用多普勒雷达资料对一次区域性 暴雨的中尺度分析

王楠刘勇郭大梅

(陕西省气象台,西安,710016)

提 要:利用多普勒雷达资料,对2006年6月2日夜间出现在陕西中部和北部地区 的区域性暴雨过程进行分析。结果发现:低层暖湿急流和弱冷空气相互作用产生的 两条中尺度辐合线是这一地区出现大暴雨的主要影响系统;低空东南急流为降水区 提供的大量的水汽和不稳定能量堆积,在弱冷空气的触发下释放,是产生大暴雨的主 要原因;低空急流的输送方向与中尺度辐合线的移动方向,决定了未来辐合线的发展 状态;低空急流的日变化引起了暴雨夜发性。

关键词:区域性暴雨 中尺度辐合线 低空急流

Meso-Scale Analysis of a Regional Heavy Rain Using Doppler Radar Data

Wang Nan Liu Yong Guo Damei

(Shannxi Meteorological Observatory, Xi'an 710016)

Abstract: There was a regional heavy rain in the middle of Shannxi Province at the night of June 2, 2006. The rain was analyzed by using Doppler data. The result shows that the meso-scale convergence line, which was the result of interaction between the low-level warm/wet jet and weak cold air, directly produced the heavy rain. Low-level jet provided not only ample of vapor but also instability- energy, so it was the main matter which resulted in so heavy rain. The directions of low-level jet and meso-scale convergence line that affects the developing of convergence line. At the night, low-level jet will become more intensive, that is why lots of heavy rain occurred in the evening.

Key Words: regional heavy rain meso-scale convergence line low-level jet

收稿日期: 2006年10月30日; 修定稿日期: 2007年6月14日

炙

引 言

暴雨是引发我国自然灾害的主要天气现 象之一,人们对环流背景及在环流背景上发 展起来的直接造成暴雨的中尺度系统已经有 了比较深入的认识。近年又开始了一些突发 性暴雨的研究[1-2],但由于缺乏有效的中尺度 观测手段和资料,仍然难以对中尺度影响系 统有深入的认识。多普勒天气雷达具有很高 的时间和空间分辨率,是探测暴雨中尺度系 统非常有效的遥感工具,国内许多专家对暴 雨天气的多普勒雷达特征进行了分析和总 结,为暴雨的预报和研究提供新的探测信息 和预报思路。刘洪恩利用多普勒雷达资料研 究了低空急流、暖平流、冷切变、逆风区等暴 雨中尺度系统的雷达回波特征,指出这些中 尺度系统对暴雨临近预报有明确的指示意 义[3];夏文梅等利用冷暖平流和辐散辐合风 场叠加的多普勒速度特征,对一次连续性大 暴雨风场进行了研究[4];周雨华等对几次副 高边缘暴雨的多普勒雷达资料进行了对比分 析总结^[5]。

2006年6月2日22时到3日08时,陕 西出现了一次全省性的中阵雨或雷阵雨天气 过程,陕北南部和关中的部分地区出现了区 域性暴雨,其中有36站日降水量大于25mm (大雨),有15站大于50mm(暴雨),最大日 降水量达83.6mm。这次暴雨过程有3个明 显特点:(1)在夏初,陕西的中、北部地区出 现类似的区域性暴雨天气过程比较罕见; (2)降水主要集中在夜间(3日00—06时), 由于缺少高空资料,给预报带来很大难度; (3)前期天气形势不很明朗:中高层没有明 显的冷空气入侵,低层辐合系统也不清晰。 本文利用西安 CIRAND/CB 雷达观测资料 对这次区域性暴雨天气过程进行分析,找到 其中尺度影响系统,试图对类似的暴雨过程 的形成机理做出解释。

1 天气形势分析

2日08-20时500hPa天气图上,贝加 尔湖附近有一冷涡稳定少动,其底部有一浅 槽不断东移发展,到2日20时移至银川一玉 树一线。这段时间等温线基本与等高线平 行,2日20时银川与延安的温度差仅2℃, 可见冷空气非常弱。在冷涡东部,华北到东 北地区高压脊逐步建立,中纬度地区环流形 势为东高西低,有利于降水生成。

