 700hPa 天气图上, 亚洲中纬度环流仍比较平直,副高呈现东西 向分布,西伸点在108°E附近,在河北、辽宁、 内蒙古交界处也有一低涡,营口市处在低涡 引导的高空槽前、副高后部的暖湿西南气流 区。在 850hPa 天气图上, 与 700hPa、500hPa 相垂直的位置也有一低涡和切变,营口市受 副高后部较强的暖湿西南急流控制。在河 北、辽宁、内蒙古交界处三层均有低涡控制, 系统比较深厚,位置比较垂直,高空有干冷平 流,低空有比较深厚的暖湿平流,超低空有来 自渤海的南支急流输送充沛水汽与低空西南 气流提供了降水所需的水汽,对应地面图上 积雨云发展,大气状况均反映出具有产生对 流性降雨天气的可能。

地面观测表明:在8月10日16时左右 龙卷天气发生过程中,距离龙卷发生地最近 的熊岳观测站出现一次360°的短时涡旋转 风过程,具体的转风过程是:从15:58南风→ 16:00西南风→16:09西风→16:12西北风 →16:14北风→16:31西北风→16:51北风 →17:09东风→17:24东南风→17:36南风, 最大风速出现在16:14北风达到15m·s⁻¹, 表明该测站地面出现一个短时涡旋过程。

在雨区移到营口市东南部以后,不少乡 镇出现了短时强降水,熊岳镇附近的龙卷就 是由片状混合性降水云系中的一个对流降水 回波的一个超级单体风暴产生。熊岳观测站 的遥测分钟雨量(图1)在降水连续有量以后 的15:03到16:20的短短18分钟,降水量达 到了26.3mm,在16:07到16:08的两分钟 之内达到7.1mm降水,与反射率因子垂直 剖面图最强点出现在16:08相配合。这是发 生在营口市东南部大风短时强降水天气背景 下的龙卷过程。

图 1 熊岳镇每分钟雨量分布曲线图

下面分析层结稳定度,影响对流产生和 组织结构最大的两个环境因素是大气垂直稳 定度和风的垂直切变,锦州(54337)站是距离 营口市最近的探空站,8月10日08点的 $T-\ln P$ 图(图 2): 锦州站的 CAPE 值(对流有 效位能)为负,显示为对流稳定,从锦州探空 站 08 时的对流有效位能 CAPE 分析看不出 下午发生强对流的潜势。不过需要指出,锦 州市距离营口市东南部熊岳测站为 120km 左右,锦州站的探空资料不一定能够完全代 表熊岳站的实际情况;同时探空资料在08时 观测,龙卷发生在下午16时左右,时间间隔 为8小时左右,随着时间推移和下垫面的加 热,下午对流有效位能应该达到正值。另外, 对大气边界层特征不太敏感的另一重要的对 流参数 K 指数值为 37,表明午后有比较大的 对流潜势。

由营口市风廓线图(图 3)可见,在 15:32 到 16:32 之间,15:32 距离地面 0.3km 超低

空的南支急流从 $10m \cdot s^{-1}$ 逐渐增长到 12m $\cdot s^{-1}$, 16:02转化西南急流由 $12m \cdot s^{-1}$ 逐 渐递减到 $10m \cdot s^{-1}$,距离地面 0. 6km 到 3km 的低空一直维持 $16m \cdot s^{-1}$ 西南急流,西 南风一直伸展到 6km 高空,但是风速随高度 逐渐减小,6km 左右高空的西南风速只有 $8m \cdot s^{-1}$ 左右,说明低层的垂直风切变较大; 从雷达反射率因子的剖面图(图 6)可知,引 导龙卷产生的超级单体云低高度很低,约 0. 5km 左右。有研究表明^[17],低层的强烈风切 变和低的抬升凝结高度特别有利于龙卷的产 生。

