用 SA 雷达产品对京西三次局地暴 雨落区形成的精细分析

段 丽1 卞素芬1 俞小鼎2 崔永义1

(1. 北京市气象台, 100089; 2. 中国气象局培训中心)

提 要:利用新一代 Doppler 雷达各种探测产品,对 2006 年 6 月底至 7 月上旬北京 西郊香山、石景山、门头沟一带落区相同的三次局地暴雨和大暴雨过程,进行精细分 析和研究。重点分析雷达探测产品对落区在同一地点形成的短时临近影响系统和指 示意义。研究表明,发生在北京西郊山前、落区相同的三次局地暴雨和大暴雨,其雷 达回波发展和演变形式各不相同。但三次过程强降雨前,近地面平原东南风和边界 层偏西风的垂直风廓线结构在地形作用下对暴雨落区形成的影响是一致的:近乎与 山脉垂直的平原近地面东南风长时间(6 小时左右)维持,增加山前局地近地面温湿 条件,并在北京西郊山脉阻挡下,形成山前近地面局地辐合和强迫抬升。山顶附近边 界层的偏西风为近地面空气强迫抬升后在边界层的后卷辐散提供了有利条件。研究 还显示,落区附近单体风暴、逆风区辐合带、中气旋等中小尺度回波系统的活动和发 展,是暴雨落区形成的重要因素。

关键词: 雷达探测产品 局地暴雨 单体风暴 中气旋

Comparative Analysis of CINRAD-SA Doppler Radar Product in Three Local Torrential Rains in the West of Beijing

Duan Li¹ Bian Sufen¹ Yu Xiaoding² Cui Yongyi¹

(Beijing Meteorological Observatory, 100089)

Abstract: Three local heavy rain events have similar location of rainfall, which occurred in Xiangshan, Shijingshan and Mentougou area in the west of Beijing from the end of June to early August of 2006. Product of Doppler radar exploration is used to do fine analysis and research. The result shows that development and evolvement of radar echoes in these three

本文受到国家 973 项目"我国南方致洪暴雨监测与预测的理论和方法研究"之"高分辨、非静力中尺度暴雨数值预报模式 的发展及其预报系统的建立"(课题编号:2004CB418306)及北京市财政项目"北京地区主要气象灾害预报系统"的资助 收稿日期: 2008 年 7 月 10 日; 修定稿日期: 2008 年 10 月 20 日

events are different though similar location of rainfall. The influence of vertical wind profile of westerly in boundary layer on location of torrential rain is consistent under the action of topography. The south—east wind from the plain in surface layer is almost vertical to the mountain lasting about 6 hours and strengthens temperature and humidity condition in surface layer in the front of mountain. Convergence and lifting in surface layer in the front of mountain form under obstruction of mountain in the west of Beijing. Westerly winds in boundary layer around top of the mountain provide beneficial factor for divergence in boundary layer by lifting in atmospheric surface layer. Studies also indicate that development and evolution of meso-scale and micro-scale systems such as thunderstorm cell around location of rainfall and mesocyclone are key factors that decide the location of torrential rain. **Key Words:** product of Doppler radar exploration local torrential rain thunderstorm cell Mesocyclone

引 言

随着愈来愈多人口密集大都市的形成和 发展,大城市和超大城市空间尺度几公里、十 几公里,时间尺度一小时、几小时的中小尺度 强天气,甚至非强天气都可能造成超乎寻常 的经济损失和恶劣社会影响。局地暴雨是最 常见的中小尺度强天气。在局地暴雨预报 中,落区及落区形成时间的精细分析和预报 是预报成功的主要难点。常规气象资料和天 气动力诊断方法很难精确捕捉和刻画这些空 间尺度十几公里、时间尺度几小时的强天气, 更难对其进行有效的预报预警。

伴随局地强天气短时临近预警预报业务 逐渐成为台站的基本业务,短时临近预报工 具和方法相对匮乏的矛盾愈来愈突出。近年 来新一代 Doppler 雷达在国内各省先后安装 并正常业务应用,为台站局地强天气的预警 预报业务提供了有效的技术支持。充分利用 新一代雷达产品,揭示我国不同地区局地强 天气发生过程中雷达产品的不同表现形式, 分析其影响系统和变化规律,是建立基于新 一代雷达产品的局地强天气短时临近预警预 报思路和方法的基础。