700hPa 天气图上,2 日 08 时有西南气 流沿四川盆地东部向北伸展直至关中地区, 贝加尔湖有一低涡维持,其底部为一致的西 北偏西气流,在两股气流的共同作用下,陕北 南部到关中东部形成一条东北一西南向的切 变线。到 20 时,西南气流进一步发展西伸, 在关中西部、宁夏和甘肃南部范围内形成一 个低涡,为这个地区的气流输送和辐合上升 运动创造了有利条件。

200hPa 天气图上,2 日 08 时在内蒙古 上空存在一条西风急流带,最强中心为 50m・s⁻¹,位于 42°N、104°E 附近。到 20 时,急流带向西移动大约 10 个经度,中心风 速增加到 55m・s⁻¹,此时,陕北南部正好处 于急流出口的右侧,为暴雨落区提供了高空 辐散场。在垂直方向,这个辐散场的位置与 对流层中低层的低涡相一致,为对流发展提 供有利条件。

由以上天气尺度系统分析可见,高空辐 散和弱的低空辐合为这次暴雨过程提供了动 力机制,但中高层冷空气很弱,低层又没有明 显低值系统,似乎不足以解释为何会出现这 么大强度降水。下面用西安 CINARD/CB 雷达的观测资料进行分析,试图从中尺度系 统寻找一些可能的原因。

2 多普勒雷达资料分析

2.1 反射率因子

从雷达反射率因子图上可以看到,这次 过程是混合云降水,降水区上始终覆盖着大 面积层状云回波,其中中小尺度对流云团的 发生、发展导致了各地大暴雨。

2日23时44分,0.5°仰角的反射率因子 平显(以下简称 PPI(Z))上,在雷达站西侧 125km处出现一条细小的南北走向强回波 带,长约 20km、宽约 2km,强度为 45~ 50dBz。以后它不断东移发展,到 01 时 24 分,长度达 60km,最大强度为 50~55dBz。 在这一时段,这条强回波带的移动路径上,麟 游、扶风等县均出现短时暴雨。02 时 56 分, 雷达站西侧 50km 处再次出现南北向强回波 带,强度为 45~50dBz,东移发展过程中不断 向南伸长,这条回波带造成了 03—06 时咸阳 和西安地区的强降水,咸阳站甚至达到 1 小 时 35.3mm。连续观测发现,这条回波带可 能与前面回波带是同一系统产生,只不过在 发展过程中有生消存在。

3日01时30分,1.5°仰角的PPI(Z)上, 雷达站北部出现一条东北一西南向回波带, 随后不断有小尺度对流回波团沿着回波带方 向快速的生消,强度为45~50dBz,直到02 时50分左右全部消散。由于这些小对流回 波团在同一地区的连续生成,造成铜川地区 短时暴雨。

分析可见,这两条发展、东移的回波带造 成了黄土高原南部地区大暴雨的主要天气系 统。

2.2 径向速度

2.2.1 中尺度辐合线

3日00时34分,在0.5°仰角多普勒径 向速度平显(以下简称 PPI(V))上(图2a,见 彩页),雷达西侧的零速度线出现一个明显直 角,直角南北向一边平直,其东部为正速度 区,西部为负速度区,形成一条明显的中尺度 辐合线。到02时31分,辐合线东移到距雷 达约60km处(图略),直角更加突出,在直角 内出现正速度极大值区,在直角外南部和西 部分别出现负速度极大值区,这样的风场结 构和标准冷锋非常相似^[3]。

图 2b(见彩页)是 02 时 44 分沿 278°方 位角作的径向速度垂直剖面图。零速度线位 于距雷达 58km 处,并向正速度区倾斜,发展 高度只有 2km。在其前部,有很明显的弱径 向风垂直切变,整层风都随高度顺转,伸展高 度平均达到 6km 以上。说明这一区域有比 较深厚的暖平流,这样的风场垂直结构导致 了上升气流的连续发展,保证了低层向上的 水汽垂直输送,有利于对流的加强^[6];在零速 度线的后部,径向风略随高度逆转,表明冷平 流的存在,但强度很弱,而且比较浅薄。值得 注意的是,在这个中尺度辐合线的发展过程 中,零速度线始终向正速度区倾斜,容易使人 产生辐合线向暖区倾斜的错误印象。仔细观 察图 2b 发现,风向随高度顺转的区域是向后 倾斜的,在这个区域的后面风向随高度顺转, 即暖区向冷区倾斜,沿着这两个区域的分界 线才是中尺度辐合线的位置(如图 2b 中红 线标示)。造成零速度线向前倾斜的原因是, 暖湿气流后部比较强而与冷空气相遇的前锋 逐渐减弱,结果越靠近辐合线,风向顺转形成 的零速度线的高度就越低。这也说明了零速 度线并不一定就是冷暖空气的交界线。