00508	0.0832	53.00.4	18.38								
`КМ 5.2 —	ND	ND	NT/	ND	ND	ND	ND	ŃD	м́л	ND	ND
3.7 H	ND	ND	ND	ND	-1-	-1-	- T	-1-	-1-	ND	ND
2.2 🗕	ND	ND	ND	ND	ND	ND	ND	. ND	. ND	ND	ND
).7 H	The state	Ser-	The	I	the	W.	10-	<u>.</u>	<u>.</u>	<u>m</u>	When we want the second
). <u>1</u> -	-b	2	1h	1	1	- 18	th-	<u>×</u>		1	7
<u>3.5</u> –	-	(III	A	IL.	B.	th-	2	8-	-		IL.
4.9 🗆	the state	*	the	-	BL	11	De-	0	10-	U.	11.
4.9 -	E	2	8	P	2	10-	14	A.	10-00		u
(•3 F			1	ι.	1	1	(here)	1h	P		
2.4 🗆	b	2	11	-		(h	- Charles	0	1	a	V
5.1 🗆	ND	12	10-	The second	Br	2		~	\checkmark	*	\$
2•2 ⊑	a.	The second	Dr.	1	0-	L.	-	2	1	\checkmark	/
2:3 E	al.	(De	N.	R.	B	-	-	-	2	~	~/
íάL	1	V	w.	W.	V	V	V	1	V_	1	1
1.2 L	w/.	4	V.	1	V.	V.	~	*	V	V.	V
išL	*	*	2	2	N.	*	\$	1	an	*	Str.
ĭŏ⊢		4	-	-	1	*	the second	*	ar	an -	Ste
5°7 -	SF.	1	*	*	der .	1	×,	V,	N.	×,	-
ŝ'4 ⊢	SP-	W.	W.	1	V,	W.	W.	V.	\$	w/	w/
3.o ⊢	1	\$	SP-	W.	-	×,	1	*	1	1	-
2.7 L	W,	×,	-	-	w/	-	w,	-	-	w/	w/
2.4 -	-	-	×		×,	S.	1	×,	×.	*	SV.
2.1 ⊢	-	- A.	- A.	-	-W,	<u>-</u>		<u>-</u>	<u></u>	<u></u>	-
1.8 -		st.	-	-	-	-	-	-	-	-	-
1.5 🗕	-		-		-	-	-		-	-	
1.2⊢		-	-					-	-		
).9 –	500	- 100	200	500	-	50/				-997	
).6 –	- 24		-	-	1	4	-1	1	4	-	-
).3 -	-	-	-	al.	- ch	-22/		24	1	1	-1
	-4	-	-	=	-	-	1	3	-	2	200

图 3 2005 年 8 月 10 日 15:32— 16:32 营口站风廓线图

2 多普勒天气雷达资料分析

多普勒雷达作为一种新的探测手段,可 以获得常规的天气资料及常规的天气雷达探 测所不能得到的信息。它的高分辨率时空资 料给预报员提供了高精度的预报信息,特别 是动画和径向速度场资料,对强天气过程的 临近预报应用价值更大。营口市的雷达是敏 视达生产的 SA 型多普勒天气雷达,应用多 普勒天气雷达测量中主要的两个参量,一个 表示降水回波强度的反射率因子,另一个表 示降水粒子沿着雷达径向的平均速度,利用 这两个参量得到的雷达产品资料对此次龙卷 天气过程的超级单体风暴的演变和结构特征 进行分析。

(1) 反射率因子

2005年8月10日15时左右,营口市多 普勒雷达反射率因子回波(图 4,见彩页)显 示出:有片状的层状云和积状云混合性降水 回波在渤海湾生成,沿自东向偏北方向移动; 在15:50以后,0.5°仰角反射率因子显示强 反射率因子的降水回波移入大连北部与营口 南部接壤的临近区域,在层状云降水中含有 一些零散的和有组织的对流降水回波。该对 流回波逐渐发展成为由多个对流单体连成一 片的 100km 左右的中尺度对流系统,该系统 有几个发展比较旺盛的对流区域,其中南部 的右边对流最强,从15:56开始对流变的更 为旺盛,其前进方向的右后侧出现突出物,其 结构与超级单体类似,到16:02 该超级单体 反射率因子强度达到最强,低层的弱回波区 对应高层的强回波区,16:14 超级单体的倒" V"字型结构开始减弱,16:26 超级单体失去 其钩状回波特征。

2005 年 8 月 10 日16:02不同仰角(0.5°、 1.5°、2.4°和 3.4°)反射率因子回波结构(图 5,见彩页)显示:营口市东南部的龙卷位置附 近,存在低层(0.5°仰角)弱回波区与(1.5°和 2.4°仰角)中层强回波区相对应,2.4°仰角反 射率因子达到最强,最大回波强度是 55dBz, 同时高层(3.4°仰角)较中层(1.5°和 2.4°仰 角)回波强度有所减弱,说明该位置反射率因 子强度随高度是一个由弱到强,而后又减弱 的过程,显现出回波悬垂结构。

2005 年 8 月 10 日 16:02 到 16:20 之间 的垂直剖面图(图 6,见彩页):是沿着入流方 向穿过最强回波位置的反射率因子垂直剖 面,四张剖面均存在明显的低层弱回波区、中 高层回波悬垂以及不是很明显的有界弱回波 区,这些是超级单体风暴的反射率因子结构 特征。16:02 超级单体反射率因子强度达到 顶峰,最大达到 56dBz,云底高度很低,只有 0.5km 左右,云顶高度达到 14km 到 15km, 存在明显三体散射,45dBz 以上的强反射率 因子区只达到 6 km 左右,说明该超级单体 风暴是一个低质心的系统。这种低质心对流 系统伴随大风和短时强降水,而没有冰雹,以 前统计辽宁省夏季产生冰雹的对流系统,一 般显现都是高质心系统,这是冰雹与龙卷相 区别的地方。实际上,这个超级单体风暴产 生了龙卷并伴有强降水,但没有冰雹发生。

