###
DOI:
本文二维码信息
华南暖区暴雨过程集合动力因子的诊断分析
苏冉1, 廖菲1, 齐彦斌2
(1.广州市气象台;2.吉林省人工影响天气办公室)
Analysis of the prefrontal torrential rain in South China with dynamical parameters
suran1, liaofei1, qiyanbin2
(1.Guangzhou Meteorological Observatory;2.Jilin Weather Modification Office)
摘要
相似文献
本文已被:浏览 49次   下载 4
投稿时间:2018-08-10    修订日期:2019-02-02
中文摘要: 选取2015-2017年4-6月期间发生在广东地区的20个暖区暴雨个例,利用GFS0.5°x0.5°的预报场资料,分析了集合动力因子在华南暖区暴雨中的分布特征。研究结果表明:(1)在广东省的四类主要暖区暴雨中,锋前低槽暴雨中各集合动力因子和累积降水的相关性最高,其次是西南急流暴雨,而回流暴雨中的相关性最差。锋前低槽暴雨和回流暴雨有共同的相关性较好的集合动力因子,而高空槽和副热带急流暴雨和西南急流暴雨也有共同的相关性较好的集合动力因子。(2)选取各类暖区暴雨中对降水表征最好的集合动力因子分别构建了3个量级的权重指数(量级分别为10-3、10-1和102),发现各量级的权重指数随着降水量级的增大而增大,说明权重指数对分析判断不同量级的降水具有很好的指示作用。(3)采用各量级权重指数的中位数作为判断降水等级的阈值,并利用3个量级的权重指数可以综合判断降水的强度等级,这为降水的量级预报提供了一个客观化指标。这些结果进一步提高了集合动力因子在华南暖区预报中的实际应用能力。
Abstract:In this paper, 20 cases of the prefrontal torrential rain in Guangdong Province from April to June of 2015-2017 are selected, and the distribution characteristics of dynamic parameters of the prefrontal torrential rain are analyzed by using the data of GFS 0.5°x0.5° data. The results show that: (1) Among the four classes of prefrontal torrential rain in Guangdong Province, the correlation between the collective dynamic factors and the accumulated precipitation is the highest in the front trough rainstorm, followed by the southwest jet rainstorm and the worst correlation in the backflow rainstorm. There are common dynamic parameters in front trough backflow rainstorm, and it is also in subtropical jet rainstorm and southwest jet torrential rain. (2) Three order of index are constructed by different dynamic parameters which are the best representation of precipitation in various prefrontal torrential rains. The index (magnitude is 10-3, 10-1 and 102 individually) are found to increase with the increase of precipitation level. It shows that the index has a good indication to judge the precipitation intensity. (3) The median of each magnitude index can be used as the threshold to judge the precipitation intensity, which provides an objective index for the quantity forecast of precipitation. These results further promote the practical application of dynamic parameters in the prediction of prefrontal torrential rain in South China.
文章编号:201808100353     中图分类号:    文献标志码:
基金项目:广州市科技计划项目(201604020069、201607020043)、国家自然科学基金(41775140)、广东省气象局科研项目(GRMC2017Q12)、广东省气象局“地域频发性强降水(雨窝)”项目
引用文本:
苏冉,廖菲,齐彦斌,0.[en_title][J].Meteor Mon,():-.
suran,liaofei,qiyanbin,0.Analysis of the prefrontal torrential rain in South China with dynamical parameters[J].Meteor Mon,():-.