02时56分0.5°仰角PPI(V)上,在雷达 站的正北方也出现一条有直角拐弯的零速度 线(图2c,见彩页),其西北一东南向的边线 与雷达站西侧中尺度辐合线的前部正速度区 相混,只有东北一西南向的边线南北分别有 正、负速度大值区,形成了另一条中尺度辐合 线,它直接导致了雷达站北侧强回波带的形 成。对这一区域沿342°方位角做垂直剖面 (图2d,见彩页),辐合线在距雷达大约70km 处,并随高度向负速度区倾斜,其前部径向风 随高度顺转,后部径向风随高度逆转。可见, 这条辐合线也是由冷暖空气交汇的结果,与 大尺度冷锋具有相似的空间结构。

这两条中尺度辐合线的空间物理结构是 相似的,后部的冷空气都很弱,而前部暖湿气 流非常明显。强大的暖湿气流不但为降水提 供了有利的水汽条件,而且为暴雨落区堆积 了大量不稳定能量。在这样的条件下,即使 遇到很弱的冷空气,也能引起能量迅速释放, 从而导致暴雨的产生^[7]。这两条辐合线的生 消演变过程又是不同的,位于雷达西侧的辐 合线结构稳定、持续时间长,与其相伴的强回 波带也在东移的过程中不断发展、加强;位于 雷达北侧的辐合线,在发展的过程中逐渐由 偏南北走向转为偏东西走向,并很快消散,持 续时间只有 90 分钟左右。对于这样的区别, 可以通过对低空急流的分析得到一些解释。

2.2.2 低空急流

2日20时08分的PPI(V)上,在雷达站 西北和东南侧对称出现正、负径向速度大值 (10~15m•s⁻¹)区(图3a,见彩页),覆盖范 围分别延伸到距雷达80km处。显然这是一 支东南急流,根据标准大气折射下的测高公 式推算,这支急流从地面一直伸展到700hPa 高空(3km 左右),形成较深厚的暖湿层结。 此时还没有降水形成,暖湿气流的出现开始 为这一地区积蓄不稳定能量。

3日01时36分的PPI(V)(图3b,见彩 页)上,在距雷达正北70~80km处和正西 20km左右处分别有一正速度中心(5~ 10m・s⁻¹),而位于雷达东南侧的负速度大 值区始终存在,覆盖范围从距雷达20km到 100km左右,说明东南急流一直维持,并在 不同高度分别形成两个方向的强输送带。造 成这一现象的可能原因是,由于东南急流的 维持,附近区域的暖湿层结造成环境风场的 垂直结构为风随高度顺转,这样低空为偏东 气流,而较高层就是偏南气流。前文分析的 两条中尺度辐合线就是这两支急流与弱冷平 流相遇产生的,造成了这些地区的大暴雨天 气。

进一步分析发现,暖湿急流输送方向与 辐合线移动方向的夹角不同会影响到辐合线 的发展情况。图 4a 反映的是这次过程中雷 达站西侧的辐合线与急流的关系,辐合线移 动方向是由西向东,急流输送的方向是由偏 东向偏西,两个方向的夹角大于 90°, 辐合线 在移动的过程中始终能够得到急流带来的水 汽输送,因此这条辐合线维持时间较长,降水 带稳定东移。另外,由于急流的位置和走向 不变,它与辐合线的交汇点逐渐南移,降水带 东移的过程中也逐渐向南伸展。图 4b 反映 的是这次过程中雷达站北侧的辐合线与急流 的关系,辐合线移动方向是由西南向东北,急 流输送的方向是由东南向西北,两个方向的 夹角小于 90°,随着辐合线的北移,急流对其 的水汽输送作用逐渐消弱,辐合线上的降水 带也因此逐渐消散。由此可见,只有当急流 输送方向与辐合线移动方向相逆(即两者夹 角大于 90°)时,才能维持对辐合线的水汽供 应,使其得以稳定发展。