(2) 径向速度

在 2005 年 8 月 10 日 15:50 的 0.5° 仰角 径向速度图没有形成气旋式结构(图略),从 15:56 到 16:26 的 0.5°仰角径向速度演变图 (图 7,见彩页)可以看出:此次过程是气旋式 结构,在15:56的0.5°仰角径向速度中,在 大片向着雷达的速度区中有两个微小的离开 雷达方向速度(红色)的区域,在随后6分钟 中,沿着该对流雨带前沿有一系列弱的中小 尺度涡旋在发展,离开雷达方向速度(红色) 的区域增大,在16:08对流雨带南端的中小 尺度涡旋迅速发展向东北移动,离开雷达方 向速度(红色)的区域进一步增大,最大径向 速度差的距离有 7~8km,最大速度差达 36 m•s⁻¹,指示出这是一次明显中气旋结构。 从 15:56-16:26 的 0.5° 仰角风暴相对平均 径向速度演变图(图 8)也可以看出:该中气 旋此时位于营口市东南部,16:08 最大径向 速度差的距离有 3~4km,最大速度差达 $44m \cdot s^{-1}$,处于熊岳观测站附近。正是这个 中气旋在迅速加强,最终在营口市东南部的 六个乡镇产生灾害性龙卷天气。

在 2005 年 8 月 10 日 16:02 的径向速度 图(图 9,见彩页)显示出典型的超级单体气 旋式结构,从不同仰角(0.5°、1.5°、2.4°和 3.4°)分析,显示低层有明显的气旋式辐合, 0.5°仰角的气旋式辐合强于 1.5°仰角,随着 高度增加气旋式辐合逐渐减弱,到仰角 2.4° 和 3.4°出现辐散,该区域低层辐合与高层辐 散相配合产生对流,有利于龙卷天气生成。 这是一次典型的低层中气旋结构,该中气旋 此时位于营口市东南部,正是这个较强的中 气旋,在营口市东南部的六个乡镇产生灾害 性龙卷天气。

3 讨论

对 2005 年 10 月 8 日发生在营口市东南 部的一次龙卷过程中的多普勒天气雷达特征 的演变分析及其产生的机制进行探讨,首先 需要了解中气旋的产生来源和龙卷的垂直涡 度的来源。对于超级单体风暴中的中气旋产 生,目前雷达气象专家比较认可的观点[16] 是:环境垂直风切变产生水平涡度,沿着对流 单体低层入流方向的水平涡度分量在随着低 层入流转变为上升气流过程中被逐步扭曲为 垂直涡度,随后垂直涡度在上升运动的垂直 拉伸下进一步加强为中气旋。此次龙卷发生 前超低空为南支急流,低空为西南急流,高空 为西北气流,该急流产生的低层垂直风切变 相应的水平涡度方向大致为东南一西北走 向,与上述产生龙卷的超级单体风暴低层入 流方向一致。因此,当低层入流逐渐变为上 升气流时,相应的水平涡度被扭曲为垂直涡 度。由于水平涡度方向与风暴低层入流方向 大致平行,该水平涡度的大部分被上升气流 扭曲为垂直涡度并且在上升气流的进一步拉 伸作用下旋转加强而形成中气旋。在此次龙 卷发生前,由于低空南支急流转到西南急流 产生的低层垂直风切变较大,形成较强的东 南一西北方向的低层水平涡度,该水平涡度 基本上是沿着产生龙卷的对流风暴低层入流 的方向,水平涡度在随着低层入流逐渐转变 为上升气流的过程中被扭曲为垂直涡度,随 后垂直涡度在上升气流中被进一步拉伸加强 形成中气旋。随着中气旋的迅速加深,地面 附近的背景垂直涡度由于增加的垂直拉伸作 用而迅速加强,从而导致此次龙卷的发生。