2006年整个夏季北京地区未发生区域

性暴雨,但局地暴雨频繁。尤其在北京西郊, 6月底至7月上旬连续出现三次局地暴雨和 大暴雨天气。且暴雨范围和落区相同。这些 过程降雨范围小,雨强集中。强降雨主要集 中在海淀、香山、石景山、门头沟等附近的十 几、二十几公里范围内。在时间尺度上,暴雨 多发生在几小时内。本文利用北京观象台 S 波段新一代 Doppler 雷达探测产品对这三次 局地暴雨过程进行短时临近精细分析和对比 研究,揭示雷达实测资料对局地暴雨过程及 落区分布的短时临近客观反映。并对三次局 地暴雨过程触发机制共性进行了浅析。通过 这些工作,希望逐步建立北京局地暴雨落区 短时临近预报着眼点和方法。

1 降水实况和天气背景

这三次过程分别发生在 2006 年 6 月 27 日夜间、7 月 8 日夜间、7 月 9 日夜间。图 1 是三次局地暴雨过程雨量分布图。图中 6 月 27 日午夜前后 4 小时石景山降雨 116mm、八 大处 107mm(图 1a);7 月 8 日后半夜 4 小时 门头 沟降雨 64mm、海 淀 64mm、石景山 56mm(图 1b);7 月 9 日夜间 8 小时香山降雨 137mm、门 头 沟 115mm、石景山模式口 104mm、八大处 93mm(图 1c)。这些过程降 雨范围很小,雨强非常集中。主要降水都集 中在海淀、石景山、门头沟附近 20km 左右的 范围内,周边降雨很小或者没有。在时间尺 度上,暴雨多发生在几小时内。事实上,对每 小时自动站雨量的追踪分析显示,主要雨量 大多发生在 2~3 小时内。如 6月 27 日夜间 主要雨量集中在 27 日 22:00 至 28 日00:00 的 2 小时内(图 1d 为 27 日 23:00 至 28 日 00:00降雨中心 1 小时雨量图);7 月 8 日后半 夜海淀、门头沟局地暴雨主要雨量集中在9日 02:00—04:00 的2小时内(图1e为9日 02:00—03:00降雨中心1小时雨量图);7月9 日夜间香山局地大暴雨主要雨量集中在9日 21:00—23:00 的2小时内(图1f为9日 21:00—22:00降雨中心1小时雨量图)。此 外,值得关注的是这几次降雨的暴雨中心几乎 都发生在同一位置(图1a~f)。

图 1 2006年北京西郊三次局地暴雨过程总雨量(a~c)及主要降雨时段雨量图(d~f)单位:mm
(a) 2006年6月27日22:00至28日02:00(BT,下同); (b) 2006年7月9日01:00-05:00;
(c) 2006年7月9日20:00至10日04:00; (d) 2006年6月27日23:00至28日00:00;
(e) 2006年7月9日02:00-03:00; (f) 2006年7月9日21:00-22:00

在天气背景上,6月27日高空受长波脊 控制,500hPa、700hPa在西北气流中。40°N 有小槽东移进入呼和浩特地区。低层 850hPa随着降水开始转为东南风影响(图 略)。7月8日、7月9日中高层受长波槽控 制(500、700hPa),北京地区处于槽前西南气 流中。低层 850hPa为中蒙边境暖性低压前 部高压坝控制,为反气旋性偏南风(图略)。 这些天气背景均不属于北京地区典型的暴雨 天气形势。常规情况下,这类天气形势会有 一些一般性降水产生^[1-2]。