第8期

图 4 暖湿急流输送方向与辐合线移动 方向的关系示意图

以上分析得出,低空急流的出现和加强 是导致这次大暴雨过程的主要原因:一方面 为未来大暴雨的产生提供了所需要的大量水 汽;另一方面也使得未来暴雨区的低层大气 增温,为大暴雨的发生累积了大量的不稳定 能量,有利于产生对流不稳定^[8]。这种条件 下,即使只有低空弱冷空气也能激发不稳定 能量释放,从而形成大暴雨。当降水形成后, 其潜热反馈又对低空急流的形成和加强有着 重要的作用,因此急流在降水形成后逐渐加 强,降水又因水汽输送的加强而达到最大。

这次过程中,低空急流出现的时间是晚 上 20 时到次日凌晨 04 时 30 分左右,强盛期 在凌晨 00~03 时,这期间也是降水最集中的 时段。刘勇等曾指出低空急流在夜间加强导 致了黄土高原大暴雨常出现在夜间加强导 致了黄土高原大暴雨常出现在夜间的现 象^[9]。可见急流的日变化对夜间大暴雨产生 的影响尤其显著,而夜间又缺乏常规观测资 料,因此利用多普勒雷达资料监测并关注夜 间急流的发展、变化,是预报员必要的预报手 段和方法之一。

2.3 垂直风廓线产品

为了显示全过程的风场变化,按一小时 间隔重新处理雷达原始资料得到逐小时雷达 风廓线产品(如图 5)。

2.3.1 暖平流与冷平流

总体来看,整个降水过程中平均风场从

LT KM												
15.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
13.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
12.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
10.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
9.1	L ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
8.5	1	-	79	ND	ND	ND	ND	ND	ND	-	1-	
7.9				15	Ĺ	U.	1		No.	1	W. ND	
7.0		89-r-	a	2	1		1	16	5	1		
6.7	3	8	10-			2	1	I	jh.	9.	×	
6 1	~		*	***	*	-			L	ù	ц	
5.8		~	-			1.	-		L	8	2	
5.5		1967 A.Z.	the second	8.2	9. 9./	2	2-	8	<u>L</u>	2	4	
5.2	W	*	~		~	-	·	h	J	<u> </u>	5	
4.9		~	- 	300		2	82	<u> </u>	<u> -</u>	A		_
4.6	4	~	~	~	×	· V	÷.	<u> </u>	<u>k</u>	-	7	
4.3	~	14	~	~	-	~	· V	b	<u> </u>	~	2	
4.0	~	~	Ĵ.	-		4/	\$	\$		1	7	_
3.7	1	~		1		2	~	8	1	8	1	
3.4	4	-	~	~	~		1	\checkmark	b			_
3.0	5	1	7	-	1		1	-	~	<u></u>		
2.7	<	T.	T	1	1		3	1	\checkmark	8	<u> </u>	_
2.4	5	ſ	Ĩ	Ţ	1	7	2	7	\checkmark	\checkmark	\sim	
2.1	5	1	1	1	1	_	4	7	~	1	2	_
1.8	7		_	1	-	1	4	4	4	2	7	
1.5	\rightarrow	1	_	1	7	<u>}</u>	1	_	7	\rightarrow	7	
1.2	\rightarrow	_	1	1	>	2	2	à	2	7	7	
0.5	>	-	-		4	2	2	2	2	7		
0.3		10	1 P	\sim		1		2	-2	110		
0.5		- I	T.	T.	1	T.	T	1	1	1	- T ¹	
ГIME	1304	1406	1501	1603	1705	1801	1902	2004	2105	2201	2309	

图 5 2006 年 6 月 2 日 21 时至 3 日 07 时每 小时间隔垂直风廓线图(图中横坐标为世界时)

低层到高层风向逐渐顺转,有明显的暖平流 维持,而且随着时间发展暖平流逐渐由中高 层向近地面传递。3日04时,当暖平流已经 传到底层,6~7km高层风向开始出现随高 度逆转,即冷平流特征,之后冷平流逐渐加强 并向下传递,切断暖平流输送,降水减弱。