4 结语

本文应用营口新一代多普勒天气雷达资 料,对2005年8月10日16时10-20分左 右发生在营口东南部的龙卷过程进行了详细 的分析。该龙卷发生在营口东南部地区短时 大风的天气背景下,其主要天气背景是一个 东移的高空(500 hPa)低涡引导高空槽,低空 (850 hPa)切变线与高空槽线垂首性比较好, 低层垂直风切变较大,该天气条件比较有利 龙卷天气的形成。龙卷产生的位置在低空槽 线前的暖湿区域,该龙卷的对流系统产生于 对流云团南端的一个超级单体。最初的中气 旋形成于8月10日15:56,相应对流单体的 反射率因子尚没有呈现出超级单体的特征。 随后中气旋迅速加强,在16:02,反射率因子 形态呈现出经典超级单体的特征:明显的低 层入流缺口,入流缺口位于超级单体移动方 向(东北方向)的右后侧,低层的弱回波区和 中高层的回波悬垂结构,最大反射率因子达 到 56dBz。在龙卷产生前几分钟和龙卷进行 过程中,中气旋保持很强,但随后强度逐渐减 弱,低层入流缺口渐渐消失。上述导致营口 龙卷的中气旋局限于低层大气中,前后共持 续了20分钟左右,相应超级单体的高反射率 因子区在 6km 以下,属于低质心的对流系 统。该低质心超级单体产生的天气是龙卷, 伴随有短时强降水大风,没有冰雹。由于超 低空南支急流与低空西南急流产生的低层垂 直风切变很大,形成很强的东南一西北方向 的低层水平涡度,该水平涡度基本上是沿着 产生龙卷的对流风暴低层入流的方向,水平 涡度在随着低层入流逐渐转变为上升气流的 过程中被扭曲为垂直涡度,随后垂直涡度在 上升气流中被进一步拉伸加强形成中气旋。

随着中气旋的迅速加深,地面附近的背景垂 直涡度由于增加的垂直拉伸作用而迅速加 强,从而导致此次龙卷的发生。

致谢:非常感谢俞小鼎老师给予指导。

参考文献

- 郑媛媛,俞小鼎,方翀,等. 2003 年 7 月 8 日安徽系列 龙卷的新一代天气雷达分析[J]. 气象, 30(1):38-35.
- [2] 刘志澄,李柏,翟武全.新一代天气雷达系统环境及 运行管理[M].北京:气象出版社,2002.
- [3] 俞小鼎,王迎春,陈明轩,等.新一代天气雷达与强对 流天气预警[J].高原气象,2005,24(3):456-464.
- [4] 魏文秀,赵亚民. 中国龙卷风的若干特征[J]. 气象, 1995,21(5):36-40.
- [5] 俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与 业务应用[M].北京:气象出版社,2006.
- [6] 徐继业,姚祖庆.登陆热带气旋引发的龙卷过程之个 例分析[J]. 气象,2001,27(7):27-29.
- [7] 唐小新,廖玉芳.湖南省永州市 2006 年 4 月 10 日龙 卷分析[J]. 气象, 2007, 33(8): 23-28.
- [8] 鹿世瑾. 福建龙卷风的活动特点[J]. 气象,1996,22 (7):36-39.
- [9] 薛德强,杨成芳.山东省龙卷风发生的气候特征[J]. 山东气象,2003,23(4):9-11.
- [10] 何彩芬,姚秀萍,胡春蕾,等.一次台风前部龙卷的多 普勒天气雷达分析[J].应用气象学报,2006,17(3): 370-375.
- [11] 陈永林.上海一次龙卷风过程分析[J]. 气象,2000, 26(9):19-23.
- [12] 宋子忠,刘娟,张健,等.灵璧强龙卷个例的多普勒天 气雷达分析[J]. 气象科学,2006,26(6):689-695.
- [13] 廖玉芳,俞小鼎,郭庆.一次强对流系列风暴个例的 多普勒天气雷达资料分析[J].应用气象学报,2003, 14(6):656-662.
- [14] 姚叶青,魏鸣,王成刚,等.一次龙卷过程的多普勒天 气雷达和闪电定位资料分析[J].南京气象学院学 报,2004,27(5):587-594.
- [15] 谢梦莉,黄京平,俞炳.一次罕见的飑线天气过程分 析[J]. 气象,2002,28(7):51-54.
- [16] 俞小鼎,郑媛媛,张爱民,等.安徽一次强烈龙卷的多普 勒天气雷达分析[J]. 高原气象. 2006,25(5):914-924.
- [17] 俞小鼎,郑媛媛,廖玉芳,等. 一次伴随强烈龙卷的强 降水超级单体风暴研究. 大气科学,2008,32(3): 508-522.

金巍等: 超级单体引发的龙卷天气过程分析

图 7 2005年8月10日15:56—16:14的0.5°仰角径向速度演变图

图 8 2005年8月10日15:56—16:26的0.5°仰角风暴相对平均径向速度演变图

图 9 2005年8月10日16:02不同仰角高度的径向速度图

金巍等: 超级单体引发的龙卷天气过程分析

图 4 2005年8月10日15:56—16:26(即世界时07:56-08:26)的0.5°仰角反射率因子演变图 (★标注是营口市发生龙卷位置)

图 6 2005年8月10日16:02—16:20反射率因子垂直剖面演变图