2 回波影响系统及发展过程对比分析

对这三次相同落区的暴雨过程进行回波 发展追踪分析,发现造成这三次暴雨天气的

回波发展形式各不相同。图 2(见彩页)是三 个暴雨过程北京南郊 S 波段雷达 1.5°仰角 反射率因子强度变化追踪图。图中可见,6 月27日21:50时(图略,BT,下同)之前,北 京全境几乎没有回波;22:01时(图 2a)点状 回波在西郊香山附近生成,并迅速加强:48 分钟后(22:49时,图2d)形成弓形回波,降水 开始;23:07时(图 2g)回波成熟,雨强达到最 大。全过程都只发生在香山和八大处附近, 属于典型的降雨回波局地生成、发展、成熟并 消亡的过程。图 2b 是 7 月 8 日后半夜门头 沟、海淀暴雨降雨之前雷达回波图,图中大片 回波自西南向东北涌入;2小时后(图 2e)回 波在北京西郊山前集结,降水开始;之后的半 小时(图 2h)集结的回波在门头沟、海淀一带 发展,雨强达到最大。这是一次较大范围回 波移入,部分回波局地集结加强的过程。而 7月9日香山大暴雨降水回波的发展变化又 不相同。7月9日傍晚零散回波在京西山前 最初生成(图 2c);之后沿着京西平原与山地 地形分界线呈块状发展,降水开始(图 2f); 之后的1小时30分钟块状回波在门头沟、石 景山、香山一带自西南向东北有序滚动更迭, 此起彼伏,直接造成这一地区大暴雨落区的 形成^[2](图 2i)。

3 雷达垂直风廓线结构及地形对降水落区 形成的影响

图 3(见彩页)是三次暴雨过程强降雨之前和强降雨发生期间北京南郊 SA 雷达 1.5° 仰角回波径向速度图及由 SA 雷达产品生成的风廓线(WVP)图。图中可见,代表北京平原地区的观象台三次过程 600m 以下近地面均呈东南风或偏东暖平流结构(图 3a、c、e)。反映在 WVP 图上为稳定的东南风(图 3b、d、f)。追踪分析显示,近地面这种东南风和偏东暖平流结构在降水前稳定维持 6 小时以上(追

踪图略)。

进一步分析 WVP 图,三次过程近地面 东南风在 600m 以上东南风风速或东南风偏 东分量逐渐减小,直至在边界层和对流层中 低层转为偏西风(西北风或西南风)。这一点 与环流形势是一致的。6月27日夜间,强降 雨回波形成前40分钟观象台上空3000m 开 始出现系统性西北风(图3b),有弱冷空气自 对流层中低层侵入(700hPa小槽东移,图 略)。7月8日、7月9日过程中,边界层和对 流层中高层始终处于稳定单一的西南气流中 (图3d、f)。表明对流层中高层没有明显的 冷空气侵入。然而,三次过程均在同一地区 造成局地性暴雨。

图 4a、b、c、d 分别为北京地区地形图及 6月27日、7月8日、7月9日三次局地暴雨 强降雨开始前1小时地面自动站测风图。图 中椭圆圈所示为暴雨落区。我们注意到,暴 雨落区均发生在城区西部相对陡峭的山前 (图 4a 椭圆圈)。三次暴雨过程强降雨之前 北京平原地区地面均受东南风控制。分析表 明,降雨之前数小时建立并维持的这支(近) 地面平原东南风风向几乎与山脉走向垂直 (图 4)。北京西部为山区,山区平均高度 600 ~900m。东南方向与黄、渤海近邻,近渤海 点 120km 左右。根据天气学动力原理,夹带 暖湿空气的平原近地面东南风在山脉阻挡的 作用下将产生质量堆积和近地面山前辐 合[1,3,9]。7月8日、7月9日由于还有中尺度 地面风场切变辐合(图 4c、d 粗实线)的共同 作用,这种山前质量堆积和近地面辐合会更 明显。依据空气质量连续性补偿原理[3],山 前空气辐合堆积不均匀的垂直分布,将产生 空气沿山体强迫抬升之后的向后卷扬作用。 而边界层的偏西风对沿山体抬升空气的后卷 产生加强作用(如图 5 所示)^[1,3,9]。最终形 成空气质量沿山体在山前近地面辐合,在山 顶以上边界层底部辐散的局地扰动结构。这 种局地扰动作用,无论在 6 月 27 日上干冷、 下暖湿的不稳定层结中,或是在 7 月 8 日、7 月 9 日低层暖湿平流并伴有地面风向切变辐 合,高层槽前西南气流的环境背景下,均将造 成局地对流的加强。图 5 为这种结构的概念 图。本文认为,正是这种垂直风廓线结构分 布在特定地形作用下产生的局地对流的加 强,是三次局地暴雨在同一落区形成的一个 主要原因。

 图 4 北京地区地形图及三次局地暴雨强降雨开始前1小时地面自动站测风图 (图中椭圆圈所示为暴雨落区)
 (a)北京地形图; (b) 6月27日22:00时, (c) 7月9日01:00时, (d) 7月9日21:00

图 5 大暴雨落区附近近地面垂直 风廓线分布地形作用概念图

4 暴雨落区降水回波中小尺度系统分析

精细分析三次局地暴雨过程雨强最大阶 段各项雷达产品,发现伴随着强降雨的发生, 暴雨落区附近回波中均有中小尺度系统活动 和发展。

4.1 6月27日单体风暴分析

在 6 月 27 日夜间北京南郊 SA 雷达1.5°

仰角反射率因子强度变化追踪图(图 2a、d、 g,见彩页)上,我们看到降水回波生成后发展 迅速,40分钟即呈弓形回波(图 2d)。图 6a、 b(见彩页)是同一时刻(22:49,BT)雷达组合 反射率强度及 2.4°仰角回波径向速度放大 图。图中可见,弓形回波头部最大反射率强 度超过 65dBz。与其对应,反射率径向速度 图上有一个 2.5~3.0km 的气旋式径向速度 对(图 6b 箭头所示),最大速度差超过 25 m•s⁻¹,垂直伸展高度 0.9km(1.5°仰角)至 2.4km(4.3°仰角)。同时,回波后部有明显 的干侵入(图 6a 白色箭头所示)。图 6c 是对 弓形回波进行的垂直剖面分析。上半部分为 剖切线位置示意图,下半部分是与之对应的 剖面图。图中可见,弓形回波头部反射率强 度最大处回波呈悬垂状,悬垂距离 5km 左 右。悬垂高度 4~6km。最大回波强度超过 70dBz,高度位于 4.5~5.5km。图 6d、e、f (见彩页)分别为半小时后雷达回波反演的垂 直液态含水量、回波顶高(顶高回波强度判断 阈值≥18dBz,下同)及1小时降水量图(Z-R关系式: $Z=300R^{1.4}$,下同)。图中可见,在 弓形回波头部垂直液态含水量、回波顶高及 1小时降水量均达到最大,分别为 65kg • m⁻²,14km,及76mm • h⁻¹。根据现代雷达 天气学理论和研究结果[5-8],上述分析表明, 这个弓形回波是典型的中-7尺度单体风暴。 与逐小时降雨量实况比较,单体风暴形成及 之后的1小时,正是石景山、八大处大暴雨雨 强最大及大暴雨落区形成的时段。也就是 说,单体风暴是造成6月27日夜间石景山、 八大处局地大暴雨的中尺度系统,超过 60mm • h⁻¹(图 1d)的实况强降雨就是由这 个中尺度系统造成的。

4.2 7月8日中-γ尺度逆风区辐合带

图 7a、b 是 7 月 8 日后半夜强降雨之前 (01:10)和强降雨时(02:23),北京南郊 SA 雷达探测的组合反射率因子强度,图 7c、d 为 对应时刻 2.4°仰角反射率因子径向速度。 强降雨发生前由西南涌入的大范围回波中, 沿着京西山体有三个较强中尺度回波块(图 6a 白圈所示)。与之对应,径向速度图上有 小的气旋式和辐合型速度对(图 7c 白圈所 示),它们的最大速度差在 10~15m · s⁻¹之 间。追踪分析这些中尺度较强回波块,它们 在山前沿着地形集结加强,1小时后在门头 沟、石景山、海淀一线形成带状回波(图 7b 大 白圈所示)。与之配合,径向速度对也同步合 并加强成一个中尺度逆风区强辐合带(图 7d 大白圈所示)。辐合带位于门头沟、石景山、 海淀一线,东西长 11km 左右,南北宽 3~ 4km, 垂 首 高 度 1km (1.5° 仰 角) 至 2.1km (3.4°仰角)。其中1km(1.5°仰角)至1.6km (2.4°仰角)的高度最强。这个中-γ尺度逆风 区强辐合带 02:17 形成,02:53 开始减弱东 移。在门头沟、石景山、海淀一线维持 30 分 钟以上。图 7e、f、g(见彩页)分别为 02:53 SA 雷达回波反演的垂直液态含水量、回波 顶高及1小时降水量图。图中可见,暴雨落 区附近垂直液态含水量、回波顶高及1小时 降水量均相对最大,分别为 25kg · m⁻², 11km,及38mm • h⁻¹。与实况雨量对比分 析显示,这1小时正是7月8日后半夜暴雨 雨强最大、暴雨落区形成的主要时段(图 1e)。同时图 7b(见彩页)显示,暴雨落区西 南、东北方向的带状回波也分别超过 50dBz。 但在对应的回波径向速度图(图 7d,见彩页) 上没有中尺度逆风辐合带与之对应。实况表 明,这些区域的降水很小,没有暴雨点。这说 明,7月8日后半夜局地暴雨落区的形成与 维持在门头沟、石景山、海淀一线的中-γ尺 度逆风区强辐合带的作用是分不开的。

4.3 7月9日中气旋回波块

由7月9日大暴雨落区逐小时雨量图 (图略)分析可见,香山大暴雨的主要降雨出 现在9日21:00—23:00,2小时雨量96mm。 其中21:00—22:001小时雨量72mm(图 1f)。图8a、b(见彩页)是香山大暴雨雨量最 大时段北京南郊 SA 雷达 2.4°仰角反射率因 子强度变化图,图 8c、d 是与之对应的 1.5°仰 角回波径向速度图。图中大白色椭圆圈为香 山、石景山(模式口)至门头沟大暴雨落区。 图中可见,21:32(图 8a,见彩页)沿着京西山 前山地与平原地形分界线(图 4a)及地面风 场切变辐合线(图 4d),一字排列着多个中尺 度回波块(图 8a 黑色、红色小圈)。其中,最 大回波强度超过 60dBz 的 1 号、2 号回波块 (图 8a 黑色小圈)分别位于香山地区和门头 沟地区。在回波径向速度图上,相同位置有 二个气旋式辐合型中尺度速度对(图 8c 黑色 小圈)与之对应。这二个速度对水平距离2 ~3km,最大速度差 10~14m • s⁻¹。垂直高 度自 500m(0.5°仰角)至 2500m(4.3°仰角) 各层都有(图略)。此外,图 8e、f、g(见彩页) 分别为同时刻 21:32 SA 雷达回波反演的垂 **直**液态含水量、回波顶高及1小时降水量图。 图中可见,暴雨落区附近垂直液态含水量、回 波顶高及1小时降水量均相对最大,也都分 别达到 35kg • m⁻², 11km, 及 31mm • h⁻¹。 表明位于大暴雨落区的1号、2号回波块都 是具有中气旋性质的回波块。追踪分析显 示,这些具有中气旋性质的回波块在大暴雨 强降雨期间始终维持(图 8d,见彩页),并相

对独立地沿着地形分界线自西南向东北移 动,并在门头沟、石景山至香山、海淀一线的 地面风切变辐合线(图 4d 黑色粗实线)段内 发展、加强。如:21:50(图 8b,见彩页)1 号回 波块主体自香山进入海淀站附近;2号回波 从门头沟完全进入石景山;随其后原位于房 山境内靠近门头沟的回波块替代 2 号回波块 进入门头沟地区;房山中部的回波块也顺序 向东北移动至门头沟区界附近。比较图 8c、 d(见彩页),两个气旋式速度对始终稳定在大 暴雨落区附近(图 8c、d 黑椭圆圈),而其它地 区没有明显气旋式速度对存在。所以独立的 强回波块沿着山前平原与山地分界线自西南 向东北滚动式移动过程中,只是在这一地区 加强。因此本文认为,香山大暴雨落区的形 成是由多个这样的中气旋回波块在该地区有 序滚动、更迭共同造成的。关于这一点,郭虎 等有较详细的分析^[2]。

5 三次局地暴雨 SA 雷达探测产品参数

将三次局地暴雨最大时段落区附近 SA 雷达探测产品参数列于表 1,可供此类天气 短时临近预报参考。

主要参数	6月27日	7月8日	7月9日
实况过程雨量/mm	116(4h)	64(4h)	137(8h)
实况 1h 最大雨量/mm	64	50	72
平原近地面风及维持时间 (900m以下)	SE凤(6h)	SE风(6h)	SE凤(6h)
边界层及对流层中低层风(1500~3000m)	NW 凤	SW 凤	SW 凤
回波特征	对流单体回波	大范围层云中局地发展 的带状回波	单一带状回波
落区回波发展形式	局地生成并消亡	西南涌入局地集聚	独立回波块沿同一方向和 路线在同一地区滚动更迭
落区最大回波强度/dBz(1.5°仰角)	60	50	55
落区回波宙尺度系统 ホームトロ (JTL)	单体风暴	逆风区辐合带	中气旋
洛区凹波取入垂且液心含水重(VIL)/Kg•	60	30	35
加 ⁻² 落区回波最大回波顶高(ET)/km 顶高回波强度判断阈值≥18dBz	14	11	11
落区回波最大 1h 降水量/mm Z-R 关系式:Z=300R ^{1.4} (OHP)	76	38	63

表1 三次局地暴雨 SA 雷达主要参数

6 结论和讨论

利用新一代 Doppler 雷达探测产品对 2006 年北京西郊三次局地暴雨和大暴雨过 程的分析显示,对许多空间和时间尺度很小, 常规气象资料不易捕捉、追踪,更难进行落区 确定的局地暴雨和大暴雨事件,新一代 Doppler 雷达探测产品的实时监测和追踪, 是对其落区形成确定的直观而有效的工具。 研究表明:

(1)发生在北京西郊落区相同的三次局 地暴雨和大暴雨天气事件,其回波发展及演 变过程的表现形式是不同的。6月27日为 回波在大暴雨落区局地生成、发展并消亡的 过程;7月8日是大范围回波自西南方向涌 入,在山前暴雨落区附近沿地形辐合线集结 加强的过程;7月9日为多个独立回波块沿 山前地形风切变线在大暴雨落区一带自西南 向东北有序滚动、更迭所致。

(2) 三次局地暴雨和大暴雨强降雨前, 近地面平原东南风和边界层偏西风的垂直风 廓线结构在地形作用下对暴雨落区形成的影 响是一致的。三次过程强降雨前,近乎与山 脉垂直的平原近地面东南风长时间(6小时 左右)维持,有利于山前局地近地面温湿条件 的增加,并在北京西郊山脉阻挡下,形成山前 近地面局地辐合和强迫抬升。而山顶附近边 界层偏西风的作用为空气强迫抬升在边界层 的后卷辐散提供了有利条件。

(3) 三次局地暴雨和大暴雨强降雨发生 期间,落区附近都伴有回波中小尺度系统活 动。但各中小尺度系统表现形式不尽相同。 6月27日局地大暴雨落区的形成由风暴单 体造成;7月8日局地暴雨落区的形成伴随 着多个中尺度强回波块集结加强并形成中尺 度逆风区强辐合带过程;7月9日局地大暴 雨落区的形成则由多个独立的中气旋回波块 在落区附近滚动更迭所致。

(4) 三次局地暴雨和大暴雨雨强最大时 段落区附近 SA 雷达探测产品主要参数可作 为京西局地暴雨短时临近预报着眼点的参考 依据。

参考文献

- [1] 陶诗言. 中国之暴雨[M]. 北京:科学出版社, 1980.
- [2] 郭虎,段丽,杨波,等.0679北京香山局地大暴雨的中 尺度天气分析[J].应用气象学报,2008,19(3):265-275.
- [3] 朱乾根,林锦瑞,寿绍文,等. 天气学原理和方法[M].北京:气象出版社,1981.
- [4] 刘淑媛,郑永光,陶祖钰.利用风廓线雷达资料分析 低空急流的脉动与暴雨关系[J].热带气象学报, 2003,19(3):285-290.
- [5] 俞小鼎,姚秀萍,熊廷南,等. 多普勒天气雷达原理与 业务应用[M].北京: 气象出版社,2006.
- [6] 俞小鼎,郑媛媛,张爱民,等. 安徽一次强烈龙卷的 多普勒天气雷达分析[J]. 高原气象,2006,25(5): 914-924.
- [7] 王令,康玉霞,焦热光,等.北京地区强对流天气雷达 回波特征[J]. 气象,2004,30(7):31-36.
- [8] 周海光,王玉彬. 2003 年 6 月 30 日梅雨锋大暴雨 β 和γ中尺度结构的双多普勒雷达反演[J]. 气象学报, 2005,63(3):301-312.
- [9] 郭虎,段丽,卞素芬,等.利用加密探测资料产品对
 "06731"北京奥体中心局地暴雨结构特征的精细分析
 [J].热带气象学报,2008,24(3):220-227.

段丽等:用SA雷达产品对京西三次局地暴雨落区形成的精细分析

图 7 2006年7月8日暴雨落区降雨回波中尺度辐合带体分析图(图中黑椭圆圈为暴雨落区) (a)7月9日01:10时(BT,下同)北京南郊SA雷达组合反射率因子强度图;(b)7月9日02:23时北京南郊SA雷达组合反射率因子 强度图;(c)7月9日01:10时北京南郊SA雷达2.4°仰角回波径向速度图;(d)7月9日02:23时北京南郊SA雷达2.4°仰角回波 径向速度图;(e)7月9日02:53时北京南郊SA雷达垂直液态含水量图(单位:kg/m²);(f)7月9日02:53时北京南郊SA雷达回波 顶高图(单位:km);(g)7月9日02:53时北京南郊SA雷达1h最大降雨量图(单位:mm)

图 8 2006年7月9日大暴雨落区降雨回波中气旋活动分析图(图中绿椭圆圈为大暴雨落区) (a)7月9日21:32时(BT,下同)北京南郊SA雷达2.4°仰角回波反射率因子强度图;(b)7月9日21:50时北京南郊SA雷达 2.4°仰角回波反射率因子强度图;(c)7月9日21:32时北京南郊SA雷达1.5°仰角回波径向速度图;(b)7月9日21:50时北京南郊 SA雷达1.5°仰角回波径向速度图;(e)7月9日21:32时北京南郊SA雷达垂直液态含水量图(单位:kg/m²);(f)7月9日21:32时北京 南郊SA雷达回波顶高图(单位:km);(g)7月9日21:32时北京南郊SA雷达1h最大降雨量图(单位:mm)

段丽等:用SA雷达产品对京西三次局地暴雨落区形成的精细分析

 图 3 三次暴雨过程强降雨之前和强降雨发生期间北京南郊SA雷达1.5°仰角回波径向 速度图及反演的风垂直廓线图(单位:m•s⁻¹)
 (a)6月27日21:43时(BT,下同)回波径向速度;(b)6月27日22:19—23:19时SA雷达垂直风廓线;

(c)7月9日01:58时回波径向速度;(d)7月9日01:58—02:58时SA雷达垂直风廓线;(e)7月9日21:32时 回波径向速度;(f)7月9日21:01—22:02时SA雷达垂直风廓线

图 6 2006年6月27日大暴雨落区降雨回波雷暴单体分析图(图中白椭圆圈为大暴雨落区) (a) 6月27日22:49时(BT,下同)北京南郊SA雷达组合反射率因子强度放大图;(b)6月27日22:49时北京 南郊SA雷达2.4°仰角回波径向速度放大图;(c)6月27日22:55时天津雷达沿弓型回波的垂直剖面图 (其中,上半部为剖切线位置示意图,下半部为与之对应的剖面图);(d)6月27日23:15时北京南郊SA 雷达垂直液态含水量图(单位:kg/m²);(e)6月27日23:15时北京南郊SA雷达回波顶高图(单位:km); (f)6月27日23:15时北京南郊SA雷达1h最大降雨量图(单位:mm)

段丽等:用SA雷达产品对京西三次局地暴雨落区形成的精细分析

图 2 三个暴雨过程强降雨前及强降雨期间北京南郊SA雷达1.5°仰角回波反射率因子发展变化 (图中白椭圆圈为暴雨和大暴雨落区,单位:dBz)。(a)6月27日22:01时(BT,下同);(b)7月9日00:33时;(c)7月9日20:31时; (d)6月27日22:49时;(e)7月9日02:23时;(f)7月9日21:44时;(g)6月27日23:07时;(h)7月9日02:53时;(i)7月9日21:56时)