2.3.2 暖切变与冷切变

2日22—24时,低层 0.5~2km 处风向 由 SE 转向 SW,形成一暖切变。此时暖切变 的出现为当地暖湿空气聚集提供了动力环 境,从而导致了暖平流逐渐下传。3日04— 06时,3~7km 处有一冷切变经过测站,此时 正是暖平流传到底层,这样的冷暖空气配置 引发了西安市1小时28.8mm 的短时强降 水。冷切变过后,西安站上空被一致的西北 冷空气控制。对照反射率因子和径向速度图 发现,这条冷切变正是前期从雷达站西侧东 移的辐合线经过测站的表现,也证明了前文 对这条辐合线具有冷锋性质的分析。

经过上述分析从另一个角度再次证明了 这次过程的冷暖空气空间配置特征:过程前 期该地区为暖平流控制并不断从高层下传, 底层有暖式切变存在,为该区域储备了足够 的能量;后期伴随冷切变出现的冷平流成为 触发机制,导致短时强降水产生。

3 结 语

这次天气过程大尺度环流形势不明显, 中高层没有强冷空气,低空缺乏明显的辐合 系统,降水又集中在夜间,使得人们很难找到 降水产生的直接原因。本文利用西安的 CINRAD/CB 雷达资料,对这次天气过程进 行分析,得到了如下结论:

(1)强回波因子带是与中尺度辐合线相 对应的,因此中尺度辐合线是产生降水的直 接影响系统。

(2)长时间低空暖湿急流的输送对大暴 雨的产生起到了关键作用,为暴雨区积蓄大 量水汽和不稳定能量。东南急流发展造成的 暖湿层结,使风场出现随高度顺转的垂直结 构,在低空的上、下两层分别呈现偏南和偏东 暖湿气流,它们与弱冷空气的相互作用形成 了中尺度辐合线。

(3)急流的输送方向与辐合线移动方向 的相对位置,影响了辐合线的发展。只有当 辐合线逆着急流输送的方向移动时,才有利 于水汽输送,使得辐合线维持稳定、发展。 (4) 低空急流的日变化可能造成夜间大 暴雨,值得关注。

(5)垂直风廓线资料能够反映出冷暖平 流和冷暖切变等中尺度系统发展变化情况, 为强降水预报提供有效的参考信息。

参考文献

- [1] 杜继稳.青藏高原东北侧突发性暴雨分析研究与应用 [M].北京:气象出版社,2005.
- [2] 王繁强,周阿舒,李业明,等.一次特大暴雨过程的数 值模拟试验[J]. 气象科技,2005,33(5):408-412.
- [3] 刘洪恩. 单多普勒天气雷达在暴雨临近预报中的应用 [J]. 气象,2001,27(12):17-22.
- [4] 夏文梅,张亚萍,汤达章,等.暴雨多普勒天气雷达资料的分析[J].南京气象学院学报,2002,25(6):788-794.
- [5] 周雨华,黄小玉,黎祖贤,等.副高边缘暴雨的多普勒 雷达回波特征[J]. 气象,2006,32(1):12-17.
- [6] 寿绍文.中尺度气象学[M].北京:气象出版社,2003: 177-190.
- [7] 徐国强,胡欣. 弱冷空气对"96.8"暴雨的影响及数值 模拟[J]. 气象,1999,25(7):17-20.
- [8] 丁一汇.暴雨和中尺度气象学问题[J].气象学报, 1994,52(3):275-283.
- [9] 刘勇,王川,王楠,等. 低空急流对黄土高原大暴雨的 作用[J]. 陕西气象,2006,(5):1-4.

王 楠等:用多普勒雷达资料对一次区域性暴雨的中尺度分析

图 1 2006年6月3日西安雷达反射率因子 (a: 01:17, 0.5°仰角; b: 02:19, 1.5°仰角)

图 2 2006年6月3日西安雷达径向速度 (a. 00:34, 0.5°仰角; b. 02:44, 沿278°方位角的径向速度垂直剖面; c. 02:56, 0.5°仰角; d. 02:50, 沿342°方位角的径向速度垂直剖面。——为中尺度辐合线)

图 3 2006年6月3日西安雷达径向速度平面位置及低